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We study the non-linear self-compression of a whistler wave (whistler) in a collisionless plasma 
under the following conditions: a) A wave beam with a time-independent amplitude (stationary 
self-focusing is incident on the boundary of the plasma (z = 0); b) at t = 0 there is in the plasma a 
wave beam with az-independent amplitude (two-dimensional collapse). We obtain the basic equa- 
tions which are convenient for a numerical study of these processes and we give such a study 
which allows us to trace the dynamics of the self-compression up to its final stage. We show that in 
this case the leakage of energy caused by the transformation of a collapsing wave into a diverging 
one plays the deciding role. As a result of the de-excitation the self-compression stops and after 
this the wave structures smear out. 

L INTRODUCTION I<(J<c*/cs, (1.4) 
The self-focusing and collapse of whistlers is of great 

interest in connection with the possibility of the correspond- 
ing active experiments in the Earth's magnetosphere and 
also because of the role which these processes may play in the 
strong turbulence of a magnetized plasma (e.g., in the mag- 
netosphere~ of the Earth and the planets, the solar corona, 
laboratory plasmas, and so on). 

The theoretical study in Refs. 1,2 showed that the self- 
focusing of whistlers should be highly diversified. It will be- 
come clear from what follows that this also applied to the 
collapse. The analysis given in Refs. 1,2 was based on a study 
of plane-parallel stationary uniform wave beams which are 
described by the solutions of a Schrodinger equation and the 
equations of magneto-hydrodynamics (MHD) supplement- 
ed by taking into account the ponderomotive force produced 
by the wave. In Ref. 3 similar results were obtained also for 
cylindrically symmetric beams. The solutions describing 
such beams (uniform and stationary) are looked for in the 
form of functions depending on r and the variable 

E=x (2-acst) , (1.1) 

where c, is the sound speed and x and o are constants. After 
such solutions are found we let x-+O for fixed a, as the result 
of which we obtained a family of solutions containing the 
parameter u(0 < o < oo ), where all quantitites depended only 
on r. It then turned out that when 

O<a<I (1.2) 

waveguide channels were obtained with a density N ( r )  larger 
than in the surrounding plasma (N ( r )  >No, where No is the 
density as r-tm). It is important that the relative change in 
the constant (in time) magnetic field B(r) is then very small in 
comparison with the relative change in the density, i.e., if we 
define the quantitites 

,v= (N-No)  /No ,  b= ( B - B o ) / B o ,  (1.3) 

where Bo is the external magnetic field as r-t  co , b(v then in 
the case (1.2). 

If 

where c, is the Alfvkn velocity (one assumes the plasma to be 
strongly magnetized so that c, /c, ) 1) we obtain channels 
with a density smaller than in the surrounding plasma, i.e., 
Y < 0, with bgv also in that case. 

Finally, when 

c,/cs< a<m (1-5) 

one obtains again channels with v < 0, but now already b- v 
while 

However, the analysis'~~ shows that if one uses the 
Schrodinger equation one loses a very important effect, the 
leakage of the whistler from the waveguide, owing to the 
transformation of the trapped wave into an untrapped mode 
which is not described by the Schrodinger equation. This 
effect, which is a kind of tunnel effect (we call it a tunnel 
transformation), can be described only on the basis of the 
complete set of Maxwell equations. The theory4 leads to the 
conclusion that when b<v it occurs when Y >  0, i.e., in the 
case (1.2). As to waveguides with v<O, this effect occurs 
only when b 2 Y and, in particular, when b = Y , ~  i.e., in the 
case (1.6). The leakage effect, which becomes very strong for 
narrow beams, makes the whistler self-focusing process 
unique. Thanks to it uniform beams with a lying in the 
ranges (1.2) and (1.5) cannot be formed at all. Under condi- 
tions which might lead to such beams from the point of view 
of the Schrodinger equation the beams are, indeed, "de-ex- 
cited" before they become rather narrow. 

The present paper is devoted to numerical studies of the 
processes of self-compression of whistler waves under such 
circumstances that the leakage plays a decisive role leading 
to a discontinuation of the compression due to de-excitation. 
Taking into account what was said above we can at once 
indicate two such regimes. 

Firstly, the case when an axially symmetric right-han- 
dedly polarized wave is incident on the boundary of the plas- 
ma with a frequency corresponding to whistlers, and with an 
amplitude which is constant in time. In that case we can drop 
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all time derivatives in the initial equations. If the boundary 
condition were to correspond to a solution depending solely 
on r and 6 [see (1. l)] we would be led to the case (1.2) with 
a = 0 for which leakage occurs; the latter must, clearly, oc- 
cur also for any other stationary boundary condition. One 
may thus expect that the self-compression of a beam with an 
amplitude which is constant in time (we call this process 
below stationary self-focusing) must be accompanied by 
leakage. 

The second case when leakage must occur corresponds 
to the situation when intially there is a beam with an ampli- 
tude which is independent of z. If such a beam were station- 
ary, we should assume in (1.1) x - 4 ,  but xo = const, so that 
u-t w . According to (1.6) in that case b = v < 0. As we noted 
already above in that case leakage should also occur which, 
of course, must also happen for the compression of any uni- 
form beam. The self-compression of a beam, uniform with 
respect to z, can be considered to be a two-dimensional col- 
lapse. 

One may thus expect that for the two simplest self-com- 
pression regimes of whistler wave beams-stationary self- 
focusing and two-dimensional collapse-leakage occurs and 
must lead to the discontinuation of self-compression due to 
the de-excitation of the beams when the latter become suffi- 
ciently narrow. We shall show below that this is, indeed, the 
case. More complicated regimes will be considered in other 
papers. 

The paper is constructed as follows. We write down in 
section 2 the basic equations which are the starting point for 
the two above-mentioned problems of stationary self-focus- 
ing and two-dimensional collapse. Then in section 3 we con- 
sider self-focusing and in section 4 collapse. 

2. BASIC EQUATIONS 

We shall assume that the electromagnetic field is quasi- 
monochromatic: 

1 - 
- [E(r, t )  exp (-iot) + C.C.], 
2 (2.1) 

where the amplitude @(r, t )depends rather slowly on t, but is 
an arbitrary function ofr. In that case the Maxwell equations 
give 

(2.2) 
Here 2 is the permittivity tensor. We shall also assume that 
the external magnetic field B, is directed along thez-axis and 
that the plasma is "cold." 

In the whistler frequency range 

where up, a,, and w,, are the electron plasma, electron cy- 
clotron, and the lower hybrid frequencies, respectively, the 
non-vanishing components of E have the form 

7 ( N ,  B )  =o, ( N )  lo, ( B )  , u=olo, ( B )  . (2.5) 

We consider in what follows cylindrically symmetric 
whistler beams propagating along the external magnetic 
field Po. We introduce the quantities 

where E,, E', are the components of in a cylindrical sys- 
tem of coordinates with axis of symmetry along z. For the 
beam considered all quantities in (2.6) depend on r, z, t, but 
are independent of p. Using (2.6) we get from Eq. (2.2) the 
following set of equations, which is equivalent to (2.2): 

In the stationary self-focusing problem which is consid- 
ered in the next section is is convenient to use instead of Eq. 
(2.9),-which is the z component of Eq. (2.2), the equation 
div(bE) = 0 which follows from (2.2) when d @/dt  = 0. In the 
notation (2.6) it has the form 

In (2.4) wp and w, are local frequencies; their spatial 
and temporal variations are caused by the action of the aver- 
aged ponderomotive forces of the hf field on the plasma. As 
in Refs. 1 to 3, we shall describe the "slow" motions of the 
plasma by the linearized MHD equations supplemented by 
the ponderomotive force of the wave field: 

wherep, = (Zm, + m, )No--miN, is the unperturbed mass 
density, v and b are defined in (1.3) and f is the ponderomo- 
tive force density of the hf field which in our notation has the 
form 
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These expressions are obtained from the general formula 
(see, e.g., Ref. 5) without the terms with d /at. For whistlers 
those are unimportant when 

u> (m, /mi)  '", (2.16) 

which will be assumed to be satisfied. 
Numerical calculations show that if the initial pertur- 

bation is sufficiently small the perturbations of the plasma 
remain small during the whole process (i.e., v( 1, Ibl( 1) be- 
cause of the de-excitation of the collapsing beam; this justi- 
fies the linearization of the MHD Eqs. (2.11) to (2.13). 

3. STATIONARY SELF-FOCUSING 

We state the problem as follows. Parallel to the external 
magnetic field there is incident on the plasma boundary 
(z = 0) an axially symmetric right-handedly polarized wave. 
The amplitude of the wave at the plasma boundary z = 0 is 
constant in time. The evolution of the wave in the plasma for 
z > 0  is then described by Eqs. (2.7), (2.8), (2.10), (2.11) to 
(2.15) in which we must put d /dt = 0. 

We write the field amplitude in the form 

F=F(r ,  z) eikZ, G=G (r,  z )  eikz, E,=E, (r ,  z) elkz, (3.1) 

where we do not assume that the dependence ofF, G, and E, 
on r and z is slow, 

is the wave number of the whistler propagating along the z- 
axis. We also introduce dimensionless variables 

p=kr, G=kz, (3.3) 
V=F/Eo, U= [F- ( I -u )  G / ( l +  U) ( I - 2 ~ ) ]  /Eo, 

where yo = y(N,, B,) (see (2.5)). The reason for introducing 
the quantity U will be explained later. Using (2.10) to elimi- 
nate E, from (2.7), (2.8) and using the fact that when v(1, 

lbl (1 
a ln E ~ B  d In Eag 

'c k ,  - ' c k  
az d r 

(a, 0 = x ,  y, z) we get instead of (2.7), (2.8) 

where 

L=82/8pZ+ ( U p )  aldp-llp2, 

b,,*-2(1-2u2)lu" bl2=(l+u) ( 1 - 2 u ) l . ~ ~ ,  

bzi=4(1-u)l ( I - 2 ~ ) ,  B2,=-2 (I-u).vl ( I - 2 u ,  (3.8) 

Bll=- (1-2u)lu2+2(l-u)vlu,  

Bi2=(.1-2u)/u2+ ( I -u )  (1-2u)v/2u2. 

We now turn to the MHD Eqs. (2.11) to (2.13) which in the 
stationary case take the form 

It follows from (3.9) that v-0. From thez-component of Eq. 
(3.10) and from Eq. (2.15) we get after simple transforma- 
tions 

where W = E,/Eo is given by Eq. (2.10) which can be rewrit- 
ten in the form 

Substituting (3.11) into the r-component of Eq. (3.10) 
and combining this with the equation div b = 0 we can de- 
termine b,, b,. We shall not do this here, noting solely that 
one then obtains 

i.e., Ib) (v. We can thus neglect the variations of the magnet- 
ic field which is constant in time. 

The problem thus reduces to solving the set of Eqs. (3.6), 
(3.7), (3.1 I), and (3.12). Beforehand we elucidate some im- 
portant properties of the quantity U defined in (3.4). To do 
this we note that the wave emerging from the waveguide 
which is formed as a result of the tunnel transformation of 
the self-focusing wave has, as r-w , the form2 

r-'"ED exp {i(k,r+kz--at)), (3.14) 

where w and k are the same as in (2. I), (3. I), while 

k (1-2u)" (14-U) (1-2u) (E,O-iE,O) 
k, = , E,O+iE,O = 

u l - u  

Using (3.15) one checks easily that the quantity U in 
contrast to V [see (3.4)] must vanish rapidly as r-m. More- 
over, one must expect that U is a smoother function of r, z 
than V, since V is the superposition of two waves-the self- 
focusing wave and the wave formed as the result of the tun- 
nel transformation, while in the quantity U the field of the 
latter to an appreciable extent is subtracted. This assump- 
tion is confirmed by numerical results (see below). Taking 
what we have said into account we can in Eq. (3.6) neglect the 
term with 6' 2U/6'< as a result of which the set (3.6), (3.7) 
simplifies considerably and becomes convenient for a nu- 
merical solution. The solution then is uniquely determined 
by V, U, and dV/d< for 5 = 0. 

We note also the following. If the transverse size of the 
beam is much larger than k - ' and v( 1, we have U z  V and 
from (3.6), (3.7), (3.1 I), and (3.12) there follows aschrodinger 
equation2 

where the operator 2 is given in (3.8). Equation (3.16) de- 
scribes the initial stage of the evolution of the beam if the 
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FIG. 1. Self-focusing of a whistler beam for u = 0.3, 
V i  = 0.008, s = 2 1.5. Solid lines give I V 1 2 ,  dashed lines give 
I u IZ. 

conditions for the applicability of this equation are satisfied from (3.17) to (3.19) in that dV/df = 0 for f = 0. It then 
for small z. turned out that the corresponding solution differs from the 

The set (3.6), (3.7), (3.1 I), and (3.12), and also Eq. (3.16) one considered here only for small f .  One can conclude from 
were solved numerically. The initial field of the beam was this that the value of dV/df for f = 0 (the other conditions 
given in the form being fixed) very little affects the shape of the solution for 

rather large f .  
Vl 6=o=Vop~-1 exp (-pZ/2sZ+i/Z). (3.17) The energy characteristics of the self-focusing process 

For the set (3.6), (3.7), (3.12) moreover we gave are shown in Fig. 3, where we show graphs of the integrals 

(3.18) PM k Ull,o=vIt=o, Wl,=o=O, 
I , =  J p ~ v 1 2 d p ,  I , =  5 p l ~ l ' d p  (3.20) 

a v 1 - 2 ~  i 
LV+- I V I ' V ]  . (3.19) I t=7i[m 2 L = O  0 0 

as functions of f .  In the first stage, of course I, -I2. In the 
The last condition is connected with the fact that for small f 
the Schrodinger Eq. (3.16) must be satisfied. The range of the 
calculation was f>O, OQ<p,,, = 4s. For p = 0 we put 
V = U = 0. At the outer boundary p = p,,, the condition 
was that the energy leaking out the range covered by the 
calculation was absorbed. 

We now give the results (part of these results for a sim- 
plified self-focusing model were given in a short communica- 
tion6). Self-focusing occurs when Vg > Vf,, where V:= is a 
critical value (equal to 0.005 for s = 21.5, u = 0.3). One can 
split the process into two stages. In the first stage of the self- 
focusing a tubular wave structure is formed collapsing 
towards the beam axis, with the quantity Vsmoothly chang- 
ing. In that case U- Vand v > 0. In that stage the solution of 
the set (3.6), (3.7) is close to the solution of the Schrodinger 
Eq. (3.16). The end of the first stage approximately corre- 
sponds to 5 = 1180 (see Fig. la) where I V I:,, -0.09, 
I U I:,, ~ 0 . 0 7 ,  and v,,, -0.09. When the transverse size of 
the beam becomes comparable to the longitudinal whistler 
wavelength, the second stage starts. The collapse stops due 
to the strong tunnel transformation of the wave trapped in 
the waveguide into a diverging wave of asymptotic form 
(3.14) as is clear from Fig. lb where IVI~,,-0.11, 
I U I;,, =: 0.08, and v,,, -- 0.1. After that the leakage of ener- 
gy becomes so large that 1 V I:,, starts to decrease and the 
beam gradually gets de-excited (Fig. lc). It is clear from Fig. 
1 that the function U ( p, f ) is appreciably smoother than 
V( p, f ) and its width is of the order of the width of the wave- 
guide. It follows from the definition of U that this fact is the 
basic evidence for the fact that the oscillations in Fig. 1 are 
connected with the energy leakage. It is natural that in the 
second stage the solution of the set (3.6), (3.7) differs appre- 
ciably for the solution of the Schrodinger Eq. (3.16) as can be 
clearly seen from Fig. 2. 

We turn attention to the following fact. In Ref. 6 we 
solved the set (3.6), (3.7) under conditions which differed 

second stage I, initially decreases fast; this is connected with 
the loss of energy into tunneling and after that enters a pla- 
teau when the leakage stops due to the spreading out of the 
beam. At the end of the process we have again I, =I2. 

It is important to note also that if in the set (3.6), (3.7) we 
drop the terms withd V/df we get resultswhichareclose to 
those given above. This indicates that the f-dependence of 
the field E ( p, f ) may be taken to be rather slow. This ex- 
plains, in particular, the fact that the results given here are 
close to the results obtained by assuming that 6'Ez/dz=: 
ikEz, as was done in Ref. 6. 

When the dimensionless frequency u = w/w, ap- 
proaches 5 the leakage becomes stronger and the self-focus- 
ing is stopped earlier for otherwise the same conditions. This 
is noteworthy, when one compares the result given above 
with the numerical results, already when u = 0.4 and agrees 
with the qualitative theory.' 

When u = 0.3 and the value of Vg [see (3.17)] is twice 
that of Fig. 1 one obtains a two-focus structure.' We note 
merely that a consecutive de-excitation then takes place, 
first of the first and then of the second focus. 

FIG. 2. Position of the maximum of the field I U 1' (solid line) and maxi- 
mum of the field in the Schrodinger Eq. (3.16) (dashed line) for the pa- 
rameter values of Fig. l .  
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FIG. 3. The integrals Z,/Z, as functions of 5 for the parameter values of 
Fig. 1. 

4. COLLAPSE 

We now consider the collapse of a whistler beam which 
is uniform with respect to z. Its temporal evolution (t > 0) is 
described by Eqs. (2.7) to (2.9) and (2.11) to (2.15) in which we 
shall put 

P=F ( r ,  t )  eikz,  C=G ( r ,  t )  eikz, B,=E, (r ,  t )  eikz, (4.1) 

where k is given by Eq. (3.2). 
We introduce the dimensionless variables 

The quantities V, U, and W differ from those introduced in 
section 3 only in their normalization. 

Using (3.5) Eqs. (2.7) to (2.9) take in the dimensionless 
variables the form 

d2W 1  dW I-u -+--- i l d  w = - - -  
dp2 P dP u 2~ P d P  

P[ (P -1 )  V+UI, 

where 

bl,'=-bl,'=2 (1 -u ) /  ( l + u )  ' ,  

B,,'=-Bti'=4/ ( l + u )  +2u (1-u)v /  (1+u) ', 
b,,'=-2/ ( l + u )  (1-2u),  B2 , '=~vb2i .  

The operator L̂  is defined in (3.8). We shall in what follows 
neglect in Eqs. (4.3) the term with d 2 U / d ~ 2  (similar to the 
neglect of the term with d 2U /a{ in the self-focusing prob- 
lem). 

We can write the MHD equations in the case considered 
in the form 

wheref, is given by Eq. (2.14). It follows from (4.4) that 
b, = 0, Y = b, + p,(r), where p,(r) is an arbitrary function. 
The beam spreads out due to de-excitation (which will be 
confirmed below) as t - + m .  We must thus assume that 
p,(r) = 0. From (4.6) follows that v, = p,(r). Assuming that 
v, = 0 at t = 0, we get u, (r, t ) = 0. 

We thus get to the set of Eqs. (4.3), (4.5), and (4.6) with 
v, = 0, b, = 0, Y = b, = b, which agrees with (1.6). We can 
then replace (4.5) and (4.6) by a single equation 

Substituting heref, from (2.14) and changing to the dimen- 
sionless variables (4.2) we get 

where p = (cf, + ci)k '/02. 
Of the transverse size of the beam is much larger than 

k -'andv&l,wehaveU=: V, I W12&(V12andfrom(4.3),(4.8) 
there follow the equations 

The set of Eqs. (4.3), (4.8), and also Eqs. (4.9) were solved 
numerically. The initial conditions for the set (4.3), (4.8) were 
written in the form 

It is clear from (4.6) that condition (4.12) is the same as the 
assumption dv, /dr = 0 when T = 0. 

For Eqs. (4.9) the quantity VI7= was taken in the form 
(4.10) and Y , ~ = ,  = - I V I f  = o.  The range of the calculation 
was O<p<p,,, = 4s. At the outer boundary p = p,,, we put 
the condition of absorption of the energy flowing from the 
range of the calculation. For p = 0 we put 

v=-2 ( I - U ) ~ ~  W12/uZ. (4.14) 

Equation (4.14) follows from (4.5), (4.6) and the condition 
that the solution be finite as p-+U. For Eqs. (4.9) we put 
Y = Oforp = 0. 

We give now the results. The collapse of the initial dis- 
tribution (4.10) to (4.12) occurs when V :  > V:,  where V,, is 
a critical value (equal to 0.014 for s = 20, U = 0.3). As in the 
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case of self-focusing, the process can be split into two stages. 
In the first stage of the collapse a tubular wave structure is 
formed which collapses towards the beam axis. With a 
smoothly changing magnitude of V z  U and v < 0. The fact 
that Y is negative in the collapse distinguishes this process 
significantly from the self-focusing considered above where 
v > 0. This corresponds with the fact that v < 0 under condi- 
tion (1.6). The end of the first stage roughly corresponds to 
T = 1120 (see Fig. 4a). In that case 
IVIkaxz0.2, IUI;,,z0.15,, p,,, =: -0.21. When the 
transverse size of the beam becomes comparable with the 
longitudinal whistler wavelength the second stage starts. 
The collapse ceases due to the strong tunnel transformation 
of the wave trapped in the waveguide into a diverging wave 
with asymptotic shape (3.14); this is clear from Fig. 4b where 

I V I;,, ~ 0 . 1 2 ,  v,,, =: - 0.1 1. After that the leakage be- 
comes very large so that I V I ;,, decreases and the beam gets 
smeared out (Fig. 4c). 

In the first stage the structure of the beam is very close 
to the one obtained from Eqs. (4.9). In the second stage the 
solutions of the set (4.3), (4.8) differ considerably from the 
solutions of Eqs. (4.9). We then have graphs similar to Fig. 2 
where we have T instead of 5. The integrals I, and I, [see 
(3.20)] as functions of T also show similar behavior as that 
shown in Fig. 3. 

Finally we draw attention to the following. When 
studying the collapse we retained in Eqs. (2.2) only second 
derivatives of the field amplitude with respect to time. In- 
deed, due to the complicated dependence of the operator i. on 
ŵ  = id/& the Maxwell equations contain, strictly speaking, 
time derivatives of arbitrarily high order. However, one can 
neglect them. This follows from the fact that if we neglect the 

FIG. 4. Collapse of whistlers for u = 0.3, V $  = 0.016, 
s = 20. Full drawn line gives / V IZ, the dashed line gives I U 1'. 

term with d 2 g / d t  in Eq. (2.2) we get results close to those 
given above [obtained using (2.2)]. This enables us to assume 
that the higher time-derivatives which are dropped in Eq. 
(2.2) are unimportant. 

It follows from the results of the present paper that the 
collapse of whistlers differs appreciably from the collapse of 
Langmuir due to the fact that the leakage of energy 
due to the tunnel transformation of the collapsing wave leads 
to a de-excitation of the wave with subsequent smearing out 
of the wave structure. And this can occur long before one 
reaches intensities sufficient to transfer an appreciable ener- 
gy to the plasma particles. 
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