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The process of elastic reflection of an external beam striking the boundary of matter at a grazing 
angle is considered. An integral equation for the direct determination of the reflection function is 
derived on the basis of the Boltzmann transport equation and then solved. A simple analytic 
expression describing the angular spectrum of the reflected radiation is found for the various laws 
of single scattering. It is shown that for any law the most probable angle in the reflection spectrum 
is equal to the grazing angle. Analysis of the solution obtained shows that, if the cross section for 
single scattering decreases with increasing scattering angle 9. more slowly than 9. -4, then the 
small-angle reflection process cannot be described in the diffusion approximation. If, on the other 
hand, the single-scattering cross section decreases with increasing 9 faster than the Rutherford 
cross section, then the diffusion approximation is applicable, and the angular spectrum of the 
reflected radiation can be computed with the aid of the Firsov formula. 

1. INTRODUCTION 

A large number of different experiments have been per- 
formed in the last few years to study the laws governing the 
reflection of  electron^,^-^ and protons7 from thick 
material layers in the case when the angle go between the 
velocity of the incident particles and the surface of the scat- 
terer is sufficiently small and the scattering of the particles 
by the atoms of the medium is highly anisotropic: ae,(l 
(a,, is the effective single-scattering angle). The value of the 
grazing angle go was varied within wide limits from one de- 
gree to several score degrees; the particle energy, from sever- 
al keV to several MeV. In each of these experiments, without 
exception, there was found in the angular spectrum of the 
reflected radiation a sharp anisotropy that bears no resem- 
blance to the well-known cosine law: there was observed a 
strongly pronounced peak at reflection angles close to the 
grazing angle (the so-called law of specular reflection). The 
smaller the energy lost by the particles inside the material, 
i.e., the greater the contribution made by the purely elastic 
scattering to the reflected beam, is, the more distinctly the 
law of specular reflection manifests itself. 

The violation of the cosine law indicates that the major- 
ity of the particles are reflected back from the material be- 
fore the angular distribution becomes isotropic. At the same 
time, the occurrence of a sharp peak in the reflected-radi- 
ation spectrum cannot be explained within the framework of 
the single- or low-multiplicity-scattering m0de1.~ This 
means that, in the case in question, the reflected beam is 
produced largely as a result of essentially multiple scatter- 
ing. 

The computation of the spectra of reflected radiation is 
an importtant particular case of the general problem of 
transport theory underlying which is the Boltzmann trans- 
port equation. The same equation describes the process of 
photon propagation in turbid media (dust, fog, aerosol), 
when the waves scattered by the individual optical inhomo- 

geneities of the medium are completely incoherent, so that 
their phases are not connnected by stable  relation^.^.'^ 
Therefore, below we shall, by the term "reflected radiation" 
mean any kind of radiation, be it a beam of reflected charged 
particles or a beam of reflected photons. 

Since the Boltzmann transport equation was formulat- 
ed many attempts have been made to solve it 'for different 
kinds of incident radiation and different scattering-medium 
geometries. Thus far, it has been possible to carry out the 
fullest investigation for the process of radiation passage 
through relatively thin layers of matter, when the reflection 
of the particles (photons) can be entirely ignored. But the 
situation is highly complicated in the case of the solution of 
the albedo problems of transport theory, when the particle 
(light) flux crosses one and the same boundary of the materi- 
al twice: on entering, and on going out of, the medium. Be- 
cause of the great difficulties encountered in the solution of 
such problems, it was rarely possible to obtain a closed ana- 
lytic expression for the computation of the reflected-radi- 
ation spectra. And in those rare cases where it was possible 
to do this, the results obtained became classical: both the 
results themselves and the method used to obtain them 
found numerous applications in different areas of physics 
and mathematics. An example of this is the classical problem 
of the computation of the spectrum of neutrons reflected 
from a semi-infinite scatterer, when the scattering of the 
neutrons by the nuclei is assumed to be isotropic. Even the 
solution of this important problem, which is, at the same 
time, one of the simplest albedo problems of transport the- 
ory, required the development of a fundamentally new meth- 
od-the Wiener-Hopf method-of solving a certain class of 
integral equations. This method can also be used in those 
cases when the scattering by the individual centers is nearly 
isotropic, and we can limit ourselves in the expansion of the 
scattering cross section in a series in terms of the Legendre 
polynomials to the consideration of two or three terms of the 
series. 
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But if the wavelength of the incident radiation is much 
smaller than the dimensions of the scattering centers (i.e., if 
&<a), then the scattering is highly anisotropic (in the case of 
light it is also essential that the relative refractive index of the 
large-sized scattering particles be close to unity: nreI z 1). As 
the degree of anisotropy of the single scattering increases 
(and it is precisely this case that is of interest to us), the reflec- 
tion-spectrum calculations become so complicated that it 
was for a long time thought that the analytic solution of such 
problems was practically impossible without the use of a 
computer. But in 1966 Firsov demonstrated for the first time 
that, in precisely the case of grazing angles of incidence of 
external radiation on the surface of a scatterer, it is possible 
to compute the reflection spectra by analytic methods entire- 
ly different from the Wiener-Hopf method." Indeed, analy- 
sis of the experimental data shows that, in the case of grazing 
angles of incidence, the majority of the particles (photons) 
are reflected from the material at small angles to its surface 
( JZJ( l ) ,  so that the total multiple-scattering angle 
Bs,,, -6, + 15 1 is also small. Thus, fortunately, we can use 
the small-angle approximation to theoretically describe the 
reflection process. 

We should note at once the great difference that exists 
between the small-angle reflection theory and the small-an- 
gle transmission theory. In the theory of small-angle trans- 
mission of particles, the reflection is entirely neglected, and 
therefore the angular distribution of the radiation at the 
boundary of the material is assumed to be known in the en- 
tire angle range. As to the reflection theory, in this case the 
angular spectrum of only the incident flux is assumed to be 
known at the boundary of the material: the angular distribu- 
tion of the radiation reflected from the medium should be 
determined in the course of the solution of the problem. But 
if the reflection occurs in the case of small-angle scattering, 
then it is possible to compute the reflection spectrum ana- 
lytically without the use of any numerical methods. The last 
circumstance is especially important, since the analytic 
expression for the reflection spectrum explicitly contains the 
radiation-scattering center interaction parameters. For ex- 
ample, we can, without difficulty, follow how the reflected- 
radiation spectrum depends on the specific law governing 
the scattering occurring in one collision. It can also be used 
to check numerical computations in a broader range of prob- 
lems of the theory of reflection for arbitrary angles of inci- 
dence. 

To date the theoretical description of the process of 
small-angle reflection of charged particles and ions of high 
and intermediate energies, when the cross section for scat- 
tering by the atoms of the medium is highly anisotropic, has 
been carried out largely within the framework of the diffu- 
sion approximation in terms of the angle  variable^."-'^ The 
same approximation has been used to compute the angular 
spectra of photons.20 Computations of the angular spectra of 
reflected radiation in the diffusion approximation are distin- 
guished by relative simplicity, but the region of applicability 
of the approximation is narrow. It is well known that the 
diffusion approximation fairly adequately describes the pro- 
cess of elastic scattering only in those cases when the scat- 
tered-radiation spectrum is formed largely as a result of a 

large number of collisions in each of which deflection 
through small angles occurs.21 

For example, this approximation furnishes a good de- 
scription of the scattering of fast heavy particles, i.e., parti- 
cles whose mass m is much greater than the electron mass 
me (m)m,) and whose de Broglie wavelength & is much 
smaller than the dimensions r, of the atomic nuclei of the 
medium (*gr, ). Such particles are practically scattered in 
one collision into the narrow angle range 0 < 9  5: (72/r, )(1 
(Ref. 22). Therefore, if the glancing angle [,,>72/rn, then we 
can assert with confidence that only those particles can be 
reflected from the material which have actually undergone 
essentially multiple scattering inside the medium, more spe- 
cifically, only those particles which have interacted with the 
atoms of the material not less than [O/(&/rn )) 1 times, and 
have, in each of these collisions, been scattered through a 
small (in comparison with go) angle. 

The situation can be quite different for particles of low- 
er energy or smaller mass (ions of intermediate energies, 
electrons) and also for photons, since the limitation on the 
maximum value of the single-scattering angle disappears. It 
becomes possible for the particles (photons) to be deflected in 
individual collisions through angles comparable in magni- 
tude to the total observed scattering angle: 9-6, + 16 I. The 
relative contribution from such collisions to the reflected 
flux depends both on the relation between the total scatter- 
ing angle [, + I [ I and the angle a,, and on the specific angu- 
lar dependence of the single-scattering cross section. 

If [, + I <  1 -a,,, then an appreciable contribution to 
the reflected flux will be made by the low-multiplicity colli- 
sion processes, so that the inapplicability of the diffusion 
approximation is evident. But even in the case when 
6, + (6 ()&, and the reflected flux is formed largely as the 
result of essentially multiple scattering, the possibility of de- 
scribing the reflection process in the diffusion approxima- 
tion is far from being apparent: everything depends on how 
rapidly the single-scattering cross section decreases as the 
angle 9 increases.23 

In the present paper we investigate the problem of 
small-angle reflection of charged particles (photons) in the 
general case without the use of the diffusion approximation. 
Formally, this means that, to compute the reflected radi- 
ation spectrum, we use the Boltzmann transport equation 
with a collision integral in the general form, and not in the 
differential form. We obtain a simple analytic expression for 
the spectrum of elastically reflected charged particles, ions, 
or photons, when the probability for single scattering 
through an angle 9< 1 is given by the following two-param- 
eter expression: 

Here I(9 ) is the scattering indicatrix and Y is a parameter 
determining the rapidity of decrease of the scattering prob- 
ability as the angle 9 increases. The second parameter 9,, 
determines the degree of anisotropy of the scattering. The 
value of 9,, depends on the law governing the interaction of 
the particles being scattered in the case of large impact pa- 
rameters. The quantity 1(9 ) is normalized by the condition 
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The expression (1.1) can be used to describe the scattering 
process in a large number of important cases involving dif- 
ferent types of interaction between the radiation and the 
scattering centers. For example, if we set v = 1 in (1. I), we 
obtain an expression for the probability for small-angle scat- 
tering of fast charged particles (i.e.,  electron^).^' In this case 
9,, -*/rat, where rat is the mean radius of the atoms of the 
material of the scatterer. If we set 8, = 0 in the denomina- 
tor of (1. 1), then we arrive at the well-known expression for 
the probability for small-angle scattering in an inverse-pow- 
er potential field' U (r) a r - @, where jl= l/v: 

do8 ( 6 )  -6-2"+1'8'6d6. 

The case v = 1/2 is of special interest in connection with 
both the study of the scattering of ions of intermediate ener- 
gies (U(r )  a r-' is the Firsov and the study of 
light scattering in turbid media (the Heiney-Greenstein indi- 
catrix9). In the latter case aeff -&/a. The expression (1.1) 
with v = 1/3 is used to describe the scattering of protons 
with an energy of several keV.24 Finally, the case v = 5/6 
corresponds to the indicatrix for photon scattering in a tur- 
bulent continuous medium (the Kolmogorov-Obukhov scat- 
tering law1'). 

2. EQUATION FOR THE REFLECTION FUNCTION 

Let a broad beam of particles (photons) be incident on 
the plane surface of a homogeneous semi-infinite material 
layer at a small angle f o  to the surface: fog 1. Let thexy plane 
coincide with the surface of the medium, and let thez axis be 
directed into the interior of the material. The direction of 
propagation of the radiation is determined by the angles f 
and p, where c is the angle between the velocity and the 
boundary of the material and p is the azimuthal angle. Since 
f = ?r/2 - 0 (Ois the angle between the direction of propaga- 
tion of the radiation and thez axis), below we shall call f the 
polar angle. To the particles moving into the interior of the 
medium correspond the values of 5 > 0, while to the particles 
moving toward the boundary correspond negative values of 
f:f = - I f  1 <O. We shall assume that the velocity of the 
incident particles is parallel to thexz plane, so that the initial 
azimuth p0 = 0. 

In the case of grazing angles, when the deflection from 
the initial direction of motion is small, i.e., for 

cos O=sin b s c ,  (<-l;o)2+cp2<i,  (2.1) 

the transport equation for the radiation flux density 
N (r, f ,  p ) has the form 

-m 

Here r = z/l is the depth, measured in units of the mean free 
path 1; 1(9 " )  is the probability for scattering in one collision 
from the state (f ', p') into the state (f, p). For grazing angles 
of motion 

If the intensity of the incident flux is equal to unity, then the 
boundary condition at the surface of the material has the 
form 

The angular distribution of the reflected radiation is deter- 
mined by the reflection function S (Ic [, p; cO), which is con- 
nected with the flux density at the boundary of the medium 
by the relation 

For such a definition Sd Idp is the number of particles 
flying back out of the material from a unit area of its surface 
in unit time in the angle ranges from Ic I to [f ( + d (6 ( and p 
to p + dp. Thus, S(15 I, p ;  co) can be directly measured in 
backscattering experiments. Therefore, the computation of 
this quantity is the primary problem of the theory of reflec- 
tion. 

There exist different methods of deriving the equation 
for the reflection function from the more general Boltzmann 
transport equation, which determines not only the angular, 
but also the spatial distribution of the radiation both on the 
surface and inside the scattering medium. For example, us- 
ing the method of "invariant inclusion," we can derive for S 
in the case of reflection from a scatterer of infinite thickness 
a closed equation, which, however, turns out to be nonlin- 
ear.2' The solution to this equation has been found for the 
case of isotropic s scattering, and is expressed in terms of the 
Chandrasekhar  function^.^ 

In the opposite case, when the scattering is highly aniso- 
tropic (i.e., when 4, g 1), which is the case of interest to us 
here, the invariant-inclusion method turns out to be ineffec- 
tive. Therefore, to solve the problem in question we use in the 
present paper another approach, based on the expansion of 
the spatial-angular distribution of the radiation in terms of 
the angular eigenfunctions of the homogeneous Boltzmann 
equation. The method of eigenfunctions allows us obtain 
quite easily an equation for the direct determination of the 
reflection function. It is important to emphasize that the 
thus obtained equation for S is linear. 

Since the transport equation (2.2) allows the separation 
of the variables, its general solution, bounded with respect to 
the depth, can be represented in the form - 

N ( I ,  i ,  e )  = 1 hC ( h )  exp (--h3r) @ A  (t, e )  dh. (2.6) 
0 

Here the @, (f, p) are the angular eigenfunctions of the prob- 
lem under consideration and the il are the eigenvalues. The 
equation for the angular functions has the form 

" 

5 h 3 @ ~ ( I ,  e )  = j db' de' IL (5'-6)'+ ( e l - r ) ' I  

In order to obtain the equation for the direct determina- 
tion of the reflection function S, let us note that, at any depth 
r>0, the flux of the particles moving toward the boundary 
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(i.e., for which the angles f = - I f  I < 0) can be represented 
in the form of a linear functional of the flux of the radiation 
propagating into the interior of the material. Since the scat- 
tering medium occupies the entire O<T < w region, and is 
homogeneous, the kernel of this functional does not depend 
on the depth T, and is precisely the reflection function: 

OD OD 

~ t ~ ~ ( ~ ; - ~ c ~ ; q ) = j d q ~ ~ J a t ~ ~ s ( ~ t ~ ; ~ - ~ ~ ~ ; t ~ ~ )  
-00 0 

x N (T; t", wff )  . (2.8) 

Now, substituting (2.6) into (2.8), and taking account of the 
fact that the relation (2.8) should be fulfilled for any r)0, we 
obtain the following equation for S: 

(ID * 

I C I ~ , ( - I ~ I ; V ) =  Jd lp f lJd~ / /~ (1 t1 ;q -qr f ; t f f )m , (v ;q f / ) .  
-m 0 

(2.9) 

Equation (2.9) should be satisfied for all the eigenvalues A in 
the interval 0<A< a. 

Thus, the computation of the angular spectrum of the 
reflected radiation reduces to the following: First, we must 
determine from Eq. (2.7) the explicit form of the angular 
functions 0, (c, p), and then, knowing these functions, solve 
the linear integral equation (2.9) and compute the reflection 
function. 

3. COMPUTATION OF THE ANGULAR FUNCTIONS 

Since Eq. (2.7) is an integral equation with a difference 
kernel in the variables and p ,  it can be easily solved with the 
aid of a double Fourier transformation. Multiplying (2.7) by 
exp( - iwc - iqp )d(dp, and integrating over infinite ranges 
of f and p,  we obtain for the double Fourier transform 
8, (w,q) the following equation: 

Here I  (w,q) is the Fourier transform of the scattering indica- 
trix: 

00 

Z(o, q) = 1 d6 dq 1 (6'+lp2) e-i(mc+w) 
- 00 

llD 

= 2n z (I?) J .  (B (o'+q2)") B dI?, (3.2) 
0 

where J, is the Bessel function of order zero. 
For any eigenvalues - w <A < w , Eq. (3.1) possesses a 

solution bounded in w and q, and having the form 

where A (A ) is a normalized constant. 
Now, carrying out a inverse Fourier transformation 

and taking account ofthe fact that, according to (3.2), I  (w, q) 
is an even function of the variables w and q, we obtain the 
following expression for the angular eigenfunctions @, of 
the problem under consideration: 

where 
0 

~(o,p)=2nJ6db~(~~)[1--I~(~(o'+q')'~)]. (3.5) 
0 

The normalization constantA (A ) has been chosen to be equal 
to n/(A 1. It is not difficult to verify that the following rela- 
tions obtain: 

- ca 

Thus, the expression (2.6) is the expansion of the solu- 
tion to the transport equation (2.2) for grazing motion angles 
in terms of the complete orthonormalized system of func- 
tions, in which we have retained only those modes (A>0) 
which guarantee the boundedness of the solution with re- 
spect to the depth T: N (r- a , c ,  p ) = 0. 

It should be emphasized that (3.4) gives the explicit 
form of the eigenfunctions for an arbitrary single-scattering 
law. Therefore, by substituting (3.4) into (2.9), we can obtain 
for the reflection function a closed integral equation that is 
also valid for any form of the scattering indicatrix I ( 9  ). 

Below we shall consider the case when the scattering 
indicatrix is given by the expression (1.1). Then, substituting 

( I .  I )  into (3.5), we obtain 
Ql-v 

Here r (Y) is the Euler gamma function and K, is the Mac- 
donald function. For Y = 1/2 the expression (3.7) is signifi- ' 
cantly simpler. Using the explicit form of K,, ,(x) ,  we have 

GI,, ( a ,  q )  =I-exp [hee, (a2+q2) I h ] .  (3.8) 

It can be seen from (3.7) and (3.8) that, as m2 + q2-w, the 
quantity G,-+l. Therefore, the functions 0,(c,  p) have a 
delta-function singularity, i.e., they pertain to the class of 
singular functions. This property of the eigenfunctions oc- 
curs in other problems of transport theory, e.g., in neutron 

4. ANGULAR SPECTRUM OF THE REFLECTED RADIATION 

Now, knowing the form of the eigenfunctions, we can 
write down in its explicit form the equation for the reflection 
function. Since the function S entering into (2.8) depends on 
the angle difference p' - p,  it is convenient to use the Four- 
ier transformation in the azimuth. Multiplying (2.8) by 
cos ( kp  /&,)dp, and integrating with respect to p over the 
interval O<p < cu with allowance for the expression (3.4), we 
obtain an equation for the Fourier transform of the reflec- 
tion function S, (15 1; co): 
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where we have set A 3if,,=A 3. 

If we are able to solve Eq. (4. I), then the distribution of 
the reflected radiation over the angle variable I <  I and q, can 
be computed from the formula 

Unfortunately, the kernel of Eq. (4.1) has such a complicated 
form that it has to date not been possible to obtain even an 
approximate solution to this equation. In other words, thus 
far there has not been found for the reflection spectrum an 
expression that is simultaneously analytic in both the polar 
and the azimuthal angles. (Within the framework of the dif- 
fusion approximation, this problem is solved in Refs. 13 and 
14.) Below we shall limit ourselves to the computation of the 
distribution of the reflected radiation over only the polar 
angle I <  1, without reference to the azimuthal angle. Setting 
k = 0 in (4. l), we obtain the following equation forS ( I <  1; go): 

OD 

J ~ C ~ S ( I C I :  i0) 
0 

Equation (4.3) assumes its simplet form in the important 
Y = 1/2 case: 

OD OD 

b o  1 I d60 S, ( 16 1 ; to) I do' cos{ A' [ 1 - 0 ' - c - ~ ' ]  
0 0 

If we were able to solve Eq. (4.3) (or even the simpler equa- 
tion (4.4)) exactly, we would obtain an expression for the 
distribution ofthe reflected radiation over the polar angle I <  I 
for any relation connecting the angles go, I <  I, and if,,, pro- 
vided all these angles were small. We then could investigate 
the angular dependence of the reflected spectrum for any 
relation connecting the contributions made by the single- 
low-multiplicity-, and high-multiplicity-scattering pro- 
cesses to the reflected radiation. 

But in many cases the anisotropy of the single scattering 
is fairly high, so that the following inequality is satisfied even 
for small glancing angles 6,: 

As noted above, when the condition (4.5) is fulfilled, the re- 
flected flux is formed largely as the result of essentially mul- 
tiple scattering. In this case, in the most interesting spectral 
region ( I <  I -go), where the flux has its maximum, we have 
<,/if,,% 1; I <  I/&, % 1. Therefore, the dominant contribu- 
tion to both w' integrals will be made by the region wf(l, 
where rapid oscillations do not occur. This circumstance al- 
lows us to replace the functions K ,  (w) entering into the inter- 
nal w integrals by their values in the region of small w when 
evaluating these integrals. To do this, 'let us use the well- 
known formula connecting the function K ,  (w) (where Y is 
not equal to a whole number) with the Bessel functions of 
imaginary argument: 

Then, using the representation for I + , (w) in form of a series, 
- 

we write 

In the region w e  1 the form of the expression (4.6) de- 
pends essentially on whether the value of the paameter Y is 
greater or smaller than unity. Therefore, let us consider the 
two cases separately. 

a) The parameter v greater than unity 

In this case, in the small-w region, the dominant term in 
(4.6) is the first (n = 1) term of the second series. Therefore, 

Thus, the expressions standing in the square brackets in (4.3) 
are proportional to w2, irrespective of the numerical value of 
Y. This property obtains in the case of integral Y values as 
well. 

Now, using the approximation (4.7), we can evaluate the 
w' integrals in the kernel and the right-hand side of Eq. (4.3): 

(4.8) 
where 

,=A [ (v-1) 2 2 + v ]  'la6,;, 

and the Ai*( + A < )  are the orthonormalized Airy func- 
t i o n ~ . ' ~ . ' ~  Substituting (4.8) into (4.3), we obtain 

We can see that Eq. (4.9) does not contain vat  all. Therefore, 
it will have the same solution for all values of Y > 1. Equation 
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(4.9) was first obtained in 1966 by Firsov," who, to describe 
the process of small-angle reflection, employed the diffusion 
approximation from the very beginning. The solution to this 
equation is given by the Firsov formula 

Thus, if the single-scattering cross section decreases 
with increasing if faster than the Rutherford cross section, 
then, to compute the multiply scattered component of the 
reflected radiation, we can, in the first approximation, use 
the diffusion approximation. 

b) The parameter v smaller than unity 

In this case, in the region w ( 1, the dominant term in the 
expansion (4.8) is the first (k = 0) term of the first series: 

In contrast to the preceding case, now the expressions stand- 
ing in the square brackets in (4.3) are proportional to w2", 
i.e., they depend essentially on the value of the parameter v. 
Therefore, the solution to Eq. (4.3) will also have different 
forms for different v values: S (15 I ; c,) = Sv ( 15 1; 5,). 

Substituting (4.11) into (4.3), we write the equation for 
the reflection function in the following form: 

where 

D.* (%) = j  dm coa ( w 
& 

0 

 here^ is a new independent variable connected withA by the 
relation 

e=6, [2-3vI'( l-~)/h3 (14-2v) r-(I+Y)] il('+zv). 

Like A, the variable E varies in the range from 0 to a. 
Although the kernel D ; of Eq. (4.12) is, as usual, ex- 

pressed in terms of an integral that cannot be taken, it, unlike 
the kernel of the original equation (4.3), depends on the ratio 
[JE, i.e., it is a homogeneous function of 5, and E. This 
circumstance radically simplifies the problem, since it al- 
lows us to use the Mellin transformation 26 to solve Eq. (4.12) 
(see the Appendix). As a result, we find 

The expression (4.14) gives the distribution of the elastically 
reflected radiation over the polar angle I f  I (without refer- 
ence to the azimuthal angle p) in the case when the single- 

scattering cross section decreases with increasing if slower 
than the Rutherford cross section, i.e., slower than if -4. 

The expression (4.14) is an approximate solution to Eq. 
(4.3) when it is assumed that the condition (4.5) is fulfilled. It 
is not without interest, however, to note that at th same time 
this expression is not an approximation, but the exact solu- 
tion to the small-angle reflection problem if we set ve, = 0 in 
the denominator of (1.1) right from the start, i.e., if we as- 
sume that dov (if ) a if -2(1 + v, ifdif. Then the transport equa- 
tion for the flux density N (T, 5 ), integrated over p, has the 
form 

Although in this case the differential scattering cross section 
has a singularity at if-0, in the transport equation (4.15) this 
singularity is a nonessential one, since as the scattering angle 
decreases (i.e., as 15 ' - 5 1+0), the expression N (T, 
5,) - N (T, 5) also vanishes. 

Here we encounter a situation similar to the one that 
arises in the computation of the energy spectrum of relativis- 
tic electrons, when the dominant mechanism of energy loss is 
the bremsstrahlung process. The bremsstrahlung cross sec- 
tion has a singularity in the low y-quantum energy region 
(the "infrared catastrophe"). Nevertheless, this singularity 
turns out to be suppressed in the transport and 
does not have a strong effect on the energy spectrum of the 
particles. 

The above-indicated circumstance indicates that the 
magnitude of the Boltzmann collision integral is not as sensi- 
tive to the law governing scattering through very small an- 
gles as the single-scattering cross section itself. Therefore, it 
can be expected that the solution (4.14) obtained by us will 
also describe the angular spectrum of the reflected radiation 
sufficiently well in the case when the strong inequality (4.5) is 
replaced by the weaker condition lo 2 ifeff. 

Finally, let us turn to the case v = 1. In this case the 
formula (4.6) is not applicable, and we cannot therefore use 
any of the approximations (4.7) and (4.1 1). For v = 1 we have 
in the region of small w the relation 

where C = 0.577 is the Euler constant. Thus, in this case, 
when w< 1, there arises in (4.16) a logarithmic factor besides 
a power one. Because of this, it is not possible to simplify the 
basic equation (4.3) to such an extent that it becomes soluble. 
The v = 1 case is investigated in Ref. 27 in the study of small- 
angle reflection of fast electrons. In that investigation the 
following approximation is used to simplify the equation for 
the reflection function (Eq. (8) of the present paper): 
w31nw2~w3-a , where 0 < a < 1 is an approximation param- 
eter of the problem. This essentially reduces the equation for 
the reflection function in Ref. 27 to Eq. (4.12) of the present 
paper ifwe set v = 1 - a/2 in it. Thus, it is, in the light of the 
investigation carried out above, clear that the approimate 
method used in Ref. 27 to solve the equation for the reflec- 
tion function actually implies the replacement of the 
screened Coulomb potential U(r) cc r-  ' exp ( - r/r,, ) by an 
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inverse-power potential of the form U (r) o: r - - a 1. 

5. DISCUSSION OF THE RESULTS OBTAINED. COMPARISON 
WITH THE RESULTS OF THE CALCULATIONS OF OTHER 
AUTHORS 

Let us, in proceeding to analyze the results obtained, 
note the following general properties of the reflection func- 
tion. 

1. The expression (4.14) is invariant under the inter- 
change 15 Jctf,, which is a consequence of the well-known 
reciprocity theorem25 in the one-velocity problems of trans- 
port theory. 

2. We can easily convince ourselves by direct verifica- 
tion that the reflection function (4.14), like (4. lo), satisfies 
the following normalization condition for any values of the 
parameter Y: 

j ~ I ~ I S ~ ( I C I ; ~ ) = ~ . .  (5.1) 
0 

Since the quantity go (for unit incident-flux intensity) is equal 
to the number of particles entering the medium in unit time 
through a unit area, the condition (5.1) expresses the law of 
conservation of the particle number in the case of purely 
elastic scattering. Therefore, the probability for backscatter- 
ing into the range of reduced polar-angle values from I $ (  to 
1 $ 1  + d 1$1, where I $ (  = 15 I/co, is given by the expression 

dw re* ( 1  9 I )  = 1 + 2' 
n v  [ ~ C O S -  ?IV 

dl91 n ( I  + v )  sin T I + V  

Figure 1 shows plots of the function dwre,d 1$1 for different 
values of the parameter v. 

3. The results obtained are valid not only for a homo- 
geneous, but also for a stratified, medium, when the density 
of the scattering centers depends on the depth: no = n(z). 
This becomes clear when we take account of the fact that the 
basic transport equation (2.2) has the same form for both a 
homogeneous and an inhomogeneous medium if we intro- 
duce in place of the depth z the "optical" depth 

z 

r=oe,J n (2') L', 
0 

where ue,,, is the total cross section for elastic scattering. 
4. The reflection function (4.14), like the differential 

backscattering coefficient (5.2), has a strongly pronounced 
peak at I (  1 =lo (i.e., 1 $ 1  = 1). Thus, in the case of elastic 
scattering through small angles,-the specular reflection law 
turns out to be valid not only in the diffusion approximation 
(4. lo), but also in a more general case, i.e., it is obeyed irre- 
spective of the specific form of the angular dependence (1.1) 
of the single scattering for any v value. It is precisely because 
of this circumstance that the specular reflection law is ob- 
served in virtually all backscattering experiments performed 
for the case of grazing angles of incidence of fast particles 
(electrons, protons), as well as for the case of reflection of 
ions of intermediate energies. 

5. In contrast to the diffusion approximation (4.10), 
which contains no information at all about the scattering 

FIG. 1. Dependence of the differential reflection coefficient, computed 
from the formula (5.2), on the reduced angle of emission $ 1  = /{ I/<,, 
(without reference to the azimuthal angle) for different values of the pa- 
rameter Y .  

properties of the medium (since it depends only on the angles 
I f  I and cO), the obtained solution (4.14) depends essentially 
on the numerical value of the parameter v, which determines 
the rapidity of decrease of the single-scattering cross section 
in the region of relatively large angles 8)8,,. As can be seen 
from Fig. 1, as v decreases, there occurs a broadening of the 
reflection spectrum in the region of relatively large angles. 
This is explained by the fact that in the case v < 1, when the 
single-scattering cross section decreases with increasing 8 
slower than the Rutherford cross section, the ponderable 
contribution to the reflected flux of multiply scattered parti- 
cles is made by those collisions in which there occurs scatter- 
ing through an angle comparable to the total scattering angle 
8-fo + 1c 1. This contribution is the greater, the more the 
"tail" of the scattering indicatrix I(8 ) is stretched out, i.e., 
the higher the probability for single scattering through rela- 
tively large angles. 

The broadening of the spectrum is accompanied by the 
decrease of the value of the reflection coefficient at the peak 

Thus, when v = 1/2, the peak value of the reflection coeffi- 
cient is 0.12, while when v = 11'3 it is 0.08. (The correspond- 
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FIG. 2. Probability, integrated over the azimuthal angle, of elastic scatter- 
ing into the interval of angles smaller than I$I = 16 I/(, for different values 
of the parameter v. 

ing value in the diffusion approximation is 3 / 4 ~ ~ 0 . 2 4 . )  
This circumstance allows, for example, the determination 
from (5.3), after the reflection coefficient for the angle I{ I 
= C0 has been determined in experiment, of the value of the 

parameter Y, i.e., the determination of, for example, the po- 
tential function for the interaction of ions with the atoms of 
the medium in the case of relatively small impact param- 
eters, when U (r) a r - ' Iv .  

6. Using the expression (5.2), we can compute the prob- 
ability that the particle will be reflected from the material in 
the finite angle range from zero to : 

IVI 

w , ( I @ I ) = J  d w r e f ( ~ l r ~ ) .  (5.4) 
0 

Figure 2 shows plots of this probability function for different 
values of Y. It can be seen that, as Y decreases, the reflection 
probability (5.4) decreases, since the fraction of the particles 
reflected into the interval of angles greater than ( $ 1  increases 
because of the increase of the probability for single scattering 
through relatively large angles. 

7. If we set Y = 1/2 in the general expression (4.14), we 
obtain 

The expression (5.5) describes the angular spectrum of the 
reflected radiation in the case when the interaction between 
the ions and the atoms of the medium is described by an 
inverse-square law potential, or the spectrum of the reflected 
photons when the law governing the single scattering pro- 
cess is modeled by the Heiney-Greenstein indicatrix. The 
result (5.5) was first obtained by Firsov2* in 1970. 

8. Although the expression (4.14) was obtained for the 
Y < 1 case, we obtain the Firsov formula (4.10) again when we 
set Y = 1 in it. Thus, the solution (4.14) found for Y < 1 joins 
onto the results obtained in the diffusion-approximation cal- 
culation for the case when Y > l .  Consequently, the expres- 
sion (4.14) for the reflection function generalizes all the re- 
sults obtained in previously published calculations for the 
angular spectra of elastically scattered radiation (without 

reference to the azimuthal angle) in the case of grazing angles 
of incidence of the external flux on the surface of the materi- 
al. 

In conclusion, we note that all these calculations of the 
angular spectra of the reflected radiation were carried out 
under the assumption that the surface of the medium is abso- 
lutely smooth. In reality, any material surface exhibits some 
roughness. If the characteristic dimensions of the irregular- 
ity profile of the surface are -h, then the roughness of the 
surface can be ignored in the case when the reflected radi- 
ation is produced in the region of depthsz k zo>h, wherez, is 
that minimum depth at which the particles are deflected 
through angles comparable to go, and, consequently, can get 
out of the medium: ( 8  2)zo-{ i. Since at a depth of z,, the 
particles traverse on the average a path of length -zJgo, 
( 8  2, z0 -z/gOI t r ,  where I ,, is the transport mean free path 
characterizing the elastic scattering. Thus, the roughness of 
the surface can be ignored if >h /I ,, . 

The author expresses his deep gratitude to M. I. Rya- 
zanov and 0. B. Firsov for constant interest and attention to 
the work. The author is grateful to D. B. Rogozkin for useful 
discussions and V. S. Mikhailov for his help in the formula- 
tion of the paper. 

APPENDIX 
Solution of equation (4.12) 

Let us multiply both sides of Eq. (4.12) by 2 -  ' d~ and 
integrate over the range from zero to infinity. Then, by using 
the convolution theorem and the inversion formula for the 
Mellin transformation, we can represent the solution to Eq. 
(4.12) in the following form: 

Here 
01 

D.' ( s )  = D.' ( u )  u-('+') du. ( A 4  
0 

The functions D ,+ (u) are given by the relation (4.13). The 
integration in (A. 1) is performed in the complex plane along 
any straight line parallel to the imaginary axis in the analy- 
ticity band of the function D ,f /D ; . Let us compute the 
function D ,f (s). Substituting (4.13) into (A.2), and changing 
the integration order, we obtain 

D.+ ( s )  = 5 dw {WS w'+2v J d u  u - ( ~ + ~ )  cos wu-sin at+2V 

OD 

J d u  u-('+a) sin mu . 
x 0 1 

OD 

n 0' J d u  u-('+.~ COS mu=- - 
2 I ' ( l + s ) s i n ( n s / 2 )  ' 

0 

and 
rn 

It w* 
sm w u  = - -I<Re s<l ,  

2 r ( l + s )  cos ( n s / 2 )  ' 
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we obtain 

The two w integrals entering into this expression reduce to 
the u integrals written out above when we set w' + 2v = w, 
and are easily evaluated: - 

I d w  as cos ol+" 
0 

m 

J d o  o* sin 
0 

Substituting the above-found values of the integrals into 
(A.3), and using the formula 

we obtain the expression for the function D ,+ (s) in the fol- 
lowing form: 

Similarly, we can compute the quantity D ; (s). As a result, 
we obtain 

1 n[1+2 ( l+v)  s ]  
D ,  (s) = - r (*) r (-s) cos - 

1+2v 1+2v 2 (l+2v) . 

Now, by substituting (A.4) and (A.5) into the solution (A. I), 
we can represent the epression for the reflection function in 
the form 

n [ l + 2 ( l + v ) s ]  
cos 

n(1-2vs) / cos 
2(1+2v) 2 (1+2v) 

. (A.6) 

The integration in (A.6) is performed in the band 
- 1 <Re s<O. Making in (A.6) the change of integration 

variable 

and making the integration contour for the new variable S 
coincident with the imaginary axis (i.e., setting 5 = iw), we 
obtain 

1+2v " exp ( i o  in y) 
s~(lC1; to)= 4n(l+v) 'J do ch(no/2)  

- m 

n n v o  n n v o  
X cos- ch ----- + i  sin- sh-] . [ 2 ( l + v )  2 ( l+v)  2(1+v) 2(1+v) 

Here we have set 
y= ( 1 %  l/go) ( 1 + 2 v ) / Z ( i + v ) .  

The w integral entering into (A.7) can be represented in the 
form of two tabular integrals: 

m 

n v o  J d o  exp ( i o  in y)  ch - 
2 (I+v)  

/ C h Z  
- m 

2 

1 
= 4 y + - cos ------- y2 + - + 2 cos - I [  y2 ( 1 2( l+v)  1+v "" I ' 

Substituting the values of the evaluated integrals into (A.7), 
and reducing such terms, we finally obtain the expression 
(4.14) for the reflection function. 
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