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A simple physical model proposed in the present paper makes it possible to account qualitatively 
for the main features of the NMR spectra of solids and to calculate the spectral profile due to the 
dipoldipole interactions of nuclear spins with one another. The usefulness of the model is 
illustrated by calculations of the spectra of CaF, (simple cubic lattice), solid molecular hydrogen 
(hexagonal lattice), and crystalline polyethylene (trans-zigzag conformation). The results of these 
calculations are in good agreement with experiments. 

The spectral profile of an NMR spectrum is one of the 
fundamental problems in statistical mechanics of spin sys- 
tems. The first hypotheses on the spectral profile were made 
back in the pioneering work of Bloembergen, Purcell, and 
Pound1 who assumed that the absolute majority of the NMR 
absorption lines can be described by two types of curve: Lor- 
entzian and Gaussian. The subsequent development of ex- 
perimental let to the dis~overy'.~ that the NMR 
spectra of ordinary solids are very different from the Gaus- 
sian profile: the directly observed time Fourier transfor- 
mants of the absorption spectra, known as the free-preces- 
sion signals, include oscillations demonstrating that neither 
of these functions can provide a correct description of the 
line profile. Tens of papers have already been published on 
the problem of the NMR line profile (see, for example, Refs. 
5-10), but the problem remains unsolved. 

The reasons preventing the successful solution of the 
problem of the NMR line profile are the many-body nature 
of the problem and the absence of a small parameter in the 
Hamiltonian. Most authors therefore are forced to adopt un- 
controlled approximations in order to obtain satisfactory re- 
sults after long and very laborious calculations. Although 
the results of such calculations do frequently agree with ex- 
periments, the absence of clear physical reasons for the as- 
sumptions which are made, as well as the absence of linkage 
to the physical parameters and processes occurring in spin 
systems, reduces the value of these results. Therefore, the 
task of developing a reasoned physical model describing 
NMR spectra of solids and explaining the principal experi- 
mental observations still remains urgent. This is particularly 
important because not only are the NMR spectra of solids 
highly inf~r rna t ive~~- '~  and capable of yielding data on the 
crystal structure, mobility of molecules and atomic groups, 
and electronic structure, but they also provide an opportuni- 
ty for investigating the statistical mechanics of irreversible 
processes, in view of the fact that nuclear spin systems repre- 
sent a unique "laboratory" for such investigations. It is these 
systems that have been used in attainment of "time reversal" 
(Ref. 14), the result of which is a "magic echo," etc. 

We shall propose a model which is a further develop- 
ment of an earlier model suggested by us.'' The model dis- 
cussed below makes it possible to calculate completely all the 

components of the free precession signal (FPS) observed for 
solids. 

It is knownI6 that the FPS which appears in an equilib- 
rium nuclear spin system subjected to a high static magnetic 
field H,, on application of a 7~/2 pulse is proportional to the 
time correlation function, which is defined in a coordinate 
system rotating at the Larmor frequency: 

S, is the total x component of the spin of the system. It 
satisfies the Heisenberg equation 

dS*/dt=i [H, S,] . (2) 

In Eq. (2) and later the energy is measured in frequency units. 
In this equation we have 

Here, His  the secular part of the dipole-dipole interaction,16 
where bo = y%(l - 3 c 0 s ~ 8 ~  ) / r i ,  ro is a vector linking spins 
i and j, and Bo is the angle between ro and an external mag- 
netic field. Using the operators S* = S, + is,, , we find that 
the expression (1) can be rewritten in the form 

r ( t )  = 
1 

Sp{S f  ( t )  S - )  = ( S f  ( t )  ). 
2 sp  ( S 2 )  

(4) 

Since in a regular lattice with one kind of nuclei all the spins 
ar equivalent, we find that 

S ~ { S  ( t ) ~ - }  -Esp {St f  ( t )  S-)-N Sp {Sot ( t )  S- )  w(Soi ( t )  ), 
t 

where N is the number of spins in a sample and 0 is the 
number of a specific spin. 

Back in the early sixties, Abragam16 found empirically 
that the FPS of a CaF, single crystal could be described with 
remarkable accuracy by the following expression valid in the 
case of reasonably long times: 

sin bte-.ttl,z- r ( t )=-  -ro ( t )  e-02'2iZ. 
bt ( 5 )  
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The quantities a and b are selected so as to ensure the correct 
second and fourth moments of the absorption line. Subse- 
quently it has been demonstrated experimentally" that if 
t 2 3T2, then the Gaussian component of the FPS of Eq. (5) 
becomes exponential: 

sin bt 
I' ( t )  - - e-ct=I'o ( t )  e-ct. 

bt (6) 

The first attempt to explain these simple and surprisingly 
"physical" results was provided by our model.I5 It was 
pointed out in Ref. 15 that the whole crystal can be divided, 
in relation to a certain arbitrarily selected spin labeled 0, into 
two regions in one of which the motion of spins is correlated 
with the selected spin and in the other it is not. The region 
with correlated motion is called a cell. We are speaking here 
of the time correlations which appear in such a system be- 
cause of flip-flop processes described by the operator Hf in 
the Hamiltonian (3). We can estimate the flip-flop probabil- 
ityI5 by employing the Bloembergen formula1' according to 
which 

In view of the rapid convergence (in respect of r) of the prob- 
ability of flip-flop processes, we can expect the radius of such 
a cell to be of the same order as the lattice constant d and the 
numbe of spins in such a cell is not macroscopic. A correct 
definition of the boundaries of such a cell would require in- 
vestigation of more complex combined flip-flop processes 
(see below) capable in principle of expanding the cell. How- 
ever, we did not discuss the cell boundaries in Ref. 15. We 
demonstratedI5 that the spins excluded from a cell make a 
Gaussian contribution to the FPS of Eq. (5), which then be- 
comes exponential in accordance with Eq. (6), and we calcu- 
lated the argument of the Gaussian and exponential func- 
tions. Although an expression obtained for b in Ref. 15 was 
in agreement with the experimentally determined value of b, 
the FPS profile govened by the spins in the cell was not cal- 
culated. The development of the model proposed below 
makes it possible to calculate also the contribution made to 
the FPS by a cell. 

The probability of flip-flop processes given by Eq. (7) 
allows only for the pair process. As pointed out earlier, when 
the boundaries of a cell are determined, it is necessary to 
investigate the process of transfer of correlations along 
chains in which each spin interacts with the nearest neigh- 
bors. Nevertheless, we can hope that in the case of crystals 
with a large number of nearest neighbors, i.e., those with 
large numbers of z of spins in a cel, such correlations are 
destroyed because for geometric reasons each of the nearest 
neighbors has practically its own cell. A calculation of the 
probability of flip-flop processes given in the Appendix I 
demonstrates clearly these points. In fact, we have 

and T2 = M ;  '", where M, is the second moment of the 
absorption line. For large values of z, we have 

where b, is the coefficient describing the dipole-dipole inter- 
action with the spins in a cell. Hence, it is clear that a large 
number of neighbors does indeed result in weakening of the 
correlation by a factor of z in the case of the triple flip-flop 
process compared with the pair process. A comparison of the 
probabilities of the two- and three-spin flip-flop processes in 
a CaF, single crystal subjected to an external magnetic field 
along the [loo] axis is given in the Appendix I. For this orien- 
tation we have z = 6 (Ref. 15). The calculated ratio of the 
probabilities is 

W"'/W'2'-o,07. (10) 

Consequently, the contribution of the combined flip-flop 
processes to the transfer of the correlation effects is negligi- 
ble. It follows that in the case of crystals with a large number 
of the nearest neighbors the processes of this kind in each 
pair of spins in a cell occur independently of the flip-flop 
processes in all the other pairs. Consequently, in order to 
calculate the non-Gaussian component of the FPS, we must 
find the contribution made by the flip-flop processes of the 
zeroth spin interacting with any of the spins in its cell and 
then, allowing for the statistical independence of the pairs, 
we must sum the results. Naturally, the flip-flop pairs should 
be regarded against the background of localz fields acting on 
each of the spins participating in the elementary process. 

It therefore follows that the Hamiltonian of a given pair 
is described by the expression 

H= y h,Sz,+yhiS,j+a,i (So+Sj-+So-S,+). (11) 

Here, the index 0 labels the selected spin, the index j identi- 
fies one of the spins in a cell, and h, and h, are random 
Gaussian local fields. The second moment of the distribution 
of the local fields h, and h, (assumed to be statistically inde- 
pendent) is equal to the second moment which is due to the 
H,, interaction of the Hamiltonian (3) with the cell spins (see 
the Appendix 11). It should be noted that the replacement of 
the H,, interaction in the Hamiltonian (3) by the interaction 
with a random Gaussian local field in the Hamiltonian (1 1) is 
quite accurate because in crystals with a large number of 
neighbors it gives rise to a Gaussian profile of an NMR 
line,19*20 in agreement with the Gaussian distribution of the 
local field. A more accurate allowance for Hz is possible 
with the aid of the projection operators introduced in Ref. 8. 
However, these operators would have complicated greatly 
our calculations without producing any new results. 

We can now use the Hamiltonian (1 1) to obtain quite 
readily a closed system of equations of motion (S = 1/2): 

dT, (t)/dt=iyh,r, ( t )  +2iaojBoj(t), (12a) 
dB,, (t)/dt=iyhiBoj(t) -ilziaojI'o ( t )  . (12b) 

Here, 

I'o(t) =<S,+(t) >; Bo,(t) =(Sz,  (t)S,+ ( t )  >; 

r,(o)=i; B,,(o)=o; <. . .)=,4-1 sp{. . . S-1. 
The second term in Eq. (12a) describes the flip-flop processes 
in a pair of spins. In accordance with the above discussion we 
should allow for the statistical independence of these pro- 
cesses in different pairs and then sum over the index j in Eq. 
(12a). We then obtain 
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FIG. 1.  Free precession signal of CaF,. The external field as 
oriented along the [I001 axis. The continuous curve repre- 
sents the solution of the system (13a)-(13b) multiplied by the 
function r,(t ) (see the Appendix 11). The dashed curve repre- 
sents the experimental data taken from Ref. 17. 

-- drO ( t )  -iyh.ro ( t )  - 2 i x  oOjBoj ( t ) ,  
dt  

J 

d B ,  ( t )  i - =iyhjBoj ( t )  - - aojro ( t )  . 
dt 2 

The index j labels all the spins in a cell. Therefore, in the case 
of CaF, with the [loo] orientation and z = 6,  we have to 
solve a system of seven coupled equations, whereas for the 
[I101 orientation (characterized by z = 14-see Ref. 15) we 
need fifteen equations, etc. 

The system (13a)-(13b) can be solved by the Laplace 
transformation 

where R is a complex variable. The expression (13c) is aver- 
aged (integrated numerically) over the Gaussian distribu- 
tions of statistically independent local fields { hj J and then a 
computer is used to carry out the inverse Laplace transfor- 

mation. The results of such calculations and a comparison 
with the experimental results can be found in Figs. 1 and 2. 
In addition to the values plotted in these figures, we calculat- 
ed also the FPS of CaF, for the [I101 and [ I l l ]  orientations, 
the FPS of an hexagonal close-packed lattice, and the FPS of 
polyethylene subjected to an external magnetic field directed 
at right-angles to its molecular axes. In all cases a good 
agreement was obtained between the theory and experiment. 
Calculations carried out for the hexagonal lattice were com- 
pared (after averaging over grain particles) with the results of 
Metzger and Gainesz' for polycrystalline solid molecular 
hydrogen. 

The internal self-consistency of the model can be tested 
by geceralizing it. The simplest way to generalize the model 
is to allow exactly for the flip-flop processes in a triplet of 
spins and to find the FPS of a cell by a suitable summation 
over all the triplets. Although in principle such a direct pro- 
cedure is possible, it is extremely difficult to carry out: even 
for an isolated triplet we must solve a system of fifteen cou- 
pled differential equations. Therefore, before considering 

FIG. 2. Free precession signal of CaF,. The external field is 
oriented along the [I001 axis. The continuous curve is a solu- 
tion of the system (13a)-(13b), the dashed curve is the solution 
of Eq. (16), and the dots are the solution of a system of equa- 
tions for a triplet of spins. 
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triplets, we shall simplify somewhat the system (13a)-(13b). 
Multiplying both equations by an integrating factor and then 
calculating the integral, we obtain 

t 

ro ( t )  =exp ( h o t )  -2i C a w  J e x p { i o o ( t - t l ) ) ~ , ( t f )  dt', (14a) 
j 0 

i 
1 

~ " ~ ( t )  = - -aoj J e x p { i o j ( t - t f )  ) r o  ( t r ) d t f ,  
2  (14'3) 

oo=yh0, o,=yhi. 

Substituting Eq. (14a) into Eq. (14b), we obtain 

It is knownz2 that thez components of a local field vary more 
slowly than the transverse components of the spins. The 
characteristic time of such slowing down is (3 - 4)T2. 
Hence, we can assume that averaging of the exponential 
functions in Eq. (15) over the distribution of local fields, in- 
dependent of To(? ) and Boj (t ), does not result in a significant 
error in the calculations. Such averaging gives 

1 - oe 
( e x p  ( i o t )  )= - S e l "  {- X 

- m  
Mz' 

where M i  is the second moment of the distribution of the z 
components of a local field of spins in a cell. In this way we 
obtain 

ro ( t )  =Go('' ( t )  
t t ' 

- z a $  S G:" ( t - t f )  J G:') (t t-t") ro (t")  dt" dt'. (16) 
I 0 0 

The above approximation has made it possible to reduce the 
system of coupled differential equations to a fairly simple 
integral equation. A comparison of the solution of the sys- 
tem (13) with a solution of Eq. (1 6), made in Fig. 2, shows that 
such an approximation has practically no influence on the 
results, at least in the case when the ratio of the parameters 
M ;  and a,, is typical of ordinary solids. Independent aver- 
aging of the exponential functions in the system of equations 
for spin triplets allows us to consider only a solution of fif- 
teen coupled equations. It is clear from Fig. 2 that the change 
from pairs to triplets also has little effect on the results, 
which provides an additional evidence of this adequacy of 
the model. It remains to establish the relationship between 
this model and a chain of equations of motion. We shall do 
this by considering the Hamiltonian 

The notation used in Eq. (17) is similar to that adopted 

above. If we use the Heisenberg equations of motion, we 
obtain 

dBoj(t)  - - io jBu  ( t )  - - 1 iaojr0 ( t )  -Eaor(  (SO+ ( t )  Sb-  ( t )  Si* ( t )  
at 2 

k 

We can easily see that the equations of motion in the model 
(13a) and (13b) are obtained if we drop the three-particle 
(three-body) terms from Eq. (18b). We shall clarify the rea- 
sons why termination of the chain of equations of motion is 
permissible by assuming that 

This representation is acceptable for crystals with a large 
number of neighbors. We can also obtain equations of mo- 
tion for three-particle contributions to Eq. (18b). However, 
they are cumbersome and we shall not reproduce them here. 
We nevertheless should point out that the general structure 
of the Laplace transforms of equations of motion is 

. . . . . . . . . . . . . .  
(h+zbof)Fn ( h )  =Fn-i ( A )  +zborPn+ i ( A )  (20) 

( I W + ~ b o f ) P n + i  ( h )  =Fn (A) +zbofFn+z ( A )  , 

where A is a complex variable, Fo = 0, F,(A ) = To(A ), 
Fz(A ) = B ,, (A ), etc. Dropping of the term F,, + , (A ) from Eq. 
(20), we obtain 

F,,,, ( A )  =Fn(A)  (A+zbUf)-'. (21) 

Therefore, termination of the chain of equations of motion 
introduces an error of the order of - l/z, which is unimpor- 
tant in the case of large values of z. 

Finally, we note that although all the analyses were car- 
ried out so far for theS = 1/2 spin, this is unimportant in the 
case of crystals with a large number of spins in a cell and the 
model proposed above can be generalized by a trivial proce- 
dure to the case of an arbitrary value ofS: whenz is large, the 
spin alters only the time scale, but it does not alter the FPS 
profile.23 

We shall conclude by noting an interesting feature of 
our results. Our calculations indicate that the FPS of a crys- 
tal with a large number of neighbors has a profile which is 
described very satisfactorily by the relationships (5) and (6) 
irrespective of the dependence on the crystallographic struc- 
ture. This FPS profile applies to all the materials mentioned 
above and to the model system representing a two-dimen- 
sional simple cubic lattice, which is subjected to a magnetic 
field at right-angles to the plane of the lattice. In the case of 
polyethylene the results obtained within the framework of 
our model (Fig. 3) agree with the experimental dataz4 and 
earlier rigorous calculations.25 It is interesting to note that in 
the case of polyethylene we have z = 3 for the orientation in 
question. Therefore, already the number "3" is "large" in 
the problem under discussion because calculations of the 
FPS for a quasi-one-dimensional fluorine apatite character- 

573 Sov. Phys. JETP 60 (3), September 1984 A. A. Lundin and A. V. Makarenko 573 



FIG. 3. Free precession signal of crystalline polyethylene. The external 
field is oriented along the molecular axes. The continuous curve is theo- 
retical and the dashed curve is based on the results of Ref. 25. 

ized by z = 2 fail to ensure agreement with the experimental 
data. 

The authors regard it as their pleasant duty to thank V. 
A. Atsarkin, F. S. Dzheparov, V. E. Zobov, M. A. Koz- 
hushner, T. N. Khazanovich, and V. P. Sakun for discussing 
the results. 

APPENDIX I. 

Calculation of the flip-flop probability in the second order of 
perturbation theory 

We shall follow calculations of the probability of flip- 
flop p r o c e ~ s e s ' ~ , ~ ~  and estimate the probability of a three- 
spin process by calculating the average (over the initial and 
final states) the probability of a transition from a state 

to a state 

The indices i, j, and k label crystal lattice sites and ( a )  is the 
set of projections along the z axis from the other spins in a 
sample. Clearly, the vector with the intermediate value is 

Therefore, we have to calculate2' 

x G ( E ~ ~ ) - E : ~ ) ) .  ('4.4) 

The quantity E represents homogeneous broadening of states 

because of mutual flip of spins interacting with other spins in 
a sample. In the subsequent estimates we shall assume that 
E = m, where M i  is the contribution made to the second 
moment of the NMR profile by the Hfl Hamiltonian of Eq. 
(3). Since the separate states in the sum (A.4) determine 
uniquely the z component of a local field acting on each of 
the spins, we can follow the procedure of Refs. 18 and 26 and 
replace the sum over the states in Eq. (A.4) with the integral 
over the energies (precession frequencies) of a spin in a local 
field. We shall assume that the distribution of frequencies for 
each of the spins is described by Gaussian functions and the 
local fields at different spins are not correlated. We then 
obtain 

EtZT a E:T; 
.exp (- +) exp ( - T) 

Bearing in mind the presence of the S function, we obtain 
* OD 

T23 dEk exp (-T,2E,2/2) J = --J dEi exp (-T,'Et) .(A. 6) 
(2n) ' / a  - m - OD 

(Ei-Ek) '+aZ 

Multiplying now the numerator and denominator in Eq. 
(A.6) by T: , we have 

Here, y = T2Ei, z = T,E,, and a2 = e2T:. Substituting 
x = z - y, we find that 

01 

3 
OD 

7'23 d x  exp ( - x 2 / 2 )  1 = -5 d y  erp (- - y2-xy)  I 
2 

. (A.8) 
(an) 'I2 - m - m 

x2+a2 

The integral of the variable y in Eq. (A.8) is easily found,28 
which gives 

OD TZ3 dx e-IY3 
T23 [ I - @  (%)I exp (s), (A.9) J = ~ = I  z=2x 

-m 
13 

where @ (x) is the error integral tabulated in Ref. 29. We 
finally obtain 

By way of example, we shall find the probability of flip-flop 
processes in a triple of the nearest neighbors located along a 
straight line parallel to an external magnetic field and orient- 
ed along the [loo] direction. This probability is 

574 Sov. Phys. JETP 60 (3). September 1984 A. A. Lundin and A. V. Makarenko 574 



2ny4R8 16TZS y4t t8  w "'-0 88 -- O,35 - T:, 012 - , 256 dl2 dlz 
(A. 11) 

where d is the lattice constant. The probability of the pair 
flip-flop process of Eq. (7) is 

(A. 12) 

Hence, the ratio of the probabilities for a triple and a pair is 

w,':: /W0',' =0,07. 

If in addition to spin No. 1, we use intermediate spins sepa- 
rated by a distance 2'I2d from the spin 0, the above correc- 
tion becomes just ~ 0 . 2 5 %  of W Z 2 .  

APPENDIX II. 

Influence of spins in the distant environment on the free 
precession profile 

Strictly speaking, the local fields h, and h, in the Hamil- 
tonian (1 1) are time-dependent because of flip-flop processes 
and they represent sums of two contributions. One of them is 
created by a cell, whereas the othe by all remaining spins: 

ho ( t )  =h,"' ( t )  +hP' ( t )  , h, ( t )  =h:" ( t )  +hy' ( t )  . (A. 13) 

However, we can show that a consistent allowance for both 
components of a local field is equivalent to a simple multipli- 
cation of the calculated contribution to the FPS from a cell 
by the FPS component due to distant spins. 

In fact, since T:z(3 - 4)T2 and the cell spins ensure 
over 90% of the total second moment, the components 
h t )( t  ) and h l1)(t ) may be regarded as static. Direct calcula- 
tions readily show that since h f)(t ) and h p)(t ) are random 
Gaussian functions of time,15 the kernel Go(t ) in Eq. (16) 
should be written in the form 

~ ~ ( t )  =G:" ( t )  G:) ( t )  

M 't" 
1 

=exp {- ;}exp { a '  ( t - r )  k ( r )  d r )  . (A. 14) 
0 

Here, a2 is the contribution made to the second moment by 
the spins outside the selected cell, and k (7) is the correlation 
function of thez components of a local field. We shall assume 
that t 2 T:. We then obtain 

G : ~ )  ( t )  =e-". (A. 15) 

Equation (16) solved using the Laplace transformation is 
multiplied by the FPS component due to distant spins: 

r ( t )  =Fo ( t )  e-ct  

1 a+ie 
= - J dh, Go  (h,+c)  e t*[  I+ (x ao:) G o z ( h l + c )  I - '  , 

2ni 
a - i m  J 

(A. 16) 

where A is a complex variable and A ,  = A - c. We can readi- 
ly obtain3' the following equation with the necessary kernel: 

j 0 

(A. 17) 
1' 

xJ G:') ( t ~ - t - ) e - ~ ( f r - ~ o ) r ( t ~ )  dl / / .  

If t < T :, we can use a small [compared with G t'(t ) a n d r  (t )] 
change in the function G f'(t ) on this time scale and we can 
then demonstrate directly the validity of the required rela- 
tionship: 

a2P r ( t )  =ro ( t )  exp (A. 18) 

It should be stressed that this procedure, demonstrating 
the possibility of representing the FPS in the form 

r ( t )  =r0 ( t )  exp {-a2 I ( t - r )  k ( r )  d r  f', (A. 19) 

is a formal reflection of a basic physical fact pointed out in 
Ref. 15: the local fields created by a cell and by the remaining 
(distant) spins in a sample are statistically independent be- 
cause of the absence of correlations. 
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