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A study is made of the dynamics of a spin system in the vicinity of a spin-reorientation phase 
transition of the soft mode type. A criterion of the appearance of a striction gap in the oscillation 
spectrum of the order parameter is formulated and the nature of this gap is identified. It is shown 
that a striction gap of purely exchange origin may exist. 

The majority of the know spin-reorientation phase tran- 
sitions are of the soft mode type when considered from the 
dynamic point of view. This means that the coresponding 
frequency of the normal oscillations of the spin system in the 
vicinity of the critical point may be anomalously low. Never- 
theless, at the critical point itself the frequency of the normal 
mode w = o(T) which becomes softer may remain finite be- 
cause of the striction effects. Then, a singularity appears in 
the vibration spectrum of the elastic subsystem: the disper- 
sion law of sound changes from linear to quadratic. 

It follows from this brief introduction that the magne- 
toelastic interactions play the dominant role in the forma- 
tion of a gap in the spectrum of magnetic oscillations at the 
spin-reorientation phase transition (SRPT) point. The his- 
tory of this topic can be found in a review of Turov and 
Shavrov,' where the essential references are cited. Numer- 
ous theoretical investigations of the topic have been con- 
cerned only with special simplest types of the SRPT in ferro- 
magnets and antiferromagnets (see, for example, Refs. 2-5). 
Detailed calculations have been carried out for such cases 
and whenever possible a comparison has been made with the 
available experimental results. However, the general sym- 
metry aspects of the topic have been ignored. The following 
problems still remain. 

1. A striction gap in the oscillation spectrum of the mag- 
netic order parameter appears at the critical point of all the 
SRPTs investigated so far (we are speaking here of theoreti- 
cal treatments). The only exception are those cases in which 
the absence of a gap is a consequence of model approxima- 
tions. A natural question thus arises: how common is such 
behavior? Moreover, if the reverse is possible, then what is 
the general criterion of the existence of a striction gap in the 
spectrum of magnetic excitations corresponding to a soft 
mode? 

2. It has been assumed so far that the striction gap is due 
to relativistic interactions and, in particular, due to the rela- 
tivistic magnetostriction. In the earlier investigations this 
has indeed been true: the adoption of the exchange approxi- 
mation has always destroyed the gap in the soft-mode spec- 
trum. Nevertheless, it is found that, in principle, there may 
be situations in which the striction gap in the oscillation 

spectrum of the magnetic order parameter is entirely due to 
the exchange interaction. Such situations can be identified 
without carrying actual calculations but applying only pure 
symmetry considerations. 

These problems are the subject of the present paper. We 
shall describe a phase transition using the mean-field theory. 
The role of fluctuations in problems of interest to us is clear- 
ly of very minor importance. This has been pointed out re- 
peatedly by many authors in connection with studies of 
orientational phase transitions in magnetic materials.' The 
effects associated with the finite size of real crystals and with 
the damping will not be considered. 

1. STRICTION GAP IN THE SPECTRUM OF A SOFT MODE 
CONSIDERED ON THE BASIS OF THE LANDAU THEORY 

The appearance of a striction gap in the oscillation spec- 
trum of an order parameter can with advantage be demon- 
strated on the basis of the phenomenological theory of Lan- 
dau. We shall consider a second-order phase transition 
which is classified on the basis of symmetry as a proper fer- 
roelastic transition. We recall that in this case the Landau 
expansion for the free energy Wcontains an invariant which 
is linear in respect of the order parameter and of strains: 

Here, 7 is the order parameter of the phase transition and u is 
a certain combination of the components of the strain tensor 
uaw We shall use the simplified symbolic notation. In gen- 
eral, 7 and u are multicomponent quantities (if the phase 
transition occurs in accordance with a multidimensional ir- 
reducible representation of the symmetry group of the high- 
symmetry phase). 

The equilibrium values of 7 and u can be found from a 
minimum of Eq. (1) describing W: 

where 
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The phase transition point corresponds to a* = 0. 
In the absence of damping the frequency of oscillations 

of the order parameter is governed by the generalized "stiff- 
ness" of the system: 

Equation (5) represents the frozen-lattice concept. In the 
case of an infinite crystal it is found that homogeneous 
strains cannot vary at a finite rate (i.e., ua8 is independent of 
time) and, therefore, they cannot follow oscillations of the 
order parameter 7. Therefore, in studies of homogeneous 
oscillations in an unbounded sample the crystal lattice 
should be regarded as static, i.e., as "frozen" (Ref. 1). 

Using Eqs. (1)-(5), we obtain 

It should be stressed that x-' is always greater than the 
usual static generalized reciprocal susceptibilityx - ', which 
is given by the expression 

d2 a', a'>O X-' = W (q, u ( q )  ) =a'+3bqz= 
dq 

(7) 

It should be noted that u(7) in Eq. (7) is equal to A7K - I ,  

which is a consequence of static adjustment of the lattice so 
that the order parameter has its equilibrium value [see Eq. 
(311. 

It follows from Eq. (6) and Fig. 1 that x-  ' is rigorously 
positive throughout the temperature range under discus- 
sion, including the critical point, whereasx -' of Eq. (7) van- 
ishes at the phase transition point. 

The temperature dependence of the oscillation frequen- 
cy of the order parameter is similar to the dependence 
xP'(T). Model calculations indicate that usually (but not al- 
ways!) we have 

o2 (T) a x - '  (T) . (8) 

This problem is discussed in greater detail in Ref. 6. The 
striction gap at the critical point itself (i.e., at a* = 0) is gov- 
erned by the corresponding value of x-', i.e., it is governed 
by the quantity A 'K -'. 

The above discussion demonstrates clearly the inevita- 
bility of the appearance of a striction gap in the oscillation 

FIG. 1.  Temperature dependence of the generalized dynamic stiffness in 
the vicinity of the critical point: 1)  /Z #O; 2) A = 0. 

spectrum of the order parameter at the point of a proper 
ferroelastic phase transition, i.e., when the expansion of the 
thermodynamic potential contains invariants of the 7u type. 
We can easily show that the invariants with higher powers of 
r ]  or u do not contribute to the formation of a gap in the soft- 
mode spectrum at the critical point. 

The invariants of the qu type are known to be absent if a 
phase transition is accompanied by " multiplication" of the 
primitive (magnetic or crystallographic) cell or by the loss of 
a center of inversion (corresponding to the i or 7' operations 
of the magnetic symmetry group) or if the phase transition 
does not alter the crystallographic system, for example, if 
before and after the transition a crystal is cubic or tetragonal, 
etc.; in the latter case a spontaneous striction always corre- 
sponds to a single representation of the symmetry group of 
the high-symmetry phase and, consequently, such a phase 
transition is in no way ferroelastic. 

We shall now consider SRPTs from the viewpoint pre- 
sented above. In the simplest case an SRPT reduces to rota- 
tion of the magnetic structure as a whole in the spin space 
without a significant change of the angles between the atom- 
ic spins. If the magnetic structure is collinear (even if only in 
the exchange approximation), which may mean that the 
structure is ferromagnetic, antiferromagnetic, or ferrimag- 
netic, then an SRPT in such a system is always a proper 
ferroelastic transition and a striction gap in the soft-mode 
spectrum is of the relativistic origin." These are the cases 
that have been discussed so far in the literature and there is 
no point in dealing with them in greater detail. 

However, if the magnetic structure of a crystal is 
strongly noncollinear, the situation may be different. By way 
of example, we can mention here a spin reorientation in 
Mn,NiN in which the magnetic structure before, during, 
and after completion of the reorientation process is de- 
scribed by magnetic groups which belong to the rhombohe- 
dral symmetry.2' Consequently, both phase transitions cor- 
responding to the onset and completion of the spin 
reorientation process are not ferroelastic and there is no 
striction gap in the spectrum of spin excitations at either of 
the critical points. 

An example of an SRPT which does not reduce to rota- 
tion of a magnetic structure as a whole in the spin space is the 
collapse of magnetic sublattices in an antiferromagnet sub- 
jected to a strong magnetic field. 

If a sufficiently strong external magnetic field (exceed- 
ing the exchange interaction field) is applied to a crystal, 
then any magnetic structure becomes ferromagnetic, i.e., all 
the magnetic sublattices become oriented parallel to the ex- 
ternal magnetic field. A phase transition associated with 
vanishing of the angle between the sublattice magnetizations 
is known as the collapse of sublattices. Therefore, the variety 
of the sublattice collapse transitions is as great as of the mag- 
netic structures in general. 

In a case of this kind it is not possible to give a unique 
answer to the question of whether a striction gap can exist in 
the spectrum of magnetic excitations at the critical point. 
The only general conclusion is that if a striction gap does 
appear at the sublattice collapse point, it is of the relativistic 
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origin, i.e., it disappears in the exchange approximation. We 
shall prove this conclusion in the next section and concen- 
trate here in greater detail on a special case which is a sublat- 
tice collapse transition in two-sublattice antiferromagnets. 

If an external magnetic field H is greater than the col- 
lapse transition field He,  then the magnetic structure of the 
antiferromagnet in question becomes transformed into a col- 
linear ferromagnetic structure. We shall assume that Hllz, so 
that if H > He,  we have 

where 1 is the antiferromagnetic vector and m is the total 
magnetic moment of the sublattices. 

If H < H e ,  then 1#O and the magnetic structure be- 
comes noncollinear. The order parameter for the phase tran- 
sition in a field H = He is one of the transverse components 
of the antiferromagnetic vector, for example, I, (if the z axis 
coincides with the crystallographic axis of symmetry higher 
than twofold, then the quantities I ,  and I, are the compo- 
nents of the same two-component order parameter). The ful- 
lest symmetry analysis of sublattice collapse transitions in 
two-sublattice antiferromagnets of different crystallogra- 
phic symmetries can be found in Ref. 9. ~umerous  specific 
examples are also considered there. 

It follows from the general criterion presented above 
that a striction gap appears in the spectrum of magnetic exci- 
tations at H = He if and only if one of the transverse compo- 
nents of the antiferromagnetic vector 1 and one of the compo- 
nents of the strain tensor ua8 can be combined to form a 
product lu, which is invariant relative to the magnetic sym- 
metry group G f ,  of the high-field ferromagnetic phase de- 
scribed by Eq. (9).3' This in its turn is possible only if there are 
invariants of the mlu type relative to the symmetry group of 
the paramagnetic phase G,, , i.e., in the presence of a linear 
piezomagnetic effect in the antiferromagnetic state. We shall 
not consider all possible situations which may arise for dif- 
ferent types of crystallomagnetic structures, because the 
analysis is essentially trivial and it is more reasonable to car- 
ry it out separately for each specific case. Here, we shall 
consider a unique case of orthorhombic two-sublattice anti- 
ferromagnets. 

Clearly, a sublattice collapse transition may be a proper 
ferroelastic transition only if the crystallochemical primitive 
cell is identical with the magnetic cell in the antiferromag- 
netic state. Therefore, the analysis may be limited to the case 
of magnetic ordering characterized by k = 0 using the point 
symmetry group of a crystal. 

The standard classification of the components of the 
vectors 1 and m and also of the components of the strain 
tensor ua8 in accordance with the irreducible representa- 
tions of the point symmetry group of the paramagnetic phase 
D,, (Ref. 6) shows that two types of magnetic ordering are 
possible in an orthorhombic crystal. Type I ordering admits 
the existence of weak ferromagnetism, i.e., it admits the pos- 
sibility of the Dzyaloshinskii interaction, whereas type I1 
ordering does not admit this interaction. The existence of 
invariants of the mlu type is possible only in type I antiferro- 
magnets. Consequently, in type I1 orthorhombic antiferro- 
magnets, as well as in antiferromagnets with different mag- 

netic and crystallochemical cells, a sublattice collapse 
transition is not accompanied by the appearance of a stric- 
tion gap in the magnon spectrum. 

In the case of orthorhombic type I antiferromagnets 
(which include in particular orthoferritess) a sublattice col- 
lapse transition is possible only when the magnetic field H is 
oriented along one of the crystallographic axes. Only in this 
case is a sublattice collapse transition a proper ferroelastic 
transition and a striction gap of the relativistic origin ap- 
pears in the antiferromagnetic resonance spectrum at 
H = He. A calculation carried out in the usual way (for de- 
tails see Ref. 6) gives the following expression for the stric- 
tion gap A in the spectrum of magnetic excitations at the 
sublattice collapse point: 

where HA is the orthorhombic anisotropy field. It should be 
noted that the expression for the gap A does not include the 
exchange field. Therefore, the exchange enhancement of the 
magnetoelastic interaction (for details see Ref. 1) does not 
occur in this case. 

2. POSSIBILITY OF EXISTENCE OF A STRICTION GAP OF 
EXCHANGE ORIGIN IN THE SPECTRUM OF A SOFT MODE AT 
A SPIN-REORIENTATION PHASE TRANSITION 

The necessary infomation from the theory of the ex- 
change symmetry can be found in Refs. 10-14. Whenever 
possible, we shall use the terminology adopted in these pa- 
pers. 

In the exchange approximation the spectrum of mag- 
netic excitations of a magnetically ordered crystal must nec- 
essarily include activation-free Goldstone rnode~,~ '  which 
are usually called acoustic magnons. Activation occurs only 
if we allow for the relativistic interactions, particularly for 
the relativistic magnetostriction. In this connection it is nec- 
essary to specify which striction gap in a spectrum we are 
speaking of if the exchange approximation is adopted. This is 
necessary because there is an extensive class of SRPTs in- 
volving considerable changes of the angles between the 
atomic spins. They include also the sublattice collapse tran- 
sition discussed above. Normal oscillations of the spin sys- 
tem corresponding to a mode which becomes softer can then 
have a very different symmetry which is not the symmetry of 
acoustic magnons with the same wave vector (in the present 
case we shall be interested in homogeneous oscillations, i.e., 
we shall consider only the modes with k = 0). In other 
words, an optical (exchange) mode may become softer, 
whereas acoustic oscillations of the spin symmetry do not 
participate in the phase transition and do not even interact 
with the soft mode. If in addition it is found that such an 
SRPT is a proper ferroelastic transition even in the exchange 
approximation, then the frequency of oscillations of the or- 
der parameter remains finite at the critical point and the 
value of this frequency is governed entirely by the exchange 
interactions, particularly by the exchange magnetostriction. 

Neither a sublattice collapse transition nor phase tran- 
sitions of the kind that occur in ferrites in strong magnetic 
fields5 are proper ferroelastic transitions in the exchange ap- 
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proximation. This means that even if the parameter A of Eq. 
(4) differs from zero for these cass, this occurs only because 
of the relativistic interactions. This represents a special case 
of the following general conclusion: if at the critical point of 
an SRPT the magnetic structure is collinear (at least in the 
exchange approximation), then in the exchange approxima- 
tion such a phase transition is not a proper ferroelastic tran- 
sition. In fact, we shall assume that at the critical point (and, 
therefore, in the high-symmetry phase) the magnetic struc- 
ture is collinear. Then, the atomic spins are either parallel or 
antiparallel to, for example, the z axis. The order parameter 
governing the disymmetric phase at an SRPT is a certain 
linear combination of the x and y components of the atomic 
spins.5' Clearly, rotation in the spin space around the z axis 
by an angle T reverses always the sign of the order param- 
eter. However, the exchange energy and the exchange stric- 
tion are not affected, in accordance with the definition of the 
exchange approximation. Consequently, the exchange stric- 
tion cannot in this case be linear in respect of the order pa- 
rameter of an SRPT. The transition itself is not a proper 
ferroelastic transition in the exchange approximation. 

We shall make in passim an important remark not relat- 
ed directly to the above discussion. We shall consider an 
arbitrary collinear (in the exchange approximation) magnet- 
ic structure oriented specifically along the z axis. Let $(r) be 
an arbitrary linear combination of thex and y components of 
the atomic spins, which depends in any manner on the co- 
ordinates (for example, it may represent a magnon with an 
arbitrary wave vector). Following exactly the analysis made 
above, we can easily show that the exchange approximation 
forbids any interactions linear in $(r) and of the type 

$ (r) PW 9 

wherep(r) describes any "nonspin" physical quantity such as 
an atomic displacement (phonon), electric dipole moment, 
etc. Hence, it follows that, in particular, processes such as 
one-magnon absorption of the energy from an alternating 
electric field and a magnetoacoustic resonance are possible 
in the exchange approximation only in noncollinear magnet- 
ic structures. 

Therefore, a striction gap in the spectrum of a soft mode 
is entirely of the exchange origin if an SRPT is a proper 
ferroelastic transition already in the exchange approxima- 
tion. This is possible if an SRPT occurs between two noncol- 
linear (in the exchange approximation) magnetic structures. 
In a formal group-theoretic analysis we must bear in mind 
that a satisfactory description of the exchange symmetry is 
given by color symmetry groups of the P or Q type. Conse- 
quently, the magnetic order parameter of an SRPT should 
correspond to an irreducible representation of the color sym- 
metry group of the high-symmetry phase. However, we shall 
not consider the formal aspects of this problem and discuss 
instead a specific example of an exchange-striction gap in the 
spectrum of a soft mode. 

Figure 2a shows one of the possible types of magnetic 
ordering in a tetragonal lattice. We shall consider a spin 
reorientation in which the sublattice magnetizations rotate 
as shown in Fig. 2b and thus form a collinear antiferromag- 
netic structure (phase c, shown in Fig. 2c). 

FIG. 2. Spin reorientation in a tetragonal lattice. The magnetic moments 
lie in the basal plane xy. 

The calculation reported below shows that both phase 
transitions corresponding to the onset (Fig. 2a) and comple- 
tion (Fig. 2c) of a spin reorientation are accompanied by soft- 
ening of the optical (exchange) mode of homogeneous oscil- 
lations of the spin subsystem. Without allowance for the 
magnetostriction the revelant frequencies vanish at the criti- 
cal points. An allowance for the exchange striction gives rise 
to a gap (of the exchange origin) in the spectrum of oscilla- 
tions of the order parameter only at the first of the critical 
point (corresponding to the phase a +phase b transition). In 
the case of the phase b s  phase c transition a gap does not 
appear even if we allow for the relativistic interactions be- 
cause this phase transition is accompanied by a change in the 
translation symmetry and cannot be a proper ferroelastic 
transition. 

The acoustic oscillations of the spin system do not par- 
ticipate in phase transitions in the situation shown in Fig. 2, 
i.e., they do not even interact with a soft mode because they 
have a different symmetry. 

We shall now calculate the frequencies of homogeneous 
oscillations of the spin system for the magnetic structures 
shown in Fig. 2. The Hamiltonian of the quadratic exchange 
interaction is 

,. ,. 
%':' =la ( A 2 + B 2 )  + l C ~ 2 ~ l F ^ F 2 ,  (11) 

where 
- * A , . , . A - - , . A  

A = S 1 - - S z - S 3 + S 4 ,  C = S ~ - S Z + S ~ - S ~ ,  - , .  ,. A  A -  

B = S 1 +  S z - S S - S 4 ,  F = S 1  $- s z +  ss+ s 4 .  (12) 

If the exchange constants in Eq. (1 1) satisfy the condition 

J*<Jc, JF, (13) 

then the ground state of the Hamiltonian of Eq. (1 1) is 

A f O ,  B Z O ,  F=C=O, (14) 

If temperatures are sufficiently low, we can assume that 

Allowing for Eq. (14), we find that the normalization condi- 
tions of Eq. (1 5) become 

A2+B2= ( 4 S ) ' ,  (A,  B) = 0 ,  F=C=O. (16) 

Finally, assuming that A Ilx and B Ily [such a selection is per- 
missible within the framework of the exchange approxima- 
tion allowing for Eq. (16)], we find that the magnetic struc- 
tures shown in Fig. 2 are obtained. 
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It should be pointed out that in the case defined by Eq. 
(13) the quadratic exchange interaction of Eq. (1 1) does not 
even fix the relative orientations of the atomic spins and that 
the energy of the quadratic exchange is the same for all three 
structures shown in Fig. 2. We can determine uniquely the 
ground state within the exchange approximation framework 
if we supplement the Hamiltonian of Eq. (1 1) with the ex- 
change terms of higher orders in respect of the spin: 

The exchange in energy deduced for the AB-type ordering 
from Eqs. (1 I), (16) and (17) is 

The SRPT shown in Fig. 2 occurs because of a change in 
the sign of the biquadratic exchange parameter P. The 
ground state of a magnetic system is found from the condi- 
tion for a minimum of the energy We described by Eq. (18) 
and, as a function ofP, it has the following value for the three 
phases: 

1) phase a: 

A=B=~s/G (19) 

which is stable in the range P > 0; 
2) phase b: 

which is stable in the range - 2Q (4S)4(P<O; 
3) phase c: 

which is stable in the range P < - 2Q (4S)4. 
A calculation of the frequencies of homogeneous oscil- 

lations of the spin system will be carried out using a scheme 
described in Ref. 15, i.e., we shall begin from quantum equa- 
tions of motion for symmetrized operators of Eq. (12): 

where 

.&&("+%,"' +,%:' , 

h 

and r, is one of the twelve symmetrized operators of Eq. 
(12). After linearization of these equations in the random 
phase approximation and subject to Eqs. (19)-(21), we obtain 
the following expressions for the frequency of a soft optical 
mode of each of the three magnetic configurations of Fig. 2: 

phase a: 

phase b: 

phase c: 

Therefore, without allowance for the magnetostriction the 
soft-mode frequency vanishes at both critical points. 

In addition to the soft optical mode of Eqs. (24)-(26), 
there are also three acoustic magnon modes in the phases a 
and b, and only two modes in the collinear phase c. If k = 0 
their frequencies differ from zero only in the presence of the 
relativistic interactions. There is not much point in giving 
the relevant expressions. We shall simply point out that in 
the situation shown in Fig. 2 the acoustic modes do not iner- 
act with a soft mode when k = 0 because they have a differ- 
ent symmetry. 

Clearly, in the phases a and b a soft mode corresponds 
to homogeneous oscillations of the spin system, i.e., the os- 
cillations with k = 0, whereas in the collinear phase c a soft 
mode corresponds to an irreducible representation of the 
magnetic symmetry group of the ground state with k#O (a 
magnetic cell of the phase c is half that of the phasesa and b ). 

We shall now consider the effect of magnetostriction. In 
the exchange approximation the nonisomorphous part of the 
magnetoelastic interaction6' is described by the Hamiltonian 

where K is the relevant elastic modulus and A is one of the 
exchange magnetostriction constants. The equilibrium de- 
formation is given by the expression 

Allowing for Eqs. (27) and (28), we now obtain the following 
magnetostriction (magnetoelastic, denoted by the index 
"me") correction to the ground-state energy: 

Comparing Eqs. (29) and (18), we can see that an 
allowance for the contribution of the nonisomorphous part 
of the exchange striction to the ground-state energy is equi- 
valent to renormalization of the biquadratic exchange pa- 
rameter P-+P *, where 

The corresponding replacement should be carried out in 
Eqs. (19)-(21), which give the equilibrium magnetic configu- 
rations and the ranges of their stability. As a result, we ob- 
tain 

phase a: 

stable in the range P *>O; 
phase b: 

stable in the range - 2Q (4s  )4<P * (0; 
phase c: 

stable in the range P * ( - 2Q (4s  )4. 

(33) 
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In calculating the striction correction to the frequencies 
of homogeneous oscillations of the spin system we have to 
use again the concept of a frozen lattice. In the present case 
this means that the quantity u,, - uyy in Eq. (27) should be 
replaced by its equilibrium value given by Eq. (28). This then 
gives the following correction to the Hamiltonian of Eq. (23): 

When an allowance is made for this correction, the expres- 
sions for the frequency of a soft optical mode become as 
follows: 

phase a: 

phase b: 

phase c: 

o=64S ' -  (P+2 (4s') Q )  (JC-Ja )  I"'. (37) 

Therefore, an allowance for the exchange striction gives 
rise to activation in the spectrum of a soft optical mode at the 
critical point of the phase a+ phase b transition. The stric- 
tion gap is 

It should be pointed out that the gap size is governed 
only by the parameters of the quadratic exchange Hamilton- 
ian subject to an allowance for the quadratic (in respect of the 
spins) exchange striction. 

In the case of the phase b+ phase c transition with 
P * = - 2(4S )4Q an allowance for striction does not give rise 
to activation in the soft mode spectrum because this transi- 
tion is not a proper ferroelastic phase transition. 

The authors are grateful to A. S. Borovik-Romanov, I. 
E. Dzyaloshinskii, E. A. Turov, and D. A. Yablonskii for 
discussing this paper. 

"The exact meaning of this statement is as follows: in the exchange ap- 
proximation, i.e., in the complete absence of the relativistic interactions, 
there is no striction gap in the soft mode spectrum. 

*'More detailed information on the magnetic structure and magnetic sym- 
metry of this crystal can be found in Ref. 7 or in the handbook of Oles et 
al.' 

3'The components I ,  and I,, themselves and any linear combination of 
these components cannot be invariant relative to G,,,, . In the opposite 
case the phase described by Eq. (9) does not appear (strictly speaking) for 
the H no matter how high and the critical point of the spin reorientation 
transition is a b ~ e n t . ~  

4'Generaly speaking this is true only in the absence of an external magnetic 
field. However, this circumstance is unimportant in our analysis. 

5'In principle, the phase transition may alter not the directions but only 
the absolute values of the magnetic moments of the various sublattices. 
However, it is clear that such a transition is not of the soft mode type. 
Moreover, it is not even a spin-reorientation transition. 
6'This means the part that disturbs the tetragonality of the original lattice 

(we are speaking here of orthorhombic distortions). 
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