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The magnetization motion induced in superfluid 3He by a periodic sequence of radio-frequency 
pulses is investigated. It is shown that, under certain conditions and over time periods shorter 
than the relaxation times, the magnetization component along the direction of the constant field 
and the phase of the spin precession vary in a stochastic manner; the steady-state distribution 
function for this component and the correlation function for the phase are found. It  is also found 
that in this case the magnitude of the spin and the angle connected with the rotation of the order 
parameter execute small oscillations about their equilibrium values. 

1. In the present paper we consider the motion of the duration, we can, by imposing on the pulse duration the con- 
magnetization of superfluid 3He in the presence of a pair of dition 1/rP (w,, ensure that these harmonics vary at a rate 
magnetic fields: a strong constant field (the adiabatic ap- that is low compared to w,. Then, following Ref. 1, we can 
proximation') and the alternating field, directed perpendicu- derive the system of equations 
larly to the constant field, of a periodic series of radio-fre- d V  
quency (RF) pulses. Here we shall assume that the repeated S==-Or.--, 

d @  
supply of pulses ceases before the relaxation properties begin d V 

o=OL(s-l)+ mL-- OLP 
to manifest themselves. The preference of a periodic series of as [-P(ZS+P) 

hl (t) sin E, 
RF pulses to the monochromatic field used in the ordinary 
NMR method is due to the fact that, under conditions of a 9--wL[-P(?S P ) ]  '&IL, ( t )  cos E, (2) 

sufficiently large dynamical precession-frequency shift, the 
magnetization motion in a monochromatic field turns out to 

a v wL(P+S) h,  (t) sin E. 
E=A+oL--- 

ap 1 -P (2S+P) 1 'I2 - .  . - 
be unstable when the relaxation is neglected. In the case of a 

Here S is the dimensionless spin per unit volume; 
periodic series of RF  pulses the magnetization motion can P = S, - S, where S, is the spin component along the z axis; 
become stochastically so that the average mag- 
netization manages to assume its steady-state value before A = w,(( - l)(wL; 

the appearance of the relaxation mechanism. 
The stochastic magnetization motion induced in super- 

fluid 'He by a periodic series of RF  pulses has been investi- 
gated before3 for the mathematically simpler nonresonance' 
case, which is realized by abruptly changing the strong con- 
stant field by an amount of the order of the field strength 
itself prior to the supply of the periodic series of RF  pulses. 
In the present paper we investigate the stochastic magnetiza- 
tion motion regime for the so-called resonance' case, which 
does not presuppose the realization of the indicated con- 
stant-field jump. 

2. Let us consider a situation similar to the one pro- 
posed by Fomin' for the deflection of the magnetization in 
pulsed NMR experiments, with the only difference that in 
our case the variable field has the form 

+- 
A, (t) = H, f (tlT-n) cos (Sw~f) 7 (1) 

n 5 - m  

where w, = gHo is the Larmor frequency; Ho is the strength 
of the constant field, which is directed in the direction oppo- 
site to that of the z axis; H ,  and (a, are the amplitude and 
frequency of the variable magnetic field, oriented along they 
axis, at the peak of the pulse; f is a numerical coefficient of 
the order of unity; f (t ) is the form function of the individual 
pulses; and Tis the pulse repetition period. Since the number 
of harmonics in the spectral expansion B J ( t  /T  - n)  is, in 
practice, limited by the interval 1/rP, where rP is the pulse 

where hl=Hl/2Ho(1; l = a + f w , t ,  @ = a + y ,  
cos p = P /S + 1, a ,  p, and y being the Euler angles deter- 
mining the orientation of the moving coordinate system (ri- 
gidly fixed to the order parameter) relative to the stationary 
system: 

where 0, and 0, are the frequencies of the small longitudi- 
nal oscillations of the spin and the angle of orientation of the 
order parameter in the A and B phases of superfluid 3He. 

Further, to simplify the computations, let us assume 
that the pulse form function has the form of a delta function. 
Then, in the spirit of the foregoing, the expansion 

+ m +m 

6 ( t /T-n)  = cos nQt, 

where f2 = 2?r/T, actually contains approximately 1/2 rP0 
harmonics. For prescribed P (t ) and 6 (t ) functions, the first 
two equations in (2) form a closed system of equations for S 
and @. These quantities excute forced oscillations about the 
points S =  So and @ = @, given by the equations d V /  
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a@, = 0 and So = 1 - a V /aso. If these oscillations are suffi- 
ciently small, then the second pair of equations in (2) natural- 
ly form a closed system of equations of P and <. For both the 
A and the B phases we easily obtain the following equations 
from the system (2) in the vicinity of the points So and @,: 

X A , B + ~ : , B X A , B = F &  (E, B; t )  ; (4) 

P = w L ~ ~  ( t )  cos E r  (54  

g=AA,B+ u p *  cos P-wLhl ( t )  ctg B sin E ,  (5b) 

where XA,, = S,,, - 1, @Ac, while 

AA=h+'lsopn,  AB=A+' /~W~B,  OA~=' /~QA'  ( ~ + C O S  P ) ' ,  

s 2 cosp-1 
FA,B=oA,B hi  ( t )  sin E, 

sin 

Q I-COS p 
FA,B = OL - (AASBh,  ( t )  cos E+hl ( t )  sin E). 

sin @ 

Let us note that in this paper we investigate theB phase with 
a dynamical precession-frequency shift, i.e., for which the 
condition - 1 (cos fl( - is fulfilled. The system (4) was 
derived under the assumption that A , ,  -f2, ,a,. 

3. The equations (5) describe the nonlinear precession of 
the spin under the action of the periodic series of RF pulses. 
They coincide with the equations investigated in Ref. 3. It is 
shown there that if K- Iw,wp I T Z > l  and Iw, 1 T(1, where 
w, = gH,rp/T, there develops in the system described by the 
equations (5) a statistical instability in whichP and g become 
random functions of the time with known distribution 
p,,, ( p ) and correlation functions respectively. Using the re- 
sults of Ref. 3, we can write down the kinetic equations for 
P( P 1: 

where D = wiT/2 is the coefficient of "diffusion." The 
function p ( P )  should satisfy the following normalization 
conditions: 

PA. ~ ( B l d P = l ,  (8) 
P i ,  B 

wherep; = 0 a n d p i  = arccos( - t). Notice that Eq. (7) co- 
incides with the kinetic equation for the polar-angle distribu- 
tion function for rigid dipoles executing thermal motion in a 
constant longitudinal electric field, i.e., for particles execut- 
ing rotational Brownian m ~ t i o n . ~  

On the basis of (7) we can easily show3 that there get 
established over a time period t) 1/60 the steady-state dis- 
tribution functions P;,B = CA,Bsin 8 ,  where the constants 
C,,, are determined from (8), and are equal to: CA = 4, C, 
= 4/3. The mean value of some function f ( P ) in the steady 
state regime will then have the form 

- 
In particular, in the A phase co$? = 0, and, consequently, 
all the spin directions in the steady state regime are equally 
probable. For the B phase we find that co@ = - 5/8. 

Further, to investigate the equations (4), we must know 
that the correlation functions of the following form for the 
random quantity 5 (t ): 

Following Za~lavski'i,~ we first determine the correlations 
R 2 = (exp ( i(5, + go) 1 ) , where (...) denotes averaging in 
the sense of (lo) and <, = { (t, ) is the value of< after the mth 
pulse, and then go over to continuous time by making the 
substitution mT-t, m) 1. Let us, in accordance with the 
foregoing, find R F . Determining with the aid of the formu- 
las of Ref. 3 the jump A< after the first pulse: 

A ~ = ~ i - ~ o - A A , , T + I f o  cos $,, (1 1) 

where KO = - Jw ,wp T sin P (to), we obtain for R F the ex- 
pressions 

R, -=esp  {iA,, ,T) J, ( K O ) ,  XI'--exp { iAa,aT)  1 2  ( K O ) ,  (12) 

where J,,(Ko) and J,(K,) are the Bessel functions of order 0 
and 2, respectively. Now, using (12), we easily find the first- 
order correlators: 

(COS E l  cos g o ) = l / z  cos AA,BT (JO ( K O )  - J 2 ( l i 0 ) ) ,  

(COS El sin EO)=-'/ ,  sin AAtBT (1 ,  ( K O )  + J , ( K o ) ) ,  

(sin E l  cos E o > = l / z  sin AA,BT (JO ( K O )  -1, ( K O )  ) , 
(13) 

(sin E l  sin E0)xilz cos Aa,BT(Jo(Ko) -I-JZ(ICo)).  

Since in (5) the stochastic regime is realized when K) 1, we 
must take in (13) the asymptotic forms of the Bessel func- 
tions for (KO(> 1. Limiting ourselves to the first terms of the 
expansion, we can write 

Noting that the transformation law for the phase (1 1) coin- 
cides with the one investigated in Ref. 2, we can omit the 
intermediate computations for R 2, and write down the fi- 
nal expression for the correlators: 

(COS Ei  cos E ~ ) N ' / ~  cos AA,B(ti-tz) 

( exp  { - I t , - t , I / ~ ) + e x p  { - 3 1 t , - t , l / ~ ) ) ,  

(COS E I  sin E , ) = - ' / ,  sin A,, B(t1-tz)exp{-31tl-t,(/t}, 
(15) 

(sin E l  sin E,>='/, cos AA,B( t i - tZ )  exp { - 3 l t i - - t ~ ( / . t } ,  

(sin E 1  cos g2)='/ ,  sin AASB(t , - t2)  

( e x p i - I t , - t , I / ~ ) + e x p  : - 3 j t , - t , l l ~ )  ), 

where r = 2T/lnK, K Z  IKoI. 
3. Let us now show that, in the steady-state stochastic 

regime of motion of B and 5, the solutions to the system (4) 
can remain close to the equilibrium values So = 1, Go = 0. 
Indeed, after the establishment of the steady stateB distriub- 
tion in (5 ) ,  the equations (4) will assume the form 
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X + ~ ~ X = F X  (5; t), (16) 

where w2 = z , ~ ~ g ; t  ) = F:,, g a t  ) . Averaging over 
p, we find that wi = .f2 /3, wi  = .f2 2 /20, while 

PAS='/,anQA2hl (t) sin 5, 

F B ~ = ~  ('/,5) 3QB2h, (t) sin g, 
1 1 7 i  

Fr@='/zno (Arhi (t) cos g+hl (t) sin 9, 
1") 

FBQ=3,10,(ABh, (t) cos 5+h, (t) sin 5). 

To analyze (16), let us introduce the function 
~ ( t  ) = x + i d .  Then, if, as the initial values, we take 
X (0) = 0 and x (0) = 0, we can show that 

1 ,,, (t) = e i w t  J e - i w l .  FX (E; t ' )  atr. (18) 
0 

Since the amplitude of the X oscillations is a slowly varying 
function of the time ( I A  /A I gw), 

Substituting (15) and (17) into (19), and performing the sim- 
ple integrations, we obtain for times tsr: 

sin (n-k) Qt < (A')') kX onkx T 2 - k )  9 

n.k 

where 

The dominant contribution to the sum (20)-(21) is made 
by the so-called resonance (secular) terms, which increase in 
time. Assuming that the condition A,,, = w is fulfilled, and 
limiting ourselves to the summation of the secular terms, we 
obtain 

< (AX) '>-xX5, (22) 

where 
xA~=0,03(QA/oL)2012T, xAa='lzoi2T, 

x B S - 0 , 1 6  (QB/os) 'O~'T, 

Notice that in (22) the time is measured from the moment 
when the steady state distribution is established in (5). It 
follows from (22) that, when we use a periodic series of RF 
pulses with T- lop3 sec, 7, - sec and Iw, 1 T g  1, since 
we are using the adiabatic approximation, i.e., since 
a,, a, gw,, and since the duration of the steady state re- 
gime is of the order of the duration of two or three score 
pulses, the S , ,  - 1 oscillations remain small even in the 
presence of the resonance terms in (20)-(21). In this case the 
@ oscillations are, generally speaking, no longer small. For 
example, in the A phase we find that, for the characteristic 
parameter values T-2 X sec, 0, - 2 x lo5 sec- ', w, 
- 8 x  10' sec-', and loll - 2 x  10' sec-', the quantity 
(((A @)2))1'2 is of the order of unity. But if we detune the 
resonance A,,, = w, and choose a periodic series of RF 
pulses with such a pulse duration that resonance denomina- 
tors do not arise in the coefficients (21) of the double series 
(20) (this requires that we choose 1 / ~ ,  < w), then the coeffi- 
cients in the relation (22) for @ will be much smaller: 

and, consequently, the @ oscillations will be small oscilla- 
tions. For example, for the A phase, using the parameter 
values given above, we obtain (((A @)2))1'2-0.03. Thus, the 
stationary stochastic spin state described by the distribution 
functionp0( 0 ) can be realized when the periodic series of RF  
pulses is appropriately chosen. 

In conclusion, the authors express their gratitude t a  I. 
A. Fomin for a discussion of the results. 
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