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A study is made of the spectrum of normal modes of nematic liquid crystals allowing for the 
inertia of the motion of the director. A state of a liquid crystal with a rotating director is consid- 
ered and the equations of motion are averaged for such rotation. This gives a closed system of 
equations which contains only slow variables. The mode spectrum of this average system is 
investigated. In particular, an orbital wave with a dispersion law w cc qZ is found; it is analogous 
to magnon modes in a ferromagnet with the easy-axis anisotropy. The feasibility of experimental 
observation of these waves in experiments on inelastic scattering of light is discussed. 

I. INTRODUCTION 

Lyotropic liquid crystals (particularly those of biologi- 
cal origin) are attracting increasing attention (see, for exam- 
ple, the review by Vedenov and Levchenkol). A characteris- 
tic feature of such systems is that fairly large molecular 
complexes of different shapes play the role of individual mol- 
ecules. In the case of such large complexes (containing up to 
lo4 separate molecules) it may be wrong to ignore the inertia 
or delay in reorientation (in contrast to ordinary thermotro- 
pic liquid crystals, for which the instant-response approxi- 
mation may be justified). The dynamics of such liquid crys- 
tals with an inertia of the director has never been 
investigated (to the best of our knowledge), although some 
special cases have been tackled.' As a rule, in problems of 
this kind the motion of the director has been restricted to 
some special geometry and no allowance has been made for 
the interaction with other hydrodynamic degrees of free- 
dom. For example, Ericksen3 considered twist waves in a 
nematic liquid crystal. The dynamics of nematic liquid crys- 
tals with an inertia is not a trivial problem and the additional 
normal modes which appear because of an allowance for the 
inertia do not simply reduce to twist waves. The attention to 
this point was first drawn by the present authors and Le- 
man.4 We considered only the spatially homogeneous case 
and we demonstrated that two types of dynamic behavior- 
either unstable and random or quasistationary in a specific 
long-lived mode-are possible, depending on the external 
conditions and initial data. 

An allowance for the inhomogeneities, i.e., for the gra- 
dients of hydrodynamic variables, complicates greatly the 
problem. A full analysis of nonlinear equations of hydrodyn- 
amics of liquid crystals with an inertia is difficult even on a 
computer. On the other hand, nonlinearities are usually im- 
portant in the dynamics in those cases when strongly fluctu- 
ating modes are encountered in the linear problem [this is 
true, for example, of smectic liquid crystals discussed by one 
of us (EIK) and Lebedev5]. The presence of strongly fluctuat- 
ing modes means that the problem includes "dangerous" 
nonlinear interactions, which are not in the hydrodynamic 

limit of wavelengths and frequencies. Such interactions do 
not occur in nematic liqud crystals and, therefore, a weak 
inhomogeneity can be allowed for by considering only the 
linearized equations of motion. Even in such a linear rise the 
system of equations for the hydrodynamics of liquid crystals 
with an inertia of the director rotation is still too complex 
and cumbersome to be tackled analytically. 

We shall now obtain some estimates before going over 
to further simplifications. We are interested mainly in new 
effects associated with the existence of a moment of inertia I 
(per unit volume) of a liquid crystal. The quantity I is gov- 
erned by the dimensions of the complexes forming a liquid 
crystal and their density. The inertial effects in the equations 
of motion (IwZ) should be at least comparable with the dissi- 
pation proportional to 770 (w is the frequency and 17 is a 
certain characteristic viscosity). Liquid crystals are unlikely 
to have very low values of the viscosity 7. Usually these val- 
ues are ~ ~ 9 . 1  P (and sometimes even larger). In special 
cases (solutions etc.) we can expect smaller values in the 
range r] - 10-2-10-3 P. Therefore, even when the moment 
of inertia amounting to I- 10-7-10-8 g/cm is of giant mag- 
nitude from the molecular point of view, the inertial effects 
should at best begin from frequencies a-v/I- 10'-lo7 
sec- '. These restrictions are of very general validity. This is 
due to the fact that any hydrodynamic equations are expand- 
ed in terms of small freuqencies and wave vectors. Therefore, 
an allowance for higher derivatives in the equations (in our 
case, Iw2) is permissible only in the case of particularly small 
coefficients of the lower powers of the frequency or wave 
vector (in our case, this applied to vw). There may be several 
such specially small parameters in the problem of a liquid 
crystal: they may be the anisotropy of the molecular shape, 
low concentration of anisotropic particles, or proximity to a 
transition to the isotropic phase (I is independent of such 
proximity and the rotational viscosity tends to zero at the 
transition point). 

We can therefore observe inertial effects (for example, 
on the basis of the inelastic scattering of light) by investigat- 
ing a liquid crystal in a state with a sufficiently fast rotation 
of the director. The inertia of the director should appear 
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against the background of this state. If we are interested in 
the effects which are slow compared with the director rota- 
tion frequency, then the equations of dynamics can be aver- 
aged over this rotation. The resultant average system of 
equations is used below to study the normal modes, fluctu- 
ations, etc. against the background of a rotating director of a 
liquid crystal. Such a state of a liquid crystal described by 
averages is in fact a new object which differs from the initial 
uniaxial liquid crystal. 

We shall assume that in this state a liquid crystal is 
nevertheless close to thermodynamic equilibrium in the 
sense that all the suprathermal noise induced by the director 
rotation is less than the thermal effects associated with aver- 
aging of the thermodynamic characteristics over rotation. A 
rigorous investigation of the validity of this hypothesis will 
be provided in a separate communication. Clearly, this new 
object (or, more exactly, the new state of a liquid crystal) 
does exist as long as dissipation does not reduce the rotation 
velocity so much that the inertial effects become unimpor- 
tant and the averaging procedure becomes incorrect. For 
time intervals of this kind we can expect the usual viscous 
relaxation of the director motion. Therefore, the effects dis- 
cussed below occur during the lifetime of a rotating liquid 
crystal, which is - 10-4-10-3 sec (see also Ref. 4). 

11. DERIVATION OF AVERAGE EQUATIONS 

We shall be concerned solely with nematic liquid crys- 
tals, although (subject to some modifications) all the inertial 
effects considered below do occur also in cholesteric and 
smectic phases. The linearized equations of hydrodynamics 
for nematic liquid crystals are well known (see, for example, 
Ref. 6): 

Here, L is the angular momentum associated with the angu- 
lar rotational velocity of the director: 

an/at= [ Q x n ]  , L=IQ (2) 

(it is usual to ignore the moment of inertia I and we then have 
L = 0) and h represents an external field H as well as an 
internal field associated with intermolecular forces (Frank 
energy): 

[nXhl=xa(Hn) [ n X f l l +  ( 5  d ' r ~ .  I ) ,  (3) 

wherex, is the anisotropic part of the susceptibility; ( . . . ) 
is the Poisson bracket; E is the density of the Frank elastic 
energy. 

The dissipation R in the system (1) is defined as follows: 

Ri=yiNi+y,njAji, (4) 

where y,  and y, are the rotational viscosity coefficients, 

The following quantities occur also in the system (1): P 
is the pressure, Bg is the dissipative part of the stress tensor 
given by 

~~~=a,n~n~A~~n~)2m+a.?n,Nj+ a3n,Ni 

+alAij+asninkA,+ a,AifLn,nj, (6) 

and ai are the Leslie viscosity coefficients. They are not all 
independent, but are related by the Onsager relationships: 

az+a3=a6-as; yi=a3-a,; y Z = ~ + a s .  

The rest of the notation in Eq. (1) as follows: p is the 
density, T is the absolute temperature, s is the entropy den- 
sity, and xu is the thermal conductivity tensor described by 

xij=xo6ij+x,ninj. (7) 

As is usual, in the process of linearization it is necessary to 
introduce small deviations from equilibrium values: 

IGn=P-Po, tip=p-po, GOES-so. (8) 

We shall use the simplest form of the equation of state: 

6n=c26p+%a. (9) 

Here, c is the adiabatic velocity of sound; 6 =(aP/h), . We 
shall give also the Poisson brackets7 necessary for the calcu- 
lation of h in Eq. (3): 

{La (1) , LB ( 2 )  )=-eapTLd (1-2)  

{La ( I l1  n0(2))=-eae+rS(1-2), (10) 

{&(I> ,  ne(2))=O. 
As already pointed out in the Introduction, a direct so- 

lution of the system (1) in its general form is hardly possible. 
Therefore, we shall average these equations over a "base" 
solution representing homogeneous rotation of the director: 

n=u cos $4- v sin +. (11) 
In this solution the angle $ represents rotation of n from an 
arbitrary direction in a plane defined by the unit vectors u 
and v. We shall assume that $ is a fast variable (roughly 
speaking, we shall postulate that $ a at ) and we shall carry 
out averaging with respect to this variable. The orbital mo- 
mentum L is defined as follows: 

L=Lw, w= [uXv] . (12) 

The set of three vectors u, v, and w forms a base reference set. 
The base solution (11) corresponds to the conditions 
L = const and L . n = 0. In describing homogeneous solu- 
tions we must allow for the fact that the base reference set 
and the phase $ vary from point to point (see Ref. 8). The 
deviation of $ from a certain average value $o at a given 
moment (rl, = $o + S$) describes spatial dephasing of the di- 
rector rotation. It is convenient at this stage to adopt the 
following procedure from Ref. 8. Let us assume that X is 
some hydrodynamic variable of interest to us and Rg = Sg 
- a, ekg is the matrix of an infinitesimally small rotation by 

an angle ak , which is generally spatially inhomogeneous. 
Then, such rotation alters the variable X as follows: 

x+X+ [aXX]  . (13) 

The spatial derivative of X is obtained from Eq. (1 3): 

V <X= [AiXX]  , ( 14) 

and 6 is the velocity. 
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Similarly, we find from Eqs. (14) and (15) that 

v,VjX= [ VjxAiX] +Aj(AiX) -X(AAj). 

Hence, in the linear approximation we obtain 

ViVjX= [ VjxAiX]. ( 16) 

We can easily demonstrate also that 
[X X viX] =AiX"X (AiX) . 

There is some degree of arbitrariness in the choice of the 
values of Ai . In particular, it is convenient to introduce the 
gauge 

AiX=O. 

In this gauge, we have 

[XX ViX] =Ai. (17) 

In particular, in the gauge Ai w = 0 it follows from Eqs. 
(16) and (17) that 
Viw= [Axw], Aw= [ V j  xAjw], [w,~Viw]  =Ai. (18) 

In the same way we obtain 
Au=-w (uAw) , Av=-w (vAw) . (19) 

In principle, Eqs. ( 16)-(19) solve the problem of averag- 
ing of the system (I). The details of this procedure are de- 
scribed in the Appendix. Here we shall give the final results. 
The average equations of motion of the director describing 
the dynamics of the orbital momentum are as follows: 

dw, K ( 
'Ya 

L-+-Awe=-yi urott-2- -- 
at 2 4 

a W v  ) wpApruk, 
dt 

d d 'ri 
Z -ti$-KA6g+yt -(6g) = -(w rot 9 ) .  

at2 d t 2 

The notation here is the same as in the initial system (1) and 
we have introduced moreover the following quantities: K is 
the Frank constant (for simplicity, we shall use the one-con- 
stant approximation); dw, /dt =u &/at; Aw, =u. Aw 
and similar definitions of dw, /dt and A w, ; S$ describes the 
dephasing: 

L-Lo~6L=Z6S2=Zd6$/dt, 

and Lo is the precessing moment1' 

a~ , la t= -y ,~ , / z .  

The average Navier-Stokes equations are 

aa as d 
- -(6im-wiwm) (rot rot t )  ,,,- - eipg (64 -~ j~g) - ( ro t  g) 
4 4 axj 

We have introduced here (ijkm) for the average (ni nj n, n, ) . 

This average obeys an analog of the Wick theorem: 

(ijkm) ='I, [ (Sij-wiwj) (6km-wkwm) + (6ik-wi~k) (6jm-wjwrn) 
+ (6im-wiwm) ('6jk-wj~h)]. (22) 

Finally, we shall give the average equation for the heat 
flux: 

We have used above the thermodynamic relationship 

The system of equations (20)-(23) gives complete informa- 
tion on the dynamics of the average system and in particular 
it gives all its normal modes. In the next section we shall 
consider these problems in greater detail. Here, we shall 
stress that the system of the average equations (20)-(23) is 
linearized in respect of the usual hydrodynamic variables ( p, 
s, f )  and in respect of the orbital momentum L, but all the 
nonlinear powers of the director components are included. 

Ill. NORMAL MODES OF THE AVERAGE SYSTEM 

Although the equations of motion for the hydrodynam- 
ic variables of the average system (L, f ,  a , p )  are still very 
complex (for example, determination of the spectrum re- 
quires a calculation of a 8 X 8 determinant of fairly general 
form), we can nevertheless draw conclusions of qualitative 
nature on some slowly varying (compared with the director 
rotation period) characteristics of the dynamics of nematic 
liquid crystals. 

First of all, we must point out that it is incorrect to 
assume simply that f = 0 in these equations. The point is 
this: iff = 0, then the Navier-Stokes equations yield the re- 
lationship 

which imposes important restrictions on the motion of the 
momentum in this case. Therefore, in considering the direc- 
tor it is not quite correct to ignore the flow of the 
liquid. The physical meaning of this conclusion is quite 
clear. The rotation of the director gives rise to a flow of the 
liquid and, therefore, the absence of such flow imposes ser- 
ious restrictions on the motion of the director described by 
Eq. (24). 

Similarly, if in the heat conduction equation we assume 
that Sp = 6a = 0 (isentropic motion of an incompressible 
liquid crystal), it then follows from Eq. (23) that S$ = const. 
In its turn, the dephasing equation then limits the possible 
liquid flows: 

w rot b=O. 
Once again the meaning of this restriction is that entropy is 
generated because of dephasing of the director rotation. 

We shall investigate in greater detail the dispersion law 
of new orbital waves in the average system by introducing 
some additional simplifications. We shall consider the limit 
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of low viscosities. Specifically, we shall ignore all the dissipa- 
tive terms in the equations for the momentum and in the 
Navier-Stokes equations that do not contain a large (in our 
approximation) coefficient -L /I. In fact, this condition is 
satisfied since is corresponds to the inequality 

UiK (LoK) "- 1 P 

(for characteristic frequencies of the orbital waves). In this 
approximation the system (20)-(23) becomes very simple and 
it shows that, in addition to the usual hydrodynamic modes 
of an isotropic liquid (with slightly renormalized param- 
eters), the new orbital waves are of the acoustic and magnon 
types. 

In fact, in this limit it follows from Eqs. (20)-(23) that 

In this system the heat conduction equation is coupled to the 
equation for the dephasing S$. It follows from these two 
equations that the spectrum of the normal modes of the sys- 
tem includes two S$ oscillation modes. If we include the 
corrections associated with the viscosity coefficient y,, the 
spectrum becomes 

If q < (d /IK)'/~ - lo3-104 cm-', then for the selected pa- 
rameters Eq. (26) yields pure diffusion modes, whereas for 
the opposite inequality we have two weakly damped modes 
of the acoustic type: 

oi, 2=* ( K l I )  '"q+iy,/21. (27) 

Writing down the dispersion equation for the system (25), we 
find that a 4x4 block for the conventional hydrodynamic 
variables of an isotropic liquid (sound plus two modes de- 
scribing transverse shear) is separated from the relevant de- 
terminant and the rest of the determinant gives rise to the 
two phase orbital modes mentioned above, a mode associat- 
ed mainly with heat conduction and also two orbital modes 
associated with transverse deviations of the orbital momen- 
tum w, and w, . They obey a magnon-type dispersion equa- 
tion: 

These waves are weakly damped in the approximation used 
by us to derive the system (25). 

We shall now assume that the geometry of the system is 
such that the dependence on just one coordinate z is signifi- 
cant and the flow of the liquid is possible only along this 
coordinate: f ,  = f 2  = 0. 

The system of average equations (20)-(23) together with 
the equation of continuity then becomes ($"=A 2$/dz2, etc.): 

However, as pointed out above, it is not possible simply to 
assume that f ,  = f 2  = 0 in the average equations for a nema- 
tic liquid crystal with a rotating director. There is a restric- 
tion which follows from the Navier-Stokes equations and 
applies to the f ,  and f 2  velocity components that are as- 
sumed to vanish in the case of one-dimensional flow. Natu- 
rally, this restriction occurs also in the case of a low but finite 
viscosity. A simple analysis shows that the magnon-type or- 
bital waves are in this case completely impossible. On the 
other hand, the mode (26) for dephasing does occur also in 
the one-dimensional case [as it follows directly from Eq. 
(2911. 

A similar situation occurs also in the two-dimensional 
case. We shall consider two-dimensional flow described by 
f 3  = 0 (f,, f 2  #O) in a plane perpendicular to the equilibrium 
direction of the orbital momentum. We shall introduce a 
coordinate system such that xllu, yllv, and zllw and assume 
that there is no dependence on z (two-dimensional case). 
Equations (20)-(23) then assume the following form (for a 
liquid crystal regarded as incompressible): 

where 

~a=1/sal+i/l~a2-i/4a3+i/2aI+i/~a5+i/4aB~0. 

Once again the usual hydrodynamic block (souncl and 
damped transverse shear) can be separated in the dispersion 
equation. The equation for the dephasing is related only to 
the component (curl f),. The Navier-Stokes equations are 
easily obtained for this component: 
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Therefore, the third equation of the system (30)-(3 1) gives 
again two orbital phase waves of Eq. (26) with the acoustic- 
type dispersion. The magnon orbital modes are forbidden by 
the condition (24), which in this case has the form 

(rot w) ,=O . 

IV. CONCLUSIONS 

We shall now consider the possibility of observing the 
new orbital waves predicted in the preceding section. Ways 
of creating, in principle, states with a rotating director neces- 
sary for the application of our procedure (by applying a ro- 
tating magnetic field, investigating transient regimes of a 
high-frequency electrohydrodynamic instability, or using 
pulsed fields), were considered by us in Ref. 4 and we shall 
not repeat the arguments given there. We shall also mention 
that all conclusions of our investigation are valid for time 
intervals 10-3-10-4 sec representing the "lifetime" of such 
rotational states (see Ref. 4). 

Inelastic scattering of light provides a direct method for 
observing these orbital waves. In principle, the positions, 
profiles, and intensities of lines in the spectrum can be used 
to determine all the parameters of the orbital waves and to 
compare the results found in this way with our theoretical 
predictions. 

It should be pointed out that the properties of nonequi- 
librium quasiequilibrium systems, particularly fluctuations 
of the various parameters of such systems, are currently at- 
tracting considerable interest (see, for example, Refs. 9-12). 
However, a calculation of the spectrum of light scattered 
inelastically by our nonequilibrium system meets with diffi- 
culties, which may be even of fundamental nature. 

The point is that the scattering of light involves fluctu- 
ations of the permittivity tensor and these in turn are gov- 
erned by fluctuations of the hydrodynamic variablesp, <, a ,  
$, w, , and w,. Since we are interested only in new orbital 
waves, we shall consider only the variables $, w, , and w, . 
An allowance for p, 6, and a in such situations when the 
orbital waves appear at all (see above) does not alter the situ- 
ation in the qualitative sense. We shall therefore consider 
fluctuations of the variables $, w, , and w, . Fluctuations of 
conventional equilibrium systems are governed by thermo- 
dynamic relationships, particularly by the nature of the free 
energy, and the correlation functions occurring in the scat- 
tered-light intensity satisfy the fluctuation-dissipation 
t h e ~ r e m . ~  However, we are dealing with the average system 
and with fluctuations against the background obtained by 
dynamic averaging. If we are interested only in the positions 
of lines in the spectrum, i.e., in the pole denominators of the 
corresponding correlation functions, then this aspect is quite 
unimportant because one-time correlation functions gov- 
erned by fluctuations of dynamically averaged quantities $, 
w, , and w, occur only in the numerators of the correspond- 
ing expressions for the scattering intensity. 

If we nevertheless wish to write down some closed ex- 
pressions for the correlation functions occurring in the scat- 
tering cross section, we can make a natural (in our opinion) 

assumption that fluctuations in the average system are aver- 
aged on the same scale of frequencies by thermodynamic 
relationships. In fact, this assumption simply means the 
transfer of the frequency scale which is used in hydrodynam- 
ic averaging, from the atomic level (as in the equilibrium 
case) to characteristic frequencies of the director rotation in 
our case. 

We have in fact made this assumption in going to the 
limit of low viscosities in Eqs. (20)-(23). We have then ig- 
nored the unrenormalized dissipative coefficients originat- 
ing from the averaging over the atomic frequencies and re- 
tained only the renormalized viscosity associated with the 
frequency scale -0. When this assumption is made, the 
subsequent procedure in the calculation of the correlation 
functions becomes standard.13.14 We have to calculate the 
simultaneous correlation functions of hydrodynamic quan- 
tities so that pre need to write down the energy of an inhomo- 
geneous state in terms of the variables wand $. Subject to the 
assumptions made above, we can find this energy by averag- 
ing the Frank energy: 

Proceeding in the same way as in the derivation of the system 
of equations (20)-(23), we find that such dynamic averaging 
gives 

We can describe simultaneous correlation functions by cal- 
culating the relevant functional integral with the Gibbs dis- 
tribution function exp( - E / T ) .  However, the Gibbs distri- 
bution can be obtained if the energy is expressed in 
canonically conjugate variables. In the present case repre- 
senting the linear approximation (w, z 1, w,, w, 4 l), which 
is the only one necessary for our purposes, the variables w, 
and w, are conjugate to one another, whereas $ is conjugate 
to L, for which the energy E of Eq. (32) is completely inde- 
pendent. We can demonstrate this by calculating the Poisson 
brackets of these quantities in the linear approximation. We 
can easily see that 

{w,, w2)=const, {w,, $)={w2, g) =O. 

Therefore, the variables w,, w,, and $ in Eq. (32) are separa- 
ble, and L is generally a cyclic variable. Consequently, the 
simultaneous correlation function (wi wj ) and (S$S$) can 
be found directly from Eq. (32). 

We shall now consider time-dependent correlation 
functions, which indeed govern the light scattering cross sec- 
tion: 

C,p(r, t) =<w, (r, t )  ~ ~ ( 0 ,  0) > (33) 

[a similar expression applies also in the case when 
(S$(r,t )S$(0,0))]. The equation for the correlation function 
Cd can be obtained directly from Eq. (20) (for simplicity, we 
shall ignore a low viscosity - y, /L ): 

where 
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We shall now apply the time Laplace tranformation and 
the coordinate Fourier tranformation: .. 

(q,  p) = j atc, (q ,  t )  eipt, ~m P>O. 
0 

It then follows from Eq. (34) that 
K 

LCap (q,  t=O) -ipLCa, (q ,  p) - e a ~  5 q2C78 (q ,  P) =07 (35) 

so that 

CB (q, P )  

The initial condition for the correlation function Cap should 
be selected in accordance with the fluctuation-dissipation 
theorem in such a way that in the static limit we obtain the 
correlation functions (wi  wj ) and (S$S$) that follow from 
Eq. (32). Then, Eq. (36) is the solution of the problem of the 
inelastic scattering of light. The scattering cross section is 
governed, as is well known, by fluctuations of the permittivi- 
ty tensor: 

d c / d 0 - < 6 ~ ~ ~ 6 ~ ~ ~ * ) e ~ e ~ e g ~ e ~ a ,  (37) 

where is a fluctuation of the permittivity tensor asso- 
ciated with fluctuations of the hydrodynamic variables of 
our problem; e and el are the polarization vectors of the 
incident and scattered light. The relationship between S E , ~  
and the fluctuations of w can be obtained directly by the 
above-described method of dynamic averaging of the famil- 
iar relationship E~ = E$# + E, ni nj , where E ,  is the isotrop- 
ic part and E, is the permittivity anisotropy. 

We can easily see that 

( ~ ~ j ) =  ( E ~ + ' / Z E ~ )  6 i j - ' I ~ c a ~ i ~ j .  (38) 

Hence and from Eq. (37) it follows that 

where 
K 

C M V ~ = W P W O  ( i L o 6 , -  - 2 q 2 e , )  c,.,, (q ,  t=O) , 

and the brackets in the indices indicate symmetrization. 
In principle, the contribution of the S$ mode can be 

allowed for in a similar manner. However, the relationship 
between E~ and S$ is indirect because of the coupling of the 
variables a$, a, and p. 

We shall now summarize our results. We considered the 
equations of dynamics of a nematic liquid crystal with an 
inertia of the director and we averaged them over the fast 
motion of the director. The averaging gave a new thermody- 
namic system and the orbital waves found by us are small 
deviations of this system from an equilibrium state. In aver- 
aging the director rotation of the phase we effectively ig- 
nored all fast (compared with the rotation period) fluctu- 
ations. This average system is characterized by its own 
entropy production law and the correlation functions of ran- 

dom functions should be obtained, following the general 
m e t h ~ d , ~  by employing the transport coefficients which oc- 
cur in this law. 

The principal physical conclusion of our investigation 
is that the spectrum of light scattered by a rotating nematic 
liquid crystal has new lines corresponding to the normal 
modes (26) and (28) of the average system. The positions of 
these lines depend on the actual values of the parameters and 
also on the wave vector transferred in the process of scatter- 
ing. For the average values of the quantities I, fl, K, y,, and 
q - lo4 cm-' used in the derivation of the average equations 
the line corresponding to the phase model lies in the frequen- 
cy range - lo5 sec-' and the magnon mode of the orbital 
momentum oscillations lies at frequencies - lo4 sec-'. Un- 
fortunately, we do not know the true parameters of our mod- 
el. Therefore, our estimates should be treated as tentative. In 
any case, suitable experiments would provide a method for 
the determination of the moment of inertia per unit volume 
of a nematic single crystal, which is the main parameter that 
governs the feasibility of propagation of new orbital waves. 
We should also point out that there are grounds for assuming 
that waves of this type are responsible for the propagation of 
pulses in biological systems.15 

The authors are grateful to G. E. Volovik for pointing 
out an error in the initial version of this paper, and to I. E. 
Dzyaloshinskii, B. Ya. Zel'dovich, and V. V. Lebedev for 
their interest and valuable comments. 

APPENDIX 

We shall begin from averaging the equation for the mo- 
mentum: 

8 La - = ~ e ~ ~ ~ n ~ ~ n , - y ~ [ n ~ N ] , - - ~ ~ [ n , ~  nA],. 
d t 

(A. 1 

Here, the first term on the right-hand side is obtained by 
calculation of the Poisson brackets occurring in Eq. (3): 

[nXN] ,=ai-'/, (&,-ninj) (rot %) j, 

[n x&] ,=eijknjnpApk. 
(A.2) 

Averaging with the aid of the base solution (1 1) gives 

Moreover, 
<ea6,nBAn7) [U (uAw) -V (vAw) - g / 2 ~ A $ ]  a.  (A.5) 

In this way we obtain the following average equation for the 
momentum: 

T i  12 + -(6ij+wiwj) (rot g) - -ei jhApk(djp-wjwp).  (A.6) 
4 2 

Direct calculations indicate that 
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(the dot denotes differentiation with respect to time). In the 
last expression we omitted the second derivatives of the slow 
variables u and v. 

We can thus see that the system (20) follows from Eq. 
(A.6). 

The Navier-Stokes equations can be obtained by aver- 
aging the following terms: 

Retaining in Eq. (A.7) only the terms linear in respect of the 
gradients, we find from Eq. ( 1  1)  that 

A direct calculation gives 

d 
AF -(niejpq(Qp-ap) nu) ( axj 

a 
) 

= - - ejpu(ninq)+ 
dxj 
1 

) 
= - -(&,-wiwrn) (rot rot E ) ,  

4 

8QP a +e,, - <nfiq)+ejpqQp(-(ninq) ) 
8 xi axj 

1 L 
= - - (sf,- wiwrn) (rot rot E )  ,,, + -(rot W) r 

4 21 

(A.9) 

The last two terms in Eq. (A.9) cancel out and we obtain 
L 1 

Az = -(rot w) - -(6irn-wiwrn) (rot rot g), .  (A. 10) 
21 4 

We similarly find that 

L 1 d 
As = - - ( ro tw) i  - - e<p , (6 jq -~ j~q ) - ( ro t  E ) P ,  

21 4 dxj (A. 11) 
1 1 d A - - (gU- wkwj)  - Aik. A& = - ( 6 i k - ~ i ~ k ) - ,  
2 dx j  5 - 2  ax,  

It should be pointed out that A ,  obeys the Wick theorem, i.e., 
the average (n,njn, n, ) is assumed to be a sum of all possi- 
ble pair combinations of this set of four quantities. 

We can therefore see that Eqs. (A.8)-(A.11) yield the 
Navier-Stokes equations quoted in the main text. 

Finally, averaging of the heat conduction equation re- 
quires calculation of the following nontrivial averages: 

Bi=(a2niNj+a,njNi), 

(A. 12) 

Following the preceding procedure, we find that 

Bi=az(ni[ejpq(SEp-~p) nu] )'+~s<nj[eipq(Qp-mp) n u ] )  

B.=(efPq (61.-up) nqeijk61flk) = 1 1  [A - 2 a rot 11 - 
(A. 13) 

Next, in the same approximation, we find that 
B3=0. (A. 14) 

The cross terms in the heat conduction equation (29) vanish 
because of the Onsager relationship a, - a, + y, = 0. 

In this way Eqs. (A. 13) and (A. 14) yield the heat con- 
duction equation quoted in the main text. 

''It should be pointed out that at such high rotation velocities ( -  lo7 
sec-') the terms nonlinear in respect of the orbital momentum may be 
important in the dissipative function and this may change the momen- 
tum relaxation law and, consequently, the lifetime of a state of a liquid 
crystal with a rotating director. 
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