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We consider the scattering of a photon by an electron moving in the field of a plane periodic 
linearly polarized electromagnetic wave. We study the case when the four-momentum k, of the 
photon satisfies the condition klk = 0, where k is the four-momentum of the quanta of the plane 
wave. We obtain formulae for the angular and spectral distributions of the photon in the frame in 
which the electron is at rest on average in the form of an expansion in the parameter 
x2 = e2JE/m2 (A, is the potential of the plane periodic wave and rn the electron mass). We obtain 
also the total cross-section and the average radiation energy taking terms of order x2 into account. 
We study the limit W / W  1. 

1. A large number of papers1-lo have been devoted to 
the study of the effect of the field of a strong electromagnetic 
wave on various processes. These processes can convention- 
ally be divided into two groups. To the first group belong 
those which can not proceed without the action of a wave 
field due to energy-momentum conservation laws. They in- 
clude the emission of one or several photons by an electron, 
e+-e- pair production by a photon, e+-e-  pair annihilation 
into a single photon, the absorption of a photon by an elec- 
tron and a number of other processes. To the other group 
belong those which can proceed even without a field. Among 
such processes which have been considered before are 
Compton scattering in a constant electromagnetic field, the 
decay of muons and pions, and the P-decay of nuclei. For 
instance, it was shown recently1' that probability for the P- 
decay of various nuclei in the field of a periodic plane wave, 
when the energy release is small, is sensitive to the neutrino 
mass as the electron in the field of such a wave becomes 
massive. 

The study of the structure of quantum electrodynamics 
in external fields is also of great interest. One can relate to 
this the study of the electron propagation function,12-l4 of 
the polarization and mass operators, 15-" of radiative correc- 
tions and the anomalous magnetic moment of the elec- 
t r ~ n , ' ~ - ~ ~  and a number of other problems. 

In the present paper we consider Compton scattering by 
an electron which moves in the field of a plane periodic lin- 
early polarized wave (in a laser field) with a potential A, (x )  
= a cos p (here p = kx, where k is the four-momentum of a 

laser quantum): 

we have evaluated not only the total cross-sections but also 
different differential distributions in the case of low laser 
intensities taking into account contributions from the har- 
monics with s = 1, 0, - 1 (s is the number of laser quanta 
which are absorbed). 

Compton scattering is a process which proceeds also 
when there is no laser field present. It was shown on p. 89 of 
Ref. 2 that the total contribution from all harmonics for such 
processes gives a cross-section which is determined by the 
usual Born approximation if the presence of the wave does 
not effectively change the kinematics of the process. Our 
calculations for the case when the photon frequency is much 
larger than the frequency of the laser quanta confirm this 
result. The average energy of the radiation differs from the 
Born energy even in that limit. Moreover we would like to 
draw attention to the fact that Compton scattering with ab- 
sorption (s > 0) or emission (s < 0) of a well-defined number of 
laser quanta is a physical process which may, in principle, be 
realized under laboratory conditions. Both a theoretical and 
an experimental study of such a process would be useful for 
an understanding and as a check of our ideas about the struc- 
ture of quantum electrodynamical phenomena in external 
fields. 

2. The exact solution of the Dirac equation for an elec- 
tron moving in the field of a strong plane electromagnetic 
wave was obtained by V~ lkov :~ '  

A A 

where E - is the electron in the laser field. Compton scatter- 
ing in constant fields has been studied previously.9*'0 Our 
method of calculation is closer to the method used in Ref. 10, 
where the total cross-section for the scattering of a photon by 
a spinless particle in a magnetic field was expressed in terms 
of the imaginary part of the vacuum amplitude. 

Starting directly from the amplitude of the Compton 
scattering (see figure) and using kinematics when the photon 
momentum is parallel to the momentum of the laser photon, FIG. 1.  Feynman diagrams describing the amplitude of process ( 1 . 1 ) .  
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wherep is the electron momentum in the absence of a field, 
p2 = - m2, and U(p)  is a bispinor satisfying the equation 
(@ + m)U(p) = 0. (We use the Pauli metric: ab 
= ab - aobo.) 

We show in the figure the Feynman diagams describing 
the amplitude of the process (1.1). We write the matrix ele- 
ment of the process determined by these diagrams in the 
standard form 

electron) we use a Fourier series expansion 
Ca 

cosn kx e x p [ i ( a  sin kx-fi sin 2kx)  ] = = l l  A.(s ,  a, P )  eiskx.(2.7) 

One can then integrate over x,  and x, in (2.4) using elemen- 
tary techniques, which leads to two 6-functions, and the ma- 
trix element reduces to a double series: 

,. 

[ 
m-iq 

+qp, ( ~ 2 )  i t  (xz)  S (x2 ,x i )  ;2* ( x i )  *?I, ( x i )  1, (2.2) 7'1 ( ~ 2 ' ~  P Z .  4 ,  ~ 2 )  y,+_r T I  ( & I ,  qr pir S I )  

where the propagation function of the Volkov electron S (x,, 
x,) is given by the formula2v14 X F  (s2k+q1+k1-p2')S ( s ,k+k l+p l ' -q ' )  ,. 

i  m-iq  
S G 2 .  x i )  = - -j d4qEr(x2) qz+m2-iE 

(2x1 
E , ( x 1 ) ,  m-iq 

+ T , ( E , ,  ~ 2 3  q, ~ 2 ) ~  q2+m2 TI ( ~ 2 . ~  Y? Pi, ~ 1 )  

E=y4E+y4.  (2.3) 
X S  (s,k+p,'--9'-k:) S ( ~ ~ k ' + k ~ + q ' - p ~ ' )  I, 

We choose the wavefunctions of the photons in the form of 
(2.8) 

plane waves: 

e i ( x i )  = c i ( k i )  exp( ik ,x , ) ,  i = l ,  2. 

Substituting into (2.2) the expressions for $pl,2(xl,2) and 
S (x,, x,) for the case when the laser field is linearly polarized 
to get 

M=-. J e2 dkx,  d4x2 d4q ( p 2 )  1 T (e2.,  ~ 2 ,  2 2 )  

( 2 n )  
.. 

m-iq 
T ( E , ,  q ,  pv, X ~ ) & + T ( E I ,  P2,4, X z )  

Xq2+m~-is  
.. 

m-iq 
T ( E ~ * ,  q ,  pi, x , ) E z ~  U ( P , )  (2-4) q2+m2-it: 

where T, is obtained from T by the substitution cosn kx- 
3 An (si, a i ,  pi) .  The integration over q in (2.8) is per- 

formed using the shift q = q' + (e2a2/4kq')k. The Jacobian 
of such a transformation is equal to unity and hence 

,. 
m-iq, 

+TI  (SI ,  pz. qi, ~ 2 ) -  

where the matrix T is given by the formula where 

2' ( E ,  pi, P Z ,  X )  
ql'=~,k+p~r-k~=-s2k-kl+p2', 

a k i  E^& e2a2(Ek)  k q,'=s,k+k,+p,f=-s2k+k2+pzf, qi=q[+ (eZa2/4kqi)  k .  
= i + e  cos kx( - 

2kp1 - Zkp, kp2 
cos2 kx,  (2.5) 

The first term in braces on the right-hand side of (2.9) 
depends on the quantitites ai , pi in which q = q,, and the 

while the exponential functions Ei have the form 
second one on a i ,  pi in which q = q, (we denote them by 

E,=exp[ i f  (x , ,  x , )  +ix ,  (p ir-qr+k,)  +ix, (-p,'+qr-k,) 1, a:, 0 i). As we have the relations 
(2.6a) a 1 + a 2 = a l f + a z f = a ,  ~,+P2=PIf+P2'=!3, 

E2=exp [ i f  (x , ,  x , )  +ix, (p ir-qr-k2)  +ix2 ( - p i +  q r + k , ) ]  , 
(2.6b) 

a = e  (ap l /kp i -apz lkpz ) ,  P=l18e2a2 ( I lkp i - -1 /kp2) ,  

f (x , ,  x i )  =at sin kx2-p2 sin 2kx2+al sin kx,-pi sin 2kx,,  we have in the general case three independent quantities ai 
(2 .6~)  and pi . 

We note that if in the matrix element (2.9) we make the 
substitution k, + - k,, E ,  + E:, it will describe the process 

(2.6d) of the emission of two photons by a Volkov electron. As it 
can proceed only with the absorption of laser quanta, we 
haves = s, + s,) 1. A study of this process is also of extreme 

The quasi-momenta occurring in ( 2.5 a,b) are determined interest. 
through the rule I t  follows from the form of the 6-function in (2.9) that 

pil=pi- (e2a2/4kpi)  k ,  qr=q- ( e2a2 /4kq)  k .  only the sums, + s2 = s has a physical meaning (in the sense 
that it can, in principle, be determined experimentally). It is 

In order to go over to the momentum representation (as thus necessary to sum in (2.9) only over s, (or over s,). For 
in the case of the emission of a single photon by the Volkov arbitrary kinematics such a summation gives rise to compli- 
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cated functions which need special study. ton scattering reduces to the emission of a single photon by a 
In what follows we shall consider only the case for Volkov electron. 

which the momentum k, is parallel to the laser quantum The square of the modulus of the matrix element 
momentum k, i.e., kk, = ak, = ~ , k  = 0. One sees easily that summed over the spins of all the particles taking part in the 
for such kinematics process is given by the formula 

- 
kq2=kp,, kql=kp2, aq2=apl, aq1=ap2, IM12=e4(2n)46[ (1+6s) k,+pir-k2-pz']G, 

so that u2 
G=2AO2[2 + -- + 4 5 (  1 + ~ + 6 s ) ]  

I-!-u X X al=a2'=p1=Pz1=O, a2=alr=a, P2=Pir=P. 

As 
% 

1 u2 
A. ( s ,  a ,  P )  = - J cosn rp  exp[i ( a  sin rp-f i  sin 28-srp) ] drp, -x2( 2 + - ) (~!(A,~-A.A,) -B.'+B~B~)] 

I + u 
2n-4_, 

only terms with s, = 1,0, - 1 contribute in the first term on $4 ~ ( A ~ B ~ - A ~ B ~ )  
X 

the right-hand side of (2.9), and only terms with s, = 1, 0, u3 
- 1 in the second term. (Terms with s,,, = 2, - 2 are pro- + -(MOBi-Bo2+6BoD) } 

portional to ~ , k  = 0.) Changing in (2.9) to summation overs x ( l+u )  

and s,(s,) we get +6a[ - 4 ~ A , B O +  - u2 A. ( 2 ~ , + 6 ~ - B . )  
X l+u 

M=-ie2(2n)' 6 (sk+k,+pil-k2-p2')U(p2) (2.11) 
U u2 

s +r2- ( 2  + -) ( ~ A , B ~ - A ~ B ~ - B ~ A ~ ) ]  , 
CI X 1+u 

m-iq, 
X{ Ti  (c2', p2, pi,  s-si)- K(ci ,  P I ,  s t)  Ai(s-1) + A.(s+l) , o(s)= A,(s+l) Ao(s-1) 

6 ,  qz2 fm2  &(s)  = l+6 1-6 1-6 1+fi 
- 

m-iq, +x K ( E , ,  p,,  s2)- 
82  

qi2+m" 

xr, (&I.. p2. Pi,, s-sz) ) W P l )  7 

where 

In the kinematics considered 

qz=ki (1+6~1)  +pi ,  qi=-k, (1+6sz) +PZ, 

u=k2kl/k,p2, x2=e2a2/m2, x=2klp,/m2. 

In writing down (2.1 1) we used the relation 

(s-2P) A,-aAi+4PA2=0, 
(2.10) 

which guarantees conservation of electromagnetic current, 
and we also used the fact that 480 = - x2u/x. 

The differential cross-section for the process (1.1) has 
the form 

so that where J = 1/2m21x I. After using the 6-function to carry out 
qt+m2=2k,p, (1+6s1), q12+m2=2k,p2 (I+6s2), the integration we have2 

d3p2'd3k2 du drp 
where S = w / w ,  is the ratio of the frequency of the laser 6 [ (I+&) k,+plr-k,-p,'] -+ ---- (2.13) 
wave quantum to that of the photon with momentum k,. E2'02 (I+u)' ' 

We note that when s,(s2) = - 1 and S = 1 the matrix where p is the angle between the (k,, k,) and (k,, a) planes in 
element of the process (1.1) has a pole if the polarization E, the frame in which k, and p; are directed in opposite direc- 
has a component along the polarization of the laser wave. In tions and k2 + p; = 0. The invariant variable u ranges from 
that case perturbation theory is inapplicable and the Comp- 0 to us = - ~ ( 1  + Ss)(l + x2/2). 

TABLE I. 
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We restrict ourselves in what follows to the case when 
the function A,  (s, a, f l  ) can be decomposed in a and fl. One 
shows easily that for the process considered 

For arbitrary x and S if a and f l  are small this means that 
x2(1. 

We give in Table I the values of the bilinear combina- 
tions of the coefficients A , ,  B, , and D which occur in (2.11) 
which are necessary for the evaluation of the differential 
cross-section of the process (1.1) up to terms of order x2. 

When one takes terms of order x2 into account it is nec- 
essary to include in our considerations harmonics with 
s = 2, - 2. The number of harmonics with negatives which 
contribute to the differential cross-section is determined by 
the inequality 1 + Ss > 0. 

3. Restricting ourselves to terms of order x2 we have for 
the harmonic s = 0 after integration over q, 

tn 

is the contribution which gives the Klein-Nishina formula2' 
for the Compton scattering cross-section while 

For the harmonic with s = 1 we have 

(3.1) 

where 

is the contribution which is determined by the Compton 
scattering by a free electron. The upper limit of the variation 
in u is u, = - ~ ( 1  + x2/2). 

The contribution of the harmonic with s = 1 is given by 
the formula 

xZ 
G,( s= l )=  --- 

x2 ( I + + ) B ( U , X ) - - B ( ~ , X )  
26' x 26 

u  

X 
u2 u2 

+ ( l+6 ) - ' (24 -  l+u  -+4-) xZ 

+ 2 ( l + b ) - 2 ~ + 6 ( 2  X +-$-)I. (3.2) 

The limiting value of u is u ,  = - ~ ( 1  + 6). 
TO obtain the contribution from the harmonic with 

s = - 1 it suffices to make the substitution 6 -+ - Sin (3.2). 
Integrating Eq. (3.1) over u we get 

where 

wherex, = x (1 + S ) while F+Cy, S) is obtained from FCy) 
thorugh the substitution 1-x + 1 - x,. The expansion pa- 
rameters in (3.2), (3.4) arex2/S2 andx2/S. This is completely 
natural as the ratio x/S enters multiplicatively in the quanti- 
ty a [see (2.14)] and for the expansion of the right-hand side 
of (2.11) it must be small. 

We note that the contribution from the harmonic with 
s = - 1 which is obtained from (3.4) through the substitu- 
tion S + - S vanishes when S = 1 as the emission in that 
limit is forbidden by the energy-momentum conservation 
law. We note above that the presence of a pole on the right- 
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hand side of (3.3) for S = 1 means that perturbation theory is 
inapplicable for the harmonic with s = 0 when S is close to 
unity; since it is impossible to separate the photon and the 
laser beam unless it is polarized in the plane perpendicular to 
the polarization plane of the laser quanta. However, in the 
latter case there is no pole in (3.3) and no problems arise. 

In actual fact the frequency of the laser quanta is several 
eV so that one can assume (as long as no y-lasers are con- 
structed) that S g l .  In that limiting case 

so that for x Z 4  1 and 641  the total contribution from the 
three harmonics s = 1, 0, - 1 leads to the Klein-Nishina 
formula for the total cross-section: 

Such a reduction of the contributions of different harmonics 
for processes which can proceed also without the influence 
of the laser field, if the presence of the wave field does not 
significantly affect the kinematics of the process (which in 
our case corresponds to the limit Sgl ) ,  was indicated be- 
fore.2 

The harmonics with s = 1 and - 1 determine real 
physical processes and therefore their contributions to the 
cross-section are positive. When s = 0 the correction to the 
Born cross-section which is proportional to x2 is negative. It 
follows from (3.6) that for 641  this negative contribution 
exactly cancels the positive contributions from the real pro- 
cesses with the emission (s = 1) or absorption (s = - 1) of a 
single laser quantum although u(s  = 1)+u(s = - 1). 

Under laboratory conditions the quantity 
s = ( E  ; + w, - E ; - w,)/Sw , can in principle be deter- 
mined experimentally. For such an experiment when x2( 1 it 
is desirable to have S - 1 as the contribution from each of the 
harmonics decreases as xZIsI . 

4. It is well known that for Compton scattering there is a 
relation between the frequency of the scattered photon and 
the angle at which it scatters in the laboratory frame.23 In the 
process considered a similar relation exists for the contribu- 
tion of each of the harmonics. For instance, in the frame 
where pi = 0, E ;  = m* = m(l + x2/2) we have 

respectively, and using (2.12) and (2.13). 
We thus have in the cases = 0 for the spectral distribu- 

tion [noting that du/(l + u)' = - dwF)/w,+] 

1 6 24 16 + ----+--- ( x2 x3 x4 x5 

1 2  

xL x3 

1 4 4  +-+----- I . (4 .4~ )  x2 x3 x4 x2 
For s = 1 the spectral distribution of the photons is given by 
the formula 

do 
-= 

n r t  x2 
o i ( 1 + 6 ) ' { - $ @ l ( t h X ) - 6 @ 2 ( t i . X )  

where 

and the angle between k, and k2 is given by the formula 

cos O.=l+m*(l/oi+-l/oi"), (4.1 b) 

and hence 

u l +  (1i-2ui+/m.) -l<o:"<o,+. 
+------ 

Using the connnection between the invariant variable u and x3 x2 x3 1 
the quantities wg) and cose, in the form 

+ 2(t,-1)' 6 
- I  + -(t12-tl+l-t,-1). aim* ( l + S ) k 3  x2 (4.6) 

u=-I+ I+------ [ '";$) (I-... 0.1 ] , x=-2 - 
m , (4.2) 

We note that after the summation over all harmonics the 
we can obtain the angular and spectral distributions of the frequency of the scattered photon will not be related to the 
scattered photons in the frame p; = 0, E ; = m*, by substi- angle at which it is scattered in the laboratory frame. In 
tuting in (3.1) and (3.2) particular, the average energy of the radiation (o,) for the 
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contribution of the three harmonicss = 1,0, - 1 must differ 
from the average energy determined by the Born approxima- du da(1) 

tion. 
For the process considered 

6)  
@z ma2 - da (s) <m,) = -C a~po(~ ) -  

s 
d~cs)  

w f h i n  

In the cases = 0 we have 

(4.8) 
where the Born contribution for the Compton scattering by a 
free electron is 

while the functions Di (;y) have the following form: +'( 23 l +  
l + ~  6(l-x+j-6(1-x+)2 3 ( 1 - ~ + ) ~  

where Do+ (X, S ) is obtained from D,(X) through the substitu- 
24 12 2 

-- +-+-+A['-__ tion 1 - x + 1 - x+ .  In the limiting case S( 1 the right- 
x3 xZ x 6 I-x ( I 2  1 (4'8b) hand side of (4.9) takes the form 

.. .. . . 

7 + 1 so that in that limit we get for the average energy of the + ------ + 
6(1-x) ~ ( I - x ) '  3 ( 1 - ~ ) ~ '  (4.8c) radiation for the process (1.1) up to terms of order x2 

+ 1 - 1 The deviation from the Born approximation in (4.1 1) is given - (4.8d) 
2(1-d3  2(1-x) by the term proportional tox2. We have thus verified that the 

For the harmonic with s = 1 we have 

TABLE 11. 

average energy of the radiation does differ from the quantity 
obtained from the Born approximation. The numerical val- 
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ues of the functions determining the total cross-sections and 
the average energy of the radiation for s = 0, 1 are given in 
Table 11. 

If the plane electromagnetic wave in which the electron 
is situated is circularly polarized, 

A, (x) =a, cos kx+a2 s in  kx, 

for small values of a all differential distributions are the 
same as in the case of a linearly polarized plane wave, if we 
integrate over the azimuthal angle p. Indeed, for a circularly 
polarized wave we have du, = du- = do, and for linearly 
polarized waves the following expansion at x2 is valid: - 

do (q) = 1 [do+ on cos 2 9  , 
2n n= 1 

I 
so that the statment made above is obvious. 

We give the formula for the square of the matrix ele- 
ment [similar to (2.1 I)] for the case of a circularly polarized 
laser wave, having in mind a further study of the process (1.1) 
for arbitrary values of x: 

u2 u 
G= ( 2  +-)I I f u  2(1+6s)l.'-4x2-[ X I+S (s-zp) + - " I 

X 

where J, = J, (z) is a Bessel function and 

The agreement of the results for small x2 was verified by the 
authors without reference to the statement made above. 

The authors are grateful to M. P. Rekalo for his interest 
in this paper and for a discussion of the results. 

'0. Klein, Zs. Phys. 53, 157 (1929); F. Sauter, Zs. Phys. 69,742 (1931); 73, 
547 (1931); H. Euler, Ann. Phys. 26, 398 (1936); W. Heisenberg and H. 
Euler, Zs. Phys. 98, 714 (1936). 

2V. I. Ritus and A. I. Nishikov, Proc. Phys. Inst. Akad. Nauk SSSR, Vol. 
1 1  1 ,  Nauka, Moscow, 1979. 

'N. B. Narozhnyiand A. I. Nishikov, Zh. Eksp. Teor. Fiz. 63,1135 (1972) 
[Sov. Phys. JETP 36, 598 (1973)l. 

4M. S. Marinov and V. S. Popov, Fortschr. Phys. 25, 373 (1977). 
'J. K. Daugherty and I. Lerche, Phys. Rev. D14, 340 (1976). 
6V. A. Lyul'ka, Zh. Eksp. Teor. Fiz. 69,800 (1975) [Sov. Phys. JETP 42, 
408 (1975)l. 

'Ya. T. Grinchishin and M. P. Rekalo, Zh. Eksp. Teor. Fiz. 84, 1605 
(1983) [Sov. Phys. JETP 57, 935 (1983)l. 

"G. F. Zharkov, Yad. Fiz. 1, 173 (1965) [Sov. J. Nucl. Phys. 1, 120(1965)]. 
9V. Ch. Zhukovskiiand I. Khermann, Yad. Fiz. 14,150,1014 (1971) [Sov. 
J. Nucl. Phys. 14, 85, 569 (1971)l; Vestnik Moscow State Univ., Physics 
and Astronomy 6, 671 (1970). 

'OL. L. de Raad, Jr., N. D. Hari Dass, and K. A. Milton, Phys. Rev. D9, 
1041 (1974). 

"A. Kh. Akhmedov, Zh. Eksp. Teor. Fiz. 85, 1521 (1983) [Sov. Phys. 
JETP 58, 883 (1983)l. 

12J. Schwinger, Phys. Rev. 82, 664 (1951). 
13L. S. Brown and T. W. B. Kibble, Phys. Rev. A133, 705 (1964). 
I4V. I. Ritus, Doctoral Thesis, Fiz. Inst. Akad. Nauk SSSR, Moscow, 

1969. 
15V. 0, Papanyan and V. I. Ritus, Zh. Eksp. Teor. Fiz. 61, 2231 (1971) 

[Sov. Phys. JETP 34, 1195 (1972)l. 
16S. Adler, Ann. Phys. 67, 599 (1971). 
"V. N. Baier, V. M. Katkov, and V. M. Strakhovenko, Zh. Eksp. Teor. 

Fiz. 67,453 (1974); 68,405 (1975); 69, 783 (1975) [Sov. Phys. JETP 40, 
225 (1975); 41, 198 (1975); 42, 400 (1975)l. 

'%I. Jancovici, Phys. Rev. 187, 2275 (1969). 
I9Tsai Wu-yang, Phys. Rev. D8, 3460 (1973). 
'OV. I. Ritus, Zh. Eksp. Teor. Fiz. 57, 2176 (1969) [Sov. Phys. JETP 30, 

1181 (1970)l; V. N. Rodionov, I. M. Ternov, and V. P. Khalilov, Zh. 
Eksp. Teor. Fiz. 71, 871 (1976) [Sov. Phys. JETP 44,459 (1976)l. 

"D. M. Volkov, Zs. Phys. 94, 250 (1935). 
"0. Klein and Y. Nishina, Zs. Phys. 52, 853 (1929). 
23A. I. Akhiezer and V. B. Berestetskii, Kvantovaya elektrodinamika 

(Quantum electrodynamics) Nauka, Moscow, 1969 [English tanslation 
published by Interscience, New York 1.  

Translated by D. ter Haar 

47 Sov. Phys. JETP 61 ( I ) ,  January 1985 A. I. Akhiezer and N. P. Merenkov 47 


