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An approach to the description ofthe temporal evolution of an arbitrary physical state in systems 
whose eigenstates are determined by means of the Bethe ansatz is proposed. The approach is based 
on a representation of an arbitrary state by a superposition of generalized Bethe states, which does 
not contain the sum over the string configurations. The one-dimensional Bose-gas with attractive 
forces and the Dicke model are examined. For the latter, explicit expressions are obtained for the 
multiphoton wave functions describing the electromagnetic field in superradiant decay of atomic 
excitation and in photon scattering (resonant fluorescence). 

51. INTRODUCTION 

Several models in quantum field theory admit of an ex- 
plicit determination of eigenstates by means of the Bethe 
ansatz or its algebraic version, namely, the quantum inverse 
problem method (see, for example, the reviews given in Refs. 
1-4). In some of these models, the temporal evolution of a 
given initial state is of physical interest. An immediate exam- 
ple is the Dicke model,5 which describes the resonant inter- 
action between two-level atoms and an quantum electro- 
magnetic field. The eigenstates of the model were 
constructed in Refs. 6 and 7 with the aid of the Bethe ansatz 
(the model involving the continuous resonant medium was 
examined in the original paper8 by the inverse quantum 
problem method). Typical dynamic processes in the "atom- 
+ field" system are, for example, cooperative spontaneous 

emission during the decay of an excited initial state of an 
atomic subsystem and the scattering of photons by an atomic 
subsystem (resonant fluorescence). 

In addition to the Dicke model, we shall consider the 
usual object of the theory of integrable systems, namely, the 
one-dimensional Bose gas with attraction [quantum nonlin- 
ear Schrodinger (NS) equation]. The dynamic problem that 
is of definite methodological interest in the NS model is the 
temporal evolution of a packet of interacting bosons. 

Of course, if we know the complete set of eigenstates 
( IA ) = IA ,,...) ] of the Hamiltonian H of a system and the 
corresponding energy eigenvalues [ E  (A ) j , we can, in princi- 
ple, completely describe the evolution of an arbitrary state 

I q 0 )  specified at the initial time (t  = 0): 

i.e., we can solve the quantum Cauchy problem. For exam- 
ple, in the case of a simple model such as the one-dimension- 
a1 Bose gas with repulsion, the N-particle Bethe states are 
characterized by the set of N real parameters (rapidities) 
A = (A,,  ...,A,], that independently assume values in the in- 
terval ( - CO, a,). The sum over states in (1) then reduces to 
the evaluation of an N-fold integral (for the N-particle state 
IWo)). 

A much more complex situation arises in models simi- 
lar to the Dicke model and the NS model (with attraction) 

considered here, but which allow the formation of bound 
quasiparticle complexes. The Bethe N-particle state in such 
models is characterized by the set of N complex rapidities 
A,, ...,A,, combined into "strings." A string of n rapidities is 
defined by 

where x is the positive interaction constant of the model (see 
$2) and A is a generalized real part ("principal rapidity") of 
the rapidities comprising the given string. The Bethe state is 
thus characterized by a set of strings (configurations). The 
carrier rapidities of strings assume independently arbitrary 
values on the real axis. Figure 1 shows possible configura- 
tions for the three-particle Bethe state. In the description of 
the evolution of the N-particle initial state, the summation 
over the Bethe states in (1) is performed by integrating over 
the carrier rapidities A = [A,, ...I of a given configuration, 
followed by summation over all the possible configurations 
of the strings: 

The number of possible configurations for given N is equal to 
the number of ways of representing it in the form of a sum of 
nonnegative integers (when the order in which the terms are 
arranged is unimportant), and increases rapidly with in- 
creasing N. The fact that a large number of integrals has to be 
taken into account (2) means that the calculation is very la- 
borious even for small values N 2 4, and the general analysis 
of the properties of the state I q ( t  )) is extremely difficult. 

The well-known alternative approach to the dynamics 
of integrable models is related to the quantum inverse prob- 
lem method and involves the solution of the quantum 
Gel'fand-Levitan ' In models with string solu- 
tions, these equations constitute a set of integral operator 
relations (cf. Refs. 10 and 1 1 for the NS model), the complex- 
ity of which has prevented their application. 

In this paper, we propose a method of describing the 
temporal evolution of states, which avoids the difficulties 
encountered in summing over string configurations. The re- 
sult of our analysis is the following representation of the 
state I Y( t  )): 
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FIG. 1. 

The symbolism used in (3) will be explained below. For the 
moment, it is important to note the remarkable fact that (3) 
does not involve summation over the string configurations, 
so that, as in the case of models that do not have string solu- 
tions, the state IT(t )) is determined by a single integral over 
the contour r (complex in this case). Depending on the ini- 
tial state IT,), this integral can be evaluated explicitly or be 
the basis for a systematic analysis. 

The immediate stimulus to the present research was the 
following surprising fact discovered by Rupasov and the 
present author:' when (2) is used in the Dicke model to deter- 
mine the final state of the radiation field emitted during the 
decay of an excited state of a system consisting of two or 
three atoms (N = 2 or 3, respectively), the complicated ex- 
pressions that appear at intermediate stages mutually cancel 
out and eventually reduce to the simple form of the photon 
wave function. The hypothesis that this type of cancellation 
will also occur in the case of an arbitrary number Nof excited 
atoms was used in Ref. 7 to determine the physical charac- 
teristics of the emitted radiation. It will be shown below that 
the validity of this hypothesis is a special consequence of the 
general integral representation given by (3). 

Section 2 gives the necessary information about the 
models under consideration, including the expressions for 
the eigenstates (Bethe states). Section 3 derives the general- 
ized Bethe states (with arbitrary complex rapidities) and 
proves the validity, in the weak sense, of several relation- 
ships that are valid for ordinary Bethe states. The general 
representation (3) is obtained in Section 4 for an arbitrary 
state in the Dicke and NS models. Applications of these re- 
sults to physical problems, such as superradiant decay and 
the scattering of photons by an atomic system, are discussed 
in Sec. 5. 

§2. THE MODELS 

A. The Dicke model5 describes a set of two-level atoms 
confined to a small volume with linear dimensions Rgw, 
and interacting with a quantized electromagnetic field (a, is 
the frequency of the atomic transition, and we are using the 
system of units in which f i  = c = 1). The resonance character 
of the interaction was investigated in Ref. 7 in a reduction of 
the model to the one-dimensional case (a similar procedure 
was previously used for the Kondo model; cf. Ref. 3). The 
Hamiltonian for the effective one-dimensional system has 
the form 

8- jdz{- ie+ (2) are (I) -xiz[S+ (2) 8 ( r )  +E+ ( r )  S - ( r )  I ) ,  
(4) 

where the spin operator 
M 

s ( r )  =Sb ( r )  =z saS (x) 
a= 1 

(s * = s' + isY) describes the localized system ofM two-level 
atoms (the operator sa refers to the ath atom), the operator 
E ( X )  describes the electromagnetic field, and x is the positive 
interaction constant. The commutation relations have the 
form 

B. The model proposed by MacGillivray and Feld (MF 
model)'' was devised for the classical description of Dicke 
superradiance in an extended resonant medium with small 
lateral dimensions. The quantum version of this model with 
discrete atoms was examined in Ref. 6, where it was referred 
to as the Dicke model. In the ensuing analysis, we use the 
more appropriate terminology "the MF model." Because of 
the particular geometry of the problem, the MF model is 
initially one-dimensional and is described by expressions 
that are formally identical with (4) and (6). The only differ- 
ence is in the definition of the operator S ( x ) :  

dd 

o= 1 

where ra is the coordinate of the a-th atom and M is the 
number of atoms. To avoid any misunderstanding, we em- 
phasize that the Dicke model defined by (4) and (5) is not a 
special case of the MF model defined by (4) and (7) in the 
limit as r a 4 ,  a = 1 ,..., M. 

C. The MF model is described by the Hamiltonian 

H= dz[d,~+ (x) 3 . ~  ( r )  -xe+ ( r )  e+ ( r )  E (x) e ( r )  1 (8) 

and the commutation relations (6a). Below, we consider the 
case of attraction, x > 0. 

The models listed above have the following constant of 
motion [particle (excitation) number operator]: 

M 

and this can be used to classify the corresponding eigen- 
states. The N-particle eigenstates of the Dicke and MF mod- 
els constructed with the aid of the Bethe Ansatz are charac- 
terized by the set of rapidities A = {A,, ..., A, J and have the 
form6,' 
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where 

h- ( i x M / 2 )  sign y 
hf i x M / 2  

( ~ i c k e  ) 

(11) 
A- ( i x / 2 )  sign (y-r,) 

i . + i x i f  ( M F )  

and 

sign y={-I, y<O; 0, y=O; 1 ,  Y>O) .  

The factor C (A ) is determined by the normalization condi- 
tions. In particular, it can be taken in the following form for 
configurations without strings: 

A,-Aj 
C (A)  = (2n) -"I' ( N I )  -",n , 

1 - 3  
j-tix 

which corresponds to the normalization 

where the sum is evaluated over all the permutations of the 
parameters [pj ) . 

For the NS model, the (A ) is described by (10) with- 
~ '(YJ )--+(y),f (A,y)-+l: 

The admissible values of the parameters A,, ...,AN are deter- 
mined by the requirement that the wave functions must be 
bonded, and are described in the Introduction. The vacuum 
state 10) in (10) and (13) satisfies the conditions ~ ( x )  10) = 0 
and (in the Dicke and MF models) s; (0) = 0, a = 1, ..., M. 
We conclude our description of models by listing the energy 
eigenvalues in the state (A,, ...,AN) : 

N 

Q3. GENERALIZED BETHE STATES 

The proposed approach is based on the representation 
of the state IT(t )) in the form of the integral (3) of the Bethe 
state (A,, ...,AN) over a contour r in the complex space. We 
emphasize in this connection that expressions such as (3)  are 
only formal because, for a complex contour r, they involve 
Bethe states (A,, ...,AN) with rapidities that do not satisfy the 
boundedness condition for the wave functions. Such states 
("generalized Bethe states") can be given a meaning because 
it is possible to form matrix elements ( F  IA ) with states IF) 
whose boson wave functions vanish outside a finite range of 
coordinates or decrease sufficiently rapidly (or oscillate- 
see below) with increasing coordinates. For brevity, we shall 
use the phase "F-state." The simplest example of an F-state 
is E+(x,) ... E+ (xN)(0); a trivial example is the state (31), 
which does not contain bosons at all. Any physical state is, of 

course, an F-state. 
It is obvious that the effect of the Hamiltonian, which is 

a local operator, on an F-state is another F-state, which en- 
ables us to define the matrix element ( F  (H (A ). Next, we note 
that verificationoftherelationH (A ) = E (A ) (A ) reduces toa 
chain of algebraic transformations, in which the values of 
the parameters {S ) are unimportant, and to operations in- 
volving integration by parts. Owing to the presence of the F- 
state in the matrix element ( F  lH (A ), which effectively cuts 
off the region of integration, it is possible to integrate by 
parts even for an arbitrary set {Aj ) , so that we have the equa- 
tion ( F  IH IA ) = E (A ) ( F  (A ) and its immediate 
generalization 

Finally, consider the matrix element of the evolution 
operator ( F  (exp( - iHt ) ( A  ) . In the Dickeand MFmodels, in 
which the excitation propagates from the source with veloc- 
ity less than or equal to the velocity of light c = 1, the appli- 
cation of the evolution operator to an F-state, which gives a 
meaning to the expression ( F  lexp( - iHt )IA ) for arbitrary 
(Aj ) . The situation is somewhat more complicated in the NS 
model in the sense that the excitation "diffuses" and, for any 
nonzero instant of time, there is a definite probability of find- 
ing the boson arbitrarily far from its point of creation (at 
t = 0). For example: 

exp ( - i H t )  E +  (x) 10) 

However, owing to the rapid oscillation of the amplitude 
with increasing distance from the source, integrals of expres- 
sions of the form exp[iy2/2t + iAy] converge for any complex 
A, which enables us to determine the matrix element ( F  [ex- 
p( - iHt ) IA ) for arbitrary [Aj  ). 

The relation given by (1 5) and the fact that we can define 
the matrix element ( F  (exp( - iHt )1A) lead to the following 
important consequence: 

which is valid for the Dicke, MF, and NS models with arbi- 
trary parameters [Aj 1 .  

In the ensuing presentation, we shall, as a rule, write out 
not the matrix elements but the states lA ) themselves or their 
superpositions. If the rapidities [Aj ] do not then belong to 
the admissible Bethe set, we shall always imply the subse- 
quent formation of matrix elements of the form (17) or 
( F  (0 IA ) with arbitrary local operator 0 .  

54. EVOLUTION OF AN ARBITRARY INITIAL STATE 

The proposed approach involves the representation of 
an arbitrary initial state I Yo) by the superposition of gener- 
alized Bethe states of a particular string configuration (with- 
out summation over configurations!). By virtue of (17), the 
description of the temporal evolution of the state ( Yo) will be 
reduced to the multiplication of the states (A ) in this super- 
position by the factor exp[ - iE (A )t ]. 
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The assumed generality of the required representation 
restricts its possible form: for example, to extract the state 

from the superposition of Bethe states (10) and (13), we must 
construct N 8-functions S( y, - xj) in the integrands in (10) 
and (13). These functions may arise if we take integrals of 
exp [iA,( y, - x,)] over contours extending to infinity in the 
complex plane of A. This establishes the necessity for the N- 
fold integration with respect to (A,, ..., A, 1, and hence the 
selection from all the configurations of the single configura- 
tion without strings (N trivial strings). 

1. Let us begin by considering the Dicke model (after 
necessary reduction, the results will give us the required rep- 
resentation for the NS model). The basis state of the model is 

where x , >  ... > x k  > O = x k + l  =... =xk+, , ,  >xk+,,,+, 
> ... > x, and we are dealing with the product ofboson oper- 
ators E+(x,) with j ~ [  1 ,..., k; k + m + 1 ,..., N 1. Equation (18) 
describes the state with N - k - m incident and k departing 
photons under m-fold excitation of the atomic subsystem 
(mgM, the ratio of N and M is arbitrary). We shall seek the 
representation for \Yo) in the form 

I ~ o > -  J ~ N L ~ L  ,..., h N ) ~ ( ( h , ) .  { r j ) ) .  (19) 
r 

The coefficient A ([A, 1, (x, j )  is chosen by the analogy with 
the expression (A IY,) in the form 

- (-xlla)m ( N ! )  l l * ~ !  A,-' n t ~ )  exp(-ihgj). (20) 
(2n)N'2(M-m) ! j=k+l j=i 

Let us establish the validity of (19) and (20): 

hl-hj+ix sign ( Y , - - ~ , )  

l < j  j-k+l 

5- (ixM/2) sign yj hj+ (ixM/2) sign r j  I' j= I b + i k ~ / 2  I+,-ixM/2 

for the required contour r = y, e ... e y,. The component 
contours y, will be assumed to be parallel to the real axes in 
the planes of the complex variables A,: Imy, = const. We 
shall also require that 

Im yj+,--Im yj>x, (224 

Im y,<xM/2, j=l,. , . , k,  (22b) 

-xAf/2<Im yj<xM/2, j=k+l, . . . , k+m, (224 

Im yj>-r.M/2, j=k+m+l,. . . , N .  (224 

It is readily verified that this set of equations is consistent for 
m<M. The improper integrals of the form 

that appear in (21), where e, (A )-+I and (A l-+oo, will be 
looked upon as integrals over the region R ~ E (  - &A), 
A+ co , and we shall thus locate the singular contribution: 

dh 
I=6 (y-r)  + -l11exp[ih(y-x) I 

We shall first prove that the integrand in (2 1) is different 
from zero only for (y, (xi; j = 1, ..., N 1. In fact, for y, > x,, 
the singular part of the integral with respect to A, provides 
no contribution and, if we bend the contour A N  into the up- 
per half-plane, we see that, by virtue of (22a,d), the region it 
bounds does not contain the poles A N = A j  
+ ( j  = 1 , N  - 1 and A, = - ixM/2, and 

that the factor (A, - ixM /2)-' cancels with the numerator 
of the fraction (since x, < 0). Hence, it follows that the inte- 
grand in (21) is nonzero only for y, (x,; the inequality sym- 
bol here and henceforth reminds us of the possible singular- 
ity at y = x. If now y,- , >x,-, , we deform the contour 
y,-, for integration with respect to A,-, in the upward 
direction. The new feature, as compared with the last case, is 
the appearance of the pole A,-, =A,  - ix inside the con- 
tour Yn-1. However, the inequality 
y,- , - y, > x,- , - x, > 0 leads to the appearance of the 
factor A,-, -A, + ix sign( + ) in (21), which cancels this 
pole. This results in the condition y,- , (x,- , , and, in pre- 
cisely the same way, in the analogous conditions for all 
j >  k + m. The argument has to be modified somewhat for 
j<k  + m. The cancellation of the singularity 
(A, - ixM /2)-' for y, > x, >0 then occurs because of the 
presence of the factor 4 - (ixM/2) sign y, [moreover, for 
j ~ k  (x, > O), the poles4 = - ixM/2 are absent]. This leads 
us to the conclusion that the integrand in (21) is different 
from zero only in the region y, (x,; j = 1 ,..., N. 

Let us now suppose that y, <x,.  If we bend the contour 
y, so that it enters the lower half-plane of the complex varia- 
bles A,, we note that, by virtue of (22a,b) and the presence of 
the factor A ,  + (ixM /2) signx,, the interior of the contour y, 
does not contain any singularities. Thus, the nonzero contri- 
bution to the integral with respect toy, is entirely due to the 
singularity at y, = x,. Next, ify, < x,, the singularities inside 
the contour y,, closed in the lower half-plane, are absent by 
virtue of (27a,b) and the factors A, + (ixM/2) sign x, and 
A ,  -A,  - ix sign( + ), where the form of the latter follows 
from the inequality y, - y, > x, - x, > 0. Analogous discus- 
sions for arbitrary j will show that the integral (21) is exclu- 
sively determined by the contribution due to singularities at 
the points y, = x,, j = 1, ..., N. The singularity for j<k  and 
j >  k + m is due to the divergence of the integrals with re- 
spect t o 4 .  Fork < j<k  + m, the integrals with respect to A, 
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converge and the singular contribution is due to the 6-func- 
tions next to the spin operators. The integral (21) is thus 
finally given by 

%"M! k+m dhl 1 
I yo> = ( M  - m)! 5 n , + (*M,2, j=k+1 

- 
where r = y, + , e ... e y, + , and we have explicitly written 
out the operators that create the state [Yo) (18). The integral 
in (23) is relatively simple to evaluate and the result cancels 
the factor in front of the integral which, of course, is assured 
by the correct choice of the coefficient A ( ( A j  1, (xj 1 )  (20). We 
have thus proved the validity of (19) and (20). 

The representation given by (19) and (20) can be written 
in compact form by introducing the auxiliary state 

j= 1 

where the nonrigorous inequalities in the argument of the 8- 
function serve to remind us of the 6-functions next to the 
spin operators, and it is assumed, by definition, that 

The parentheses in (24) emphasize the difference between 
this (non-Bethe) generalized state and the corresponding 
Bethe state (lo). 

It is readily verified that the coefficient A ( (4 1, { xj ] ) 
(20) is given by A ((4 J , (x j ] )  = (XI, ..., XNIYo). As a conse- 
quence, we obtain the compact version of the superposition 
(19): 

~ Y o ) = ~ d N A l h l  ,..., AN)(% ,..., ANlYo). (25) 
r 

The state I Y(t )) = exp( - iHt ) I  Yo) is determined with the 
aid of (17): 

I Y (t) )=I dNherp[-iE ( l ) t ]  I A,, . . . . AN) (31. .  . . . YO), 
r (26) 

which is the basic result of the present paper. We note that, 
in some sectors of the space of Dicke states, the contour r 
can be taken in a form that does not depend on the' type of 
state (1 8), so that (26) can be written in the form of a represen- 
tation of the evolution operator in the given sector: 

exp (-iHt) i jdNh e x p [ - i ~  (1) t] I h,, . . . , AN) (A,, . . . , AN I 
r (27) 

[when t = 0, this formula gives the representation of a unit 
operator in the given sector]. For example, in the sector of N- 
particle states with N<M, the contour r = y, e ... e yN can 
be taken in the form 

In general, the contour r depends on the type of state [Yo) 
(1 8) [cf. inequalities (22)l. 

2. As noted above, we shall now apply the above ap- 
proach, after the necessary simplifications, to the NS model 
(13). The simplifications are as follows: 

a) the basis vector of the model is 
N 

b) the trivial nature of the function f (A,y)- 1 in the de- 
finition of the Bethe state removes from the Dicke model the 
necessity for bothering about the correct way to integrate 
around the poles Aj = + ixM /2; correspondingly, we need 
not satisfy (22b-d), which restrict the choice of the contour r - .  

c) the expression for the auxiliary generalized state 
[A,, ...,A,) in the NS model is obtained from the state (24) by 
the reduction f-I, r+(  y,A I-&+( y). 

Thus, the evolution of the state /Yo) given by (29) is 
described in the NS model by (26), and the choice of the 
contour is restricted by the single condition (22a). This con- 
dition, which is independent of the state /Yo) (29), is satis- 
fied, for example, by the contour defined by (28). Thus, in 
contrast to the Dicke model, the representation (27) is always 
valid for the evolution operator in the NS model. 

3. The approach described in Section 1 will have to be 
modified to enable us to describe evolution in the MF model. 
The basis vector in the MF model takes the form 

N 

where p+(xj) = s;, if xj = ra (a = l , . . ,M) and 
p+(xj) =&+(xi) if xjB(ra). The auxiliary state lA ) for the 
MF model is given by (24). The representations (25) and (26) 
are valid for the states [Yo) and lY(t )), where the contour 
r = r, e ... e rN is defined by the following conditions: 
rj=yj+yjf-y,-; Im yj+,-Im yj>x, Im y1>x/2, 
Im yj"=x/2T.6 (d++O). 
The proof of this statement is similar to that given in Section 
1. We note that, in contrast to the Dicke model, the choice of 
the contour in the MF model does not depend on the type of 
states I Yo) (30), so that (27) is valid for the evolution operator 
in the MF model. 

Examples of the application of the results obtained in 
this section to the solution of physical problems are given 
below. 

55. PHYSICAL APPLICATIONS 

1. Let us first demonstrate the efficiency of the general 
approach developed in the previous section by considering 
the example of superradiant decay of N-fold excited local- 
ized systems consisting of M atoms (N<M ). The problem is 
to determine t - +  + co the photon component of the state 
which, at t = 0, has the form (Dicke state5) 

The evolution of the state I*,) is described by'' (26) 
where the contour r is given by (28). The photon component 
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of the state (26) has the following form for t+ + w (out- 
state): N 

where the wave function (unsymmetrized) is given by 
M ! 

~ N ( Y , ,  . . , yN)=(-1)'xN" 

A,-Aj+ix sign ( y l - y j )  exp[ih, ( y j - t )  ] 
xnh ,-&+in ,+ixM/2 

. (33) 
I ti 

It is readily verified (by successively deforming the contours 
y,, ...,y, in the upward direction) that the wave function (33) 
is different from zero only in the causal region (yj (t J . If we 
successively deform the contours y,, ...,yN in the downward 
direction, we find that the value of the function (33) is deter- 
mined exclusively by a set of poles that do not coincide for 
different variables Aj; if we take into account the presence of, 
say, two identical poles, A ,  = - ixM/2 = A,, we find that 
the factor sign( y, - y,) appears in the integrand, which is 
symmetric under the interchange yl-y,. We now take all 
this into account and perform the successive integrations 
with respect to A,,...,A,, bearing in mind the poles 
A ,  = - ixM /2, A, = - ixM /2 + i (for y, < y,), 
A, = - ixM /2 + 2i ( y, < y,), and so on. The final result is 

[ M!"! 1" 
q N ( y i , .  .. , yN)=@(yI< .  . . < Y N < ~ ) ~  

( M - N )  ! 

This is identical with equation (36) of Ref. 7, which proves 
the validity of the hypothesis used by Rupasov and the pres- 
ent author7 on the summation over configurations in the case 
of an arbitrary number of excited atoms. 

We now reproduce the explicit expression for the state 
I \V(t )) at an arbitrary time, deduced with the aid of the repre- 
sentation (26): 

N 

N! ] ''a (in*) "-;df-rn) ! 
M!(M-")! ,,,-o 

This enables us to calculate all the physical observables. It is 
readily seen that, in the limit as t+ + a, the state given by 
(35) is entirely determined by the photon (m = 0) component 
of (34), which describes the radiation field produced as a 
result of the complete decay of the excited atomic subsystem. 

2. Let us now consider, in the Dicke model, the scatter- 
ing of Nphotons by an unexcited atomic subsystem. There is 
particular physical interest in the scattering of light by an 
individual atom (M = I), which corresponds to typical ex- 

FIG. 2. 

periments on resonant fluorescence. The description of this 
phenomenon involves the examination of the evolution of 
the initial state IT,) (18) with k = m = 0. The photon wave 
function in the final (t+ + w ) state (32) can be determined 
with the aid of the representation (26) in the form (unsymme- 
trized): 

c p , ( ~ i , . . . , ~ ~ )  
N 

h,-hjf i x  sign ( y l - y j )  
hl-hj+ ix  

j= I 

wherezj = xj + t and the corresponding contours yj satisfy 
inequalities (22a,d). In contrast to the preceding example, 
the region (yj (zj; j = 1, ..., N 1, in which the function (36) is 
nonzero, is now asymmetric under the permutations (yj 1 ,  so 
that we can take the residues with coincident (in different 
variables) poles. Moreover, it may be shown that the only 
important poles are 4 = - ix/2, j = 1 ,..., N. For this, we 
note that the causal nature of the propagation of excitation 
in the Dicke model leads to the fact that the symmetrized 
wave function 

(summation over all permutations a),  considered in the sec- 
tory, > ... > y,, is different from zero only for 

The graph (Fig. 2) of the "forbidden" two-photon scattering 
process (N = 2) will explain the origin of the limitations de- 
fined by (38). The appearance of two photons in the region 
y, < y, <z2 is forbidden because this process requires that the 
system contains no photons in the final time interval (t,,t,). 
This is, of course, impossible in the Dicke model (two-level 
atom and resonant excitation). 

Since the function p,( yo, ,...,y,) is zero outside the 
region (y,.(zj; j = 1, ..., N J, we find that the contribution to 
(37) in the region defined by (38) is provided only by permu- 
tations a = (0, J for which uj>j  - 1, j = 2, ..., N. Nonidenti- 
cal permutations then ensure that the function (37) differs 
from zero only on a set of measure zero, the contribution of 
which can be due to only the singular part of the integrals 
with respect to the corresponding rapidities. In the case 

1048 Sov. Phys. JETP 61 (5), May 1985 V. I. Yudson 1048 



where UN = N - 1, this enables us to replace the factor 
[Al - A N  +ixsign (yul -y,)]/[R, - A N  + i x ]  in (36) 
with unity; when uN = N, the factor is equal to unity by 
virtue of the inequality (38). Repeating the discussion for the 
remaining part of the integrand in (36), we finally obtain 

If we now evaluate the integral, we obtain the explicit expres- 
sion for the photon wave function of the final state of scat- 
tered photons in the sector y, > ... > y,: 

where we have restored the Sfunction that is implied in (37) 
and (39); the sum is evaluated only over the permutation 
u = (0, >j - 1; j = 2, ..., N ) .  

3. The initial state in the problem of light emission by 
excited atoms in an extended medium (MF model) has the 
form 

N 

where the subscript aj labels the excited atoms. The evolu- 
tion of the state (Yo )  according to (4) is described by the 
representation (26); cf. Section 4.3. The final (t+ + GO) state 
of the electromagnetic field is given by 

dNa hl-%+ix sign (YI-Y,) 
I out)= ( -x"~ ' . )  i-5 hr-hj+ix 

It is readily seen that the wave function differs from zero 
only in the causal region [ 0  < yj < zj =xj + t 1, where inte- 
gration over the contour r in this region reduces to negative 
circuits around the (multiple) poles Aj = - ix/2. In contrast 
to the above emphasis, here, unfortunately, we cannot evalu- 
ate the N-fold integral over the variables [/li ) for arbitrary N 
and M. Expression (42) can also be written in the form 

m 

x exp (-?calf) 

where, by definition, the integral of s+(a)g(a) over (0, + m )  

is equal tog(0); L, ( y) is the Laguerre polynomial. The com- 
plexity of (42) and (43) reflects the variety of processes in the 
MF model, which is more complex than the Dicke model. 

To conclude this section, we also reproduce the expres- 
sion for the out-state of the electromagnetic field when a 
packet of N photons (29) passes through an extended reso- 
nant (unexcited) medium: 

hl-hj+i?c sign (y l -y j )  

The contour r is described in Section 4.3; here, it reduces to 
the contour y, e ... e yN. For N = 2, which is of particular 
independent interest (paramagnetic mixing of light), the 
wave function in the state (44) has the form 

X jda[d+ ( a )  - 2 ~ 0  (Y,<Y,) exp (-xu) 1 

The expressions obtained in this Section for the photon 
wave functions of the electromagnetic field in a number of 
processes in resonant quantum optics enable us to calculate 
all the physical quantities and hence provide a basis for a 
rigorous quantum-mechanical description of these pro- 
cesses. 

56. CONCLUSION 

The above approach is based on the representation of an 
arbitrary physical state of the systems that we have consid- 
ered by the superposition of generalized Bethe states of a 
single (stringless) configuration. The absence of summation 
over an enormous number of string configurations is an im- 
portant advantage of this representation as compared with 
the usual expansion over the Bethe basis. The simplicity of 
the representation enables us to perform an explicit descrip- 
tion of the temporal evolution of an arbitrary physical state, 
and thus approach the rigorous theory of dynamic processes 
in such systems. 

The efficacy of the approach has been demonstrated for 
processes that are of particular physical interest, namely, 
superradiant decay of atomic excitation and scattering of 
photons by atoms (resonant fluorescence). Explicit expres- 
sions, given by (34) and (40), have been obtained for multi- 
photon wave functions describing the state of the radiated 
(scattered) electromagnetic field. Their structure shows that 
there are photon-photon correlations due to the nonlinearity 
(restricted excitation spectrum) of the atomic subsystem. 
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The representation that we have obtained can be 
uniquely extended to models whose Hamiltonians are high- 
er-order constants of motion of the systems described above 
(and, consequently, have a more general Bethe basis). The 
form of the representation and, in particular, the choice of 
the contour of integration are determined, above all, by the 
structure of the S-matrix (which is the same for all the mod- 
els that we have considered). It would be interesting to ex- 
tend the approach to models with a different algebraic struc- 
ture. 
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"We note a special property of the Dicke state lYo) (3 1): the correspond- 
ing state lY(t )) admits of the general representation (26) as well as the 
representation 

where (A ) is the Bethe vector (10) corresponding to the N-string with 
carrier rapidity A; the contour of integration describes a negative circuit 
around the point A = - ix(M - N + 1)/2; the operator P executes a 
projection into the causal region with photon coordinates ( 0  < yj < t ) . 
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