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The quantum corrections are calculated for the electric conductivity and for the Hall coefficient 
of noninteracting electrons in a medium with small long-wave fluctuations of the density of 
pointlike scatterers or electrons. In the former case the logarithmic increment to the conductivity 
of two-dimensional electrons is changed when the phase relaxation length of the wave function is 
of the order of the correlation length. If the Fermi energy fluctuates, the Hall coefficient acquires 
a temperature-dependent increment. 

Besides the short-range scatterers that determine in the 
metallic region the quantum corrections to the conductivity, 
a disordered conductor contains also long-wave fluctuations 
(over distances exceeding the electron mean free path) of var- 
ious parameters of the medium. The role of such fluctuations 
(a metal-insulator transition is possible if their amplitude is 
large) under conditions of intense short-wave scattering has 
become the subject of recent studies (see Ref. 2 for a discus- 
sion and references). We write out here the quantum correc- 
tions to the current, and the equations for the cooperon (we 
consider the case when the contribution of the Coulomb cor- 
rections is small) in the presence of density fluctuations of 
pointlike scatterers or of the Fermi energy. For small fluctu- 
ations we find next the averaged quantum correction to the 
conductivity of two-dimensional electrons, as well as the 
Hall coefficient. These quantities are qualitatively different 
from those of a macroscopically homogeneous medium. The 
differences are that the coefficient of the logarithmic incre- 
ment to the two-dimensional conductivity depends on the 
amplitude fluctuations (this coefficient changes radically in 
the case of pointlike-scatterer density fluctuations, when the 
phase relaxation length I ,  is of the order of the correlation 
length I ,  ), while the Hall coefficient acquires a temperature- 
dependent correction due to fluctuations of the Fermi ener- 
gy. 

1. The influence of long-wave fluctuations on the quan- 
tum correction to the conductivity can be treated (even in an 
approximation linear in the electric field) by the Keldysh 
diagram technique, which is expedient for the quasiclassical 
transition to the limit. We take into account the pointlike- 
scatterer density by identifying the impurity dashed line 
with a correlator 

in which w(r) varies smoothly over distances on the order of 
the mean free path I, for electrons with Fermi energy E,. 
Allowance for the inhomogeneity does not alter the analo- 
g o ~ s ~ , ~  derivation of an equation for the cooperon, in which 
only a variable diffusion coefficient D, a w(r) appears (7, 

denotes below the phase-relaxation time): 

(-VD,V+iQ+l/t ,)  C(r, r') =6 (r-r'). (2) 

The quantum increment to the current (we consider the con- 

tribution to a response at a frequency Q) differs from the 
standard expression only in that account is taken of the coor- 
dinate dependence of the field E, : 

A j,=- (2eZ/n) E,D,C (r, r) . (3) 

Consider also another model of a smooth inhomogene- 
ity: assuming a S-like correlator (I),  we add to the equation a 
random electric field, so that the Fermi distribution 
8 ( p, - E) contains the electrochemical potentialp. Now Aj, 
differs from (3) by the presence of an additional averaging 
over the energy (the contribution that determines the Hall 
constant and is linear in the magnetic field has also been 
written out): 

and the equation analogous to (2) for the cooperon C, (r, r') 
contains - D, V2, where D, is the diffusion coefficient of an 
electron having an energy E,  while T, is the corresponding 
momentum-relaxation time. 

The classical current j, is defined by the usual equation 

with a conductivity a, that fluctuates (because of the vari- 
ation of the scatterer or electron densities) and with a mo- 
mentum relaxation time 7,. Equations (3)-(5) are averaged in 
analogy with Ref. 5 in the small-fluctuation approximation, 
while E, and the total current j, + Aj, satisfy at QT, < 1 the 
electrostatic equations 

rot E,=O, div (j,+Aj,) =O. (6)  

The averaging results are given above for the case of two- 
dimensional diffusion, when small fluctuations alter the uni- 
versal coefficient of the logarithm. Separation of the contri- 
bution of small fluctuations for the one- or three-dimensional 
case is a more complicated matter, since they enter together 
with a coefficient that contains material parameters. 

2. We seek the solution of (2) in the momentum repre- 
sentation, separating in the cooperon the averaged and fluc- 
tuating parts ( C  (k,kl)) and SC (k,kl), respectively, for which 
we obtain, to within f ', the equations 
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1  ( Dpk2+iR 4- -) ( C ( k ,  k ' )  ) 
5 

dki ( kk , )  <El-.. 6C(k.. k ' )  )= (2n)' 6 ( k -k t ) .  

(7) 
The coordinate dependence of the diffusion coefficient (as 
well as of the conductivity) is introduced here by the relation 
D, = D, (1 + 6, ). Since (6SC ) does not contain a logarith- 
mic contribution that diverges at low momenta, the coo- 
peron fluctuations determine only the rescaling of the diffu- 
sion coefficient in the expression 

dk 1  
[ D  ( k )  k2+iC2 + -1 -' , 

Tv 

where 5 is the mean square fluctuation of D, and kc = 2/lC. 
The fluctuation field 

determined in the usual manner from (6) does not contain the 
quantum correction Aa to the conductivity, and the latter is 
expressed in terms of (8) and of the average classical current 
[that stems from D, E, in (3)]. 

The integral in (8) is cut off at small momenta for 
k, = max[(f l /~,) ' /~ ,  (DF~p)-1/2]  in the case of long-wave 
fluctuations ( k  k c  For short-wave fluctuations, 
k, (1 - 6 2/2)-"2 <kc ,  the logarithmic divergence is cut off 
at k, (I - 6 2/2)-1/2. The result is 

so that the slope of the logarithmic dependence of Aa 
changes over the interval kc < k, <kc  and is somewhat 
lowered, since 

FIG. 1.- Change - o f  logarithmic dependence of a at 
kc > k ,  > kc --kc ( 1  - { 2/2)"2. The temperature dependence of Po  is ob- 
tained from this by using k, cc r; ' I2 a T p " .  

The temperature or frequency dependences determined by 
(10) (see Fig. 1) are physically understandable: the short- 
wave fluctuations can be regarded as an additional scatter- 
ing mechanism that does not alter the coefficient of the loga- 
rithm, whereas in the long-wave case the additional 
coefficient a - f2 /2  is due to averaging of the fluctuating 
classical current that enters in (3). 

Since the short-wave (k, (kc) fluctuations can be re- 
garded as a supplementary scattering mechanism, the quan- 
tum corrections to the Hall constant drop out in this case.6 
Adding a magnetic field to (3), in analogy with (4) and (5) (the 
quantum correction SE, remains in this case), we can verify 
that this conclusion holds for the entire range of variation of 
k, , i.e., no temperature dependence ofthe Hall constant sets 
in. 

3. In the case of electron-density fluctuations, the coo- 
peron in (4) is defined by the expression 

and the energy dependences of D, , T, , and of the cutoff pa- 
rameter k, (E) are different for two-dimensional electrons 
(case I) and for two-dimensional diffusion in a film with a 
three-dimensional energy spectrum (case 11). The coordinate 
dependence ofp, [and of a, and 7, in (5)] are also different in 
cases I and 11. Assuming the electron density to fluctuate 
like n(l + t,), we get 

D ~ = D F E / E ~ ,  krn ( E )  =km ( E ~ / E )  I h l  pr=&p ( I +  E l )  ( I ) ,  

Solving (6) in the approximation linear in the fluctuations, 
we can use (1 1) at E = EF, SO that the quantum correction S 
that enters in SE, is determined by the relation (gB is the 
conductivity for 6, = 0) 

and the fluctuating field differs from (9) in that E is replaced 
by 

(j,) is determined directly from (5) (9), and (14). By 
averaging the current Aj, determined by (4) and (1 I), it is 
also easy to calculate the contribution proportional to Ink,, 
and the small changes of I,-' and S due to the contribution 
In E can be neglected. The result is a conductivity quantum 
correction 

e2 I + ' / ~ P  (I) 
2n2h ( 1 1 )  ' 
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that does not depend on the correlation length I,. The Hall 
constant also acquires a temperature-dependent increment 
(proportional to 5 2S) 

1 1-26  
R=-{ (1 )  

enc 1-~/~?-2" (11) ' 

We emphasize that for the calculation of (1 5) and (1 6) (as well 
as for the Hall effect to be independent of temperature) it is 
important to take into account the logarithmic temperature 
increments due to the fluctuating electric field SE,. 

4. The models considered demonstrate the qualitative 
features of the temperature dependence (the frequency dis- 
persion was apparently not measured) of the conductivity of 
weakly localized electrons in a macroscopically inhomogen- 
eous medium. Continuous inhomogeneities alter the ob- 
served degree of the temperature dependence of the phase- 
relaxation time (7, aT-*), SO that an increment 
proportional to 5 appears in the coefficient p/2 preceding 
the logarithm. Measurements (see Ref. 7 for the sources) 
usually yield forp values that differ from a rational number. 
However, the homogeneities of the samples is not specially 
monitored (although the technologies employed do not ex- 
clude the possibility of long-wave fluctuations of the param- 
eters), so that is not clear whether the obtained values ofp are 
the results the mechanism considered above or, for example, 
are due to the contribution of several phonon-scattering 
channels to k ,  . The observed temperature increments to the 
Hall constant are attributed to the contribution of electron- 
electron quantum additiom6 

The contribution the long-wave fluctuations can be 
identified by means of the temperature dependences, pro- 
vided that 1, - I ,  in the investigated temperature interval, so 
that a kink appears on the logarithmic temperature depen- 
dence (see Fig. 1). To observe the contribution of the density 
fluctuations, the correlation described by (15) and (16) 

should appear between the change of the coefficient of the 
logarithm in Aa and the Hall constant. A direct method of 
investigating these effects would be measurements of the 
temperature dependences in samples with controllable (or 
variable in the course of the treatment) values of the long- 
wave fluctuations. 

Adding the magnetic field to the equation for the coo- 
peron, we can describe in similar fashion the influence of 
long-wave fluctuations on the magnetoresistance. Other 
generalizations of the calculation presented are also possi- 
ble: account can be taken of the simultaneous influence of 
the scatterer-density and electron density fluctuations (this 
density does not lead to new properties of Aa and R ), or 
consideration of the case of large fluctuations, which calls 
for a more elaborate classical treatment (see Ref. 8). Similar 
effects result from smooth fluctuations of the film thickness 
and from the Coulomb contribution to the quantum correc- 
tions to the conductivity. 
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