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It is shown that the spectrum of depolarized scattered light near the critical point has a complex 
structure, with three lines whose widths are different and have different temperature depen- 
dences. The widths are analyzed by considering the frequency moments of the spectral density. 
The narrowing of the Rayleigh-line wing is determined by double scattering effects. It is shown 
that instrumental effects have an important influence on the observed narrowing. 

91. INTRODUCTION 

The relation between the slowing down of the order- 
parameter relaxation in the neighborhood of the critical 
point and the parameters of the spectra of polarized light 
scattering has been well studied.'-3 The most direct and the 
clearest way of demonstrating this relation is to examine the 
increase in the integrated intensity and the reduction in the 
width of the central component. In contrast, the role of dif- 
ferent processes in the evolution of depolarized-scattering 
spectra has not been euclidated to the same extent. The ex- 
perimental confirmation of the narrowing of the wing of the 
Rayleigh line (WRL) and of the Raman lines near the sepa- 
ration critical point of binary  solution^^.^ was therefore part- 
ly unexpected. Here, it is important to note that, in a suffi- 
ciently wide range of frequencies, the depolarized-scattering 
spectrum can be approximately represented by the sum of 
two Lorentzians of different width. As the separation critical 
point is approached, the wider component becomes appre- 
ciably narrower, whereas the second component remains 
practically unaltered. This narrowing was not observed in 
Refs. 10-14, since only the narrower Lorentzian was exam- 
ined in detail. 

The most characteristic features of the WRL variation 
as the critical point is approached are as follows: ( 1 ) the 
narrowing of the spectra is nonmonotonic in most cases and 
there are usually two or three regions with different tem- 
peratures dependence of the width; (2) the narrowing ap- 
pears to cease in a relatively close proximity of the critical 
point [E = ( T -  T,)/T, 5 lop3]. 

Theoretical ideas on the narrowing mechanism are few 
and far between, and cannot explain even the most essential 
features of the phenomenon. It is important to note that, in 
liquids consisting of anisotropic molecules, depolarization 
occurs as a result of scattering by fluctuations in the anisot- 
ropy tensor paB (r,t) and because of multiple (mostly dou- 
ble) scattering by fluctuations in the order parameter 77 (r,t) . 
As T-+T,, the spectrum of the contributions due to multiple 
scattering should undergo an appreciable alteration. Several 
of the corresponding spectra parameters were studied near 
T, in Refs. 15-1 7. On the other hand, the narrowing of the 
WRL was interpreted in Refs. 18 and 9 as the result of an 
interaction between fluctuations in qaB and 77. The specific 
character of the result turns out to be governed by the lar- 

gest-scale fluctuations in the order parameter. However, this 
conclusion is not entirely correct because the anisotropy re- 
laxation time and the time necessary for the damping of 
long-wave modes are very different, so that the effect of the 
one on the other cannot be considerable. Nor is it valid to use 
the expression 1 / ~  = kB T /8n-[r: ( r ,  is the correlation 
length and 4 is the shear viscosity) to describe the spectral 
linewidth. Formal use of this expression reproduces the tem- 
perature dependence of the width only within AT= 1-2 K. 

In this paper, we examine the relative role and the char- 
acteristic properties of different contributions to the spec- 
trum of depolarized scattered radiation near the critical 
point, due to double scattering and the interaction between 
anisotropy modes and the order parameter. It will be shown 
that the specific temperature dependence of the spectral 
linewidth is largely determined by the Andreev mecha- 
nism.15 In the immediate neighborhood of T,, the narrow 
line due to "intrinsic" double scattering plays the dominant 
role. However, the true narrowing is distorted by the super- 
position of instrumental effects. 

92. FLUCTUATION SPECTRUM OF THE DISTRIBUTION OF 
THERMAL FLUCTUATIONS IN THE NEIGHBORHOOD OF THE 
CRITICAL POINT 

It has been shownI5 that one of the components of de- 
polarization molecular-scattering spectrum is due to fluctu- 
ations in the distribution function of thermal fluctuations. 
This mechanism has a general model-free character and is 
particularly effective near the critical point. In this section, 
we shall investigate the temperature dependence of the 
width of this contribution to WRL. 

The fluctuation part of the permittivity tensor is given 
by15 

where 7, is the Fourier component of the order parameter 
and E,, is the equilibrium permittivity. The values of k over 
which the sum is taken satisfy the inequality 
A - ' (x<k<A<a-' ,  where /Z is the wavelength of the inci- 
dent radiation, a is the separation between the particles, and 
U O C X - ~ .  
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Let us suppose that the scatterred spectrum is deter- 
mined by the correlator 

where q  = k, - k,, and b, k, are the wave vectors of the 
incident and scattered waves, respectively. We shall assume 
that k, lies along the z axis and k, is in the xz plane. We shall 
investigate the spectrum I  "". 

We shall now determine the width of the spectral func- 
tion j (w,q) ,  using the first two frequency moments: 

Cm (d = J dow2" j  ( a ,  q), n=O, i, 2, . . . . 
-m 

( 3 )  

The odd moments C,, + , are all zero because of the symme- 
try of the spectral intensity j (w ,q ) .  The efficiency of this 
definition in the study of the critical properties of r is due to 
the fact that, as T--+Tc, the zero-order moment undergoes 
the greatest change. The definition ( 3 )  does not depend on 
the particular form of j (w,q)  and the widths of standard 
profiles calculated in accordance with ( 3 )  differ from full 
widths, at half-height by a factor of the order of unity. 

Formula ( 3 )  has the further advantage that it does not 
presuppose the use of the kinetic equations. Near the critical 
point, it is difficult to construct these equations and to calcu- 
late the kinetic coefficients in them. 

The following representation is valid: 

The determination of the temperature properties of the 
above width is thus reduced to the evaluation of static corre- 
lators. 

Let us now consider the contribution to scattering due 
to fluctuations ( 1 ) in the permittivity tensor. Since fluctu- 
ations in volumes V, and V, separated by a distance 
I > x- ' are statistically independent, the zero-order moment 
m,(q) of the correlator (6&'(r,O)6&'(0,0) ), is isotropic. 
Proceeding by analogy with Ref. 15 ,  we obtain 

where Vis the volume of the system. The second moment is 

Since the fluctuation correlator ( q  (r,O)+ (0,O) ) is a short- 
range quantity ( a 6 ( r )  ), and the main contribution to the 
integral is due to large values ofk (kr,  > 1 ), the moment m, is 
insensitive to the proximity to the critical point. Bearing this 
in mind, and using ( 3 )  and ( 5 ) ,  we obtain the following 
expression well away from the critical point (xr ,  ( 1 ) : 

rc I,=mo=Zia - = I to&-'', 
reo 

whereas, in the immediate neighborhood of Tc (xr ,  ) 1 ), we 
have 

where I?,, and I,, are taken at a temperature To that is suffi- 
ciently different from T,, and r, = rc ( T o ) .  

Thus, as the critical point is approached, the intensity I ,  
of the contribution due to fluctuations in the distribution 
function of thermal fluctuations will increase, whereas the 
width will decrease. At the same time, the product I ,  r: re- 
mains invariant, which follows directly from the definition 
of r, .  In the Landau theory v = 1 and in similarity theory 
v-0.63, so that the critical exponent describing the narrow- 
ing of the line is close to 0.3. In the immediate neighborhood 
of the critical point (ATc=T - T,  5 0.1-0.3 K ) ,  the inten- 
sity and width reach their limiting values. It may be expected 
that the intensity will increase by the factor A / r ,  - 10-100 
and the width will fall roughly by an order of magnitude. 

The relative Andreev-scattering intensity is determined 
by the ratio I , / I , ,  where I ,  is the intensity scattered by an- 
isotropy fluctuations. The quantity I,  can be estimated in a 
standard way, using the Cabannes factors. It is readily 
shown from published data1.19 that the situation is particu- 
larly favorable in the case of solutions. For liquids such as 
benzene and ethyl alcohol, I , / I - 3 ~  1 0 " - 6 ~  10" cm-' rc 
(near the liquid-vapor critical point, the ratio I , / I ,  is lower 
by an order of magnitude). It may beexpected that theinten- 
sities I, and I, become comparable for AT, of the order of a 
few degrees ( T, ~ 3 0 0  K )  . Comparison of these conclusions 
with experimental data shows good quantitative and qualita- 
tive agreement for temperatures in the range 
AT, = ( 1-5)-(30-40) K  (Fig. 1 ). For temperatures in the 
range AT, 5 1 K ,  other still unaccounted for factors begin to 
play an important role. This can be seen, on the other hand, 
in the increase in the role of narrowing before the limiting 
value r,, is reached and, on the other hand, in the appear- 

- In  E 

FIG. 1.  Temperature dependence of r,. Points-experimental data: 0- 
C2H,0H-CS,, c = 0.75 molar fractions of CS, (Ref. 6)  : and A-nitro- 
benzene-n-hexane, c = 0.40 and 0.75 molar fractions of n-hexane, respec- 
t i ~ e l y . ~  The slope of these lines is numerically equal to 1/3. 
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ance of an additional and rapidly rising component whose 
width decreases with a critical index -0.6. 

These facts can be naturally explained by analyzing the 
overall picture of depolarized double scattering. The An- 
dreev mechanism is an important component part of this. 
We now proceed to a presentation of our results. 

53. TEMPERATURE PROPERTIES OF THE DOUBLE- 
SCATTERED SPECTRUM 

We shall write the doubly-scattered spectrum in the 
form 

T E B  ( r )  = ( V a ~ B + k o 2 6 , B )  etb'/r, (8)  

where T(r)  is the dipole propagator. The coefficient (a&/ 
a77)4 (and other standard factors) has no singularities as 
T-tT, and is omitted. 

The integrated intensity is given by the zero-order mo- 
ment C, of the spectrum (8) : 

C. J dr, . . . dr, exp [ ik ,  (r.-r,) -ik. (r,-r,) ] 

We now transform to the Fourier representation, using the 
formula 

The dipole propagator and the four-point correlator for fluc- 
tuations in the order parameter have the following structure: 

( 1 1 k , q k ~ q k , q k , ) = G  (ks) G (k3) 6 k , ,  - r 2 6 r , ,  -k, 

+G ( k , )  G (kz)  G k , ,  - k i s k ~ .  -k1 

+G (kt) G (kz)  G r , ,  - r ,6k2 ,  - k s + G 4  (k t ,  k2, k,, kb) 
(11) 

After summation over k, the quantity A in ( 10) tends to 
zero in an infinite system. In a spatially restricted system, A 
must be replaced in the final result by a small but finite quan- 
tity A - V - ' I 3  (Ref. 20). The last term in ( 11 ) describes 
irreducible four-point correlations. In the first order in the 
small parameter d, in the free energy 

we have 

='/,dG ( k , )  G (k,) G (k,) G (k,+kz+k,) 6r,, r , + r z + r 3 ,  ( 12) 

where G(k, ) is given by ( 11). 
Structurally different contributions to C, are conve- 

niently represented by the diagram technique used in the 
theory of multiple scattering of light.,' We have 
C, = i, + i, + i,, where 

The upper line entering the vertex 1 corresponds to the inci- 
dent wave whilst the outgoing line represents the scattered 
wave. The segment of the line between the two vertices cor- 
responds to the propagator T(k) .  For the lower line, the 
notation is the same except that we have to add the complex 
conjugation symbol. The star consisting of the four wavy 
lines, which have a common vertex and pass through the 
points 1,2,3,4 in the third diagram, represents the irreduci- 
ble part of the four-point correlator. 

Integrals similar to i,, i,, i, are encountered in quantum 
 electrodynamic^.^' The first of these three diagrams is evalu- 
ated in Appendix A. The main results can be summarized as 
follows. 

The zero-order moment can be written as the sum of 
two contributions of different physical origin: 

The term m, describes the contribution to scattering of 
short-wave fluctuations in the order parameter. It is charac- 
terized by a linear dependence on volume: m, a Vg, (u) ,  
u=k,r,. When u is small, the function g, ( u )  is proportional 
to r, whereas in the immediate neighborhood of T, the func- 
tion g ,  (u)  is found to reach its limiting value for u 2 1. A 
detailed analysis of the parameters of the short-wave mecha- 
nism was given in the last section. 

The termp, in ( 13) represents the contribution of dis- 
tant dipole re-emission to the total doubly-scattered intensi- 
ty. Strictly speaking, it is only scattering of this type (the 
second radiator lies in the wave zone of the first) that should 
be regarded as double scattering. It is characterized by a 
nonlinear dependence on volume: p, a v4I3g2 ( U  ) . For small 
u, we have g,(u) a u4 and, as can be seen from (A3), this 
leads to the isotropic scattering pattern. An appreciable de- 
pendence on the scattering angle becomes apparent as u in- 
creases. The quantity p, also reaches it limiting value in the 
neighborhood of T,. This mechanism was investigated in 
Ref. 16, 17,20, and 22-24 and elsewhere (see also Ref. 25). 

It is important to note the following. In the zero-order 
approximation, the short-wave contributions of diagrams i, 
and i, are the same and the corresponding contribution of 
diagram i, is negligible. The former statement is obvious and 
the second is readily verified: 
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The functions G4 is given by ( 12). Since q, k,, k ,  g k , ,  k,, we 
can put q = k, = k, = 0 in the zero-order approximation. It 
is readily seen from (12)  that i3 will be zero. In the long- 
wave region, the only dominant diagram will be diagram i , .  
Thus, according to Ref. 22, the ratio i3/i1 does not exceed 
10-2~2v.  From the physical point of view, the small value of 
the ratio i2/i3 is explained by the rapid attenuation of corre- 
lation with increasing separation between the scattering 
centers. 

The contribution to the second moment due to diagram 
i ,  is 

It is shown in Appendix B that the spatial dispersion of the 
mutual diffusion coefficient of the solutions is described by 

D ( k )  = (k,T/GnE) (B-'G ( k )  ) -Ii', 

so that 

% ( k )  =B (kBT/6nE) 'k4 .  

The principal contribution to ( 14) is due to small-scale 
fluctuations: 

where A is the cutoff parameter ( A ( l / a ) .  The principal 
contributions to ~ ( k )  and C:" are practically insensitive to 
the critical point. The contribution of the poles of the propa- 
gator in ( 1 4 )  does not have a simple structure. When u(1, 
we have 

where Do = kgT/6r{r0 is the diffusion coefficient well 
away from T, and 0 is the scattering angle. When u 2 1 ,  the 
explicit form ofp;" for arbitrary 0 is complicated and incon- 
venient for analysis. We shall now exploit the fact that, 
usually, 0 = 90", in which case the contribution of the poles 
in C i l)  is given by 

where F=1 + 1/2u2 and we have used the approximate re- 
sults 

(k-k,)  *--4k,"(-nni) ', n=k/k,  n,=ki /k ,  (i=O, s )  , 

which will also improve the convergence of the correspond- 
ing integrals. 

When u< 1 ,  expression ( 17) becomes identical with 
( 16) for 0 = 90". In the neighborhood of the critical point, 
pi1) reaches the limiting value 

We now note the following points in relation to the con- 
tribution of diagrams i2 and i, to the first moment. The mag- 
nitudes of the short-wave contributions generated by i ,  are 
the same in the zero-order approximation as those for dia- 
gram i , .  On the other hand, since the contribution of the 
propagator poles of diagram i ,  and the resultant contribu- 
tion of diagram i, to the zero-order moment are negligible, 
there is no need to calculate the other spectral parameters. 
We thus have m2z2m:",  p 2 z p i 1 ' .  

The fact that the short-wave and long-wave contribu- 
tions to the moments of the doubly-scattered spectral inten- 
sity can be separated is a reflection of the fact that they de- 
scribe different processes. The long-wave contribution is 
characterized by a different temperature dependence and 
different response to a change in the dimensions of the sys- 
tem. This is confirmed by the fact that the doubly-scattered 
spectrum is the sum of two profiles with different widths and 
different integrated intensities. It is clear from ( A 3 )  that m,  
and p, are of the same order of magnitude when 
rc ( E * )  z k ; 4'3 v - ' I 9  which means that, when V e  1 cm3 
and k0= lo5 c m l ,  we have ~*=0.02-0.03 or AT,* ~7 K. 
When AT, > AT,*, the Andreev mechanism predominates, 
whereas for AT, < AT,* the double re-emission mechanism 
is predominant. According to ( A 3 )  and ( 1 5 ) ,  the width 
rl = (m, /m,)  ' I 2  varies in accordance with 

The temperature dependence of T ,  is determined by the cor- 
relation length and shear viscosity. The influence of the lat- 
ter may be reduced by ensuring that the experiments are 
performed under isochoric conditions. The reduction in the 
Andreev contribution ceases for u 2  1 .  Assuming that 
12-5 x l o 7 - 7 ~  lo7 cm-', (=0.005 Pa, and r0=2.5 X lo-' 
cm, we find from ( 19) that r 0 1 / 2 ~ ~ 1 0 ' 0  s-' for AT,=30 
K and then decreases to T l / 2 r e 3  X lo9 s- ' for AT, = 1 K .  

In contrast to the Andreev-type scattering, the intrinsic 
double-scattering linewidth is very small. It follows from 
(A3) and ( 16) that the width T 2  = (p2/po)  ' I 2  for small u is 
given by 

The maximum value of T ,  is reached well away from the 
critical point: r2d2n- 5 lo5 s- I .  When the scattering angle is 
fixed, the temperature variation of T 2  is the same as that of 
the width To of the central component of polarized singly- 
scattered spectrum. However, in contrast to To, the angular 
dependence of T 2  is not well defined. It follows from ( 2 0 )  
that their ratio is 

In the immediate neighborhood of T,,  the width T ,  assumes 
its minimum value r,, which, according to ( 18) and (A4), 
is given by 
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FIG, 2. The ratio r2/r2, as a function of u,  Points-xperimental data for 3. de~encience Of re' Points--experimental data for 

the methanol-cyclohexane solution,26 The value of TZB is taken at the C2H50H-CS2 The Of r ~ l  is taken for - In ' = 
and is r, , /2r = 2.97 cm-'. Curves 1 and 2 show the results of a theoreti- = 0.05 and ": o--r2d2r= 6.87x lo' (' = 5145 A) ;  A-r20/ cal calculation based on (22) with R,  = 0.1 and R,  = 0.3, respectively. 27r = 9 . 7 4 ~  lo3 s P 1  (A = 4579 A ) .  Solid line-theoretical. 

The order-of-magnitude estimate is T,, /237ekO roTzo/ 
25---5.10' s-'. Lines of this width are usually examined in 
detail by correlation spectroscopy. Comparison with experi- 
mental data26 shows that all the most characteristic features 
of the temperature behavior of T2 can be satisfactorily repro- 
duced (Fig. 2). We note that the analysis of the linewidth by 
the method of moments provides a painless way of proceed- 
ing from the hydrodynamic region (u( 1 ) to the fluctuation 
region ( u s l ) .  

54. INSTRUMENTAL EFFECTS 

The essential point here is that, in the usual experiments 
on WRL structure, the parameters of a doubly-scattered line 
are highly distorted by instrumental effects. Instead of the 
expected line I(w), the system will record j (w),  which is 
related to I(w ) and the instrumental function A (w) by1 

+- 

~ ( o ) = j  d w . I ( w l ) A ( o - w f ) .  
-m 

The instrumental function can be satisfactorily approximat- 
ed by the Lorentzian A (w) cc TA/(wZ + T; ) provided the 
frequency interval is not too wide. The wide T, of the Lor- 
entzian turns out to be6,' smaller than To, by roughly an 
order of magnitude and, essentially, the intrinsic doubly- 
scattered line may be regarded as a delta-function, in which 
case, 

Let To, = 11 TA . The observed doubly-scattered spec- 
turm is then the sum of two lines: 

Apart from (22), the spectrum will also contain a compo- 
nent due to the scattering of light by anisotropy fluctuations. 
However, this will have no effect on our subsequent conclu- 
sions. 

The procedure used to determine the width of the Lor- 
entzians that together describe the experimental data I, (w) 
is as follows. The first step is to plot I, (w ) as a function of 
w2. Straight-line segments are then identified (this is possi- 
ble when the linewidths are essentially different). These seg- 
ments are then extrapolated until they cut the I, axis. The 

values of w* for which I, ' (a*)  = 21, ' (0) then give the 
values of the corresponding widths. 

Let us apply this procedure to the function j(w). So 
long as AT, > AT:,-the second term in (22) can be neglect- 
ed. The condition IP1 (w)  = 2j-'(O) will determine the 
width of the Andreev line. However, because of the rapid rise 
in R ( E )  even for AT, e 1 K, the width of the observed line 
will be determined by the width of the instrumental function. 
In fact, the width T, of the resultant line falls by a factor of 
between nine and seven in the range 3-5 K. Assuming that 
re - E ~ ,  we find that for R,  = 0.1 the exponent y is close to 
0.8. For Ro = 0.3, the index approaches 0.95 (the values of 
R, are somewhat different for different media). All these 
facts are in good agreement with the experimental data (Fig. 
3) .  

Thus, the rapid narrowing of the WRL in the immedi- 
ate (AT, <AT:) neighborhood of T, is most likely to be 
due to the rapid rise in the intensity of intrinsic double scat- 
tering and the distortions introduced by the instrumental 
function. 

55. RELAXATION OF THE ANISOTROPY TENSOR 

Let us now examine the other mechanisms that can give 
rise to the narrowing of the molecular scattering spectrum 
produced by the solutions of liquids consisting of anisotropic 
molecules. For simplicity and greater clarity, let us consider 
the solution of anisotropic molecules in a solvent consisting 
of isotropic molecules. The depolarized molecular-scatter- 
ing spectrum is then be determined by the correlator of fluc- 
tuations in anisotropy pap : 

If we neglect the mutual effect of the molecules, we have 

where J' is the polarizability tensor of the ith molecule. In 
particular, it may be due to the mechanical anisotropy of the 
molecules. It is usually assumed (see Ref. 27) that, for 
w > vqZ - lo8, the anisotropy tensor satisfies the following 
simple relaxation law: 
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so that 

The time T can be estimated with the aid of some particular 
hydrodynamic model and, for solutions, it can be a function 
of concentration: T = 7(c). The essential point is that the 
rotational motion of the molecules is not the only mecha- 
nism responsible for the variation in paD (r,t). 

The density of the anisotropy tensor (24) will also vary 
as a result of fluctuations in the concentration of impurity 
molecules: 

i ( k ,  t )  =-D ( k )  k Z c ( k ,  t )  

The effect is particularly noticeable in small volumes (large 
k) .  Accordingly, paB satisfies the equation 

where u(r,t) is the hydrodynamic velocity in the diffusion 
equation cu = - DVc. It is assumed that, in general, the 
mutual diffusion coefficient is nonlocal. The appearance of 
the contribution div (qaB U )  is not unexpected if we inter- 
pret pap as the polarization density. This density is an exten- 
sive quantity in the molecular system. Equation (25) can 
also be looked upon as the equation for the density of the 
moments of inertia of the molecule. To take into account the 
effect of fluctuations in concentration on the nonconserved 
part of pnD, we expand the coefficient y(c) into a series: 

where F is the equilibrium concentration and c is the devi- 
ation from F. This expansion corresponds to the deviation 

of the thermodynamic potential @ from its equilibrium value 
and to the expansion of the coefficient A in the equation 
kaD = - AS@/6paD in powers of c: 

In the last case, the existence of linear terms is not forbidden 
by stability considerations. Expansion (26) is meaningful so 
long as the correction terms are small in comparison with yo. 

We must also take into account the fact that the angular 
correlation between the anisotropic molecules is quite weak. 
Accordingly, the terms uVpaD in (25) can be neglected. In 
the approximation that is quadratic in the fluctuations, we 
have 

(Pas=- ( ' f o + ~ 1 ~ + ~ 2 ~ ~ )  Tap- (~ap div U. (27) 

The term q, div u describes the variation in q, due to the 
loss of particles by diffusion from the neighborhood of the 
point r. An interaction between q, and c should lead to strong 
frequency dispersion of the width function because an anom- 
alous rise in large-scale concentration fluctuations near the 
critical point cannot radically alter the character of small- 
scale rotational motion of the molecules. 

Equation (27) may be looked upon as a relaxation 
equation with a random force: 

This has the obvious solution 
t 

pal ( f )  = K  exp dt f$  ( t r )  ) rpaB ( 0 )  (K=const) .  (29) 
0 

Substituting this in (28) and averaging over all the possible 
realizations of the field $, we obtain the equations for the 
smoothly-varying variable $: 

The average in this equation can be determined by the Fur- 
utsu-Novikov meth~d. '~ . '~  Here, we take into account the 
fact that the correlation properties of the field $(t) can be 
described with good precision by the Gaussian approxima- 
tion. We then h a ~ e ' ~ . ' ~  

t 

=- 5 d t r ( $ ( t )  $ ( t l )  ) ( e i p  { - d P $  (t") } ) , 
0 0 

which, together with (30), leads to 

After the Fourier transformation of (31) with respect to 
time, and the application of the fluctuation-dissipation 
theorem, we obtain 

The diffusion equation c = - div Zu, where Fu = - DVc, 
leads to 

(div u div u),= (mz/CZ) ( C  (r, t )  c ( r ,  0 )  ),. 

Finally, the contribution of fluctuations in anisotropy 
to the spectrum of depolarized scattered radiation is given by 

- y 2 2 ( ~ 2  ( r ,  t )  c2 ( r ,  0) I-'). 
In contrast to the contributions proportional to and g, 
which are small in comparison with yo, the diffusion contri- 
bution (w2/F2) (c( r,t)c( r,O) ), is comparable with yo for 
w - yo. It follows directly from the diffusion that 

If we neglect the dispersion of the diffusion coefficient, the 
above sum can be evaluated very simply: 
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When the spatial dispersion of D ( k )  is taken account (see 
Appendix B),  the result becomes very unwidely. The first 
few terms of the asymptotic expressions are as follows: 

It is clear from ( 3 3 )  and ( 3 4 )  that, for 0 < w < ~ / , , / r : ,  
the width of the profile is reduced by the amount 

Moreover, Dd.,,/r: -yo only at sufficient distance from the 
critical point (AT,  > 20 K ) .  Correspondingly, the intensity 
at zero frequency increases by the factor 1 + Ay/yo. The 
validity of these estimates is restricted by the condition Ay/ 
yo < 1. The contribution (c2(r , t )c2(r ,0)  ), has an analo- 
gous behavior, but its magnitude is much smaller. 

There is, however, a more important point that, per- 
haps, should to be brought out here. The diffusion contribu- 
tion to the width function leads to a departure of the line 
shape from the Lorentz shape and to the corresponding 
slowing down in the reduction in intensity I, (a )  for w > yo: 
I ,  ( w )  a o - ~ ' ~ .  The approximation of this profile by a set of 
Lorentzians is then physically incorrect and may lead to 
spurious effects. The essential point is that the integrated 
intensity of this contribution remains practically the same as 
Tc is approached. 

Thus, we may conclude that it is only well away from 
the critical point that anisotropy fluctuations can lead to 
observable effects, i.e., a reduction in the linewidth and an 
increase in intensity at zero frequencies. 

56. DISCUSSION 

We have shown that the narrowing of the WRL in solu- 
tions near the critical point is largely determined by double 
scattering effects. For temperatures in the range 
T, + AT: < T <  Tc + (30-40) K ,  we have T, a ~ " ' ~ / l  and 
the narrowing is determined by the Andreev mechanism. 
The contribution of this mechanism is an appreciable frac- 
tion of the intensity scattered by anisotropy fluctuations, 
which increases as the critical point is approached. 

The accelerated narrowing of the WRL near the critical 
point is not actually due to any particular mechanism but is 

the resut of the influence of the instrumental function. This 
can be readily verified by varying its width and form. We 
draw attention to the fact that it will be essential to increase 
the precision of experimental data. It can be directly verified 
that an error of a few percent in the measured I ,  ' ( w )  in the 
region in which there is a rapid narrowing leads to an appre- 
ciable change in the temperature behavior of l?, . In particu- 
lar, this may lead to the appearance of "steps." We note that 
the influence of double-scattering effects can violate the con- 
dition A, = I H H / I  HV = 1 in the region of rapid narrowing. 

The spectrum of anisotropy fluctuations undergoes a 
definite change only well away from the critical point. The 
more important result here is that the line profile is not ana- 
lytic and cannot be represented approximately by a finite set 
of Lorentzians. 

We are indebted to A. F. Andreev, I. L. Fabelinskii, and 
V. S. Starunov for discussions of these results. 

APPENDIX A 

Evaluation of the diagram i, 

The diagram i, corresponds to the following analytic 
expression: 

Using Feynman's formula 

and transforming to the dimensionless variables z = kr,, 
A* = Arc, u = korc, we find that 

i1.R2VrC [ [SZ z4n.'n,l/ r]: ( z - z , )  ] 

J dt[ l+u2+z2-2zp(t) u,-Z, 
0 

where y ( t  ) = ( tq + ko) /ko ,  n = z / z ,  zi = f u f iA* are 
the poles of the propagator T ( k ) .  Since the integral with 
respect to z converges satisfactorily, the limits of integration 
can be removed to infinity. We now rotate the coordinate 
frame around the y-axis through the angle a, so that the 
vector p ( t )  in the new frame lies along the polar axis. It is 
readily verified that 

where 6 is the angle betwee ko and k,. Integration with re- 
spect to the aximuthal coordinate yields 

i,cc --- n"vrc [ j d~ Z' / r]: ( z - z , )  ] 
16u2 -_ ,=I 

where 
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j, ( x )  = (1 - x 2 )  (5z2+ 1) 

All the integrals in ( A l )  can be evaluated explicitly. The 
final result can be conveniently written in the form of the 
following series: 

m 

where 

(n!)" 
I ,  = 

The function 

2ni dz(n-s)-l Z2 (p+n) 
- - 

( ' - uY2 ((Z + Z O ) 2 ( b - l l )  ( 2 s  + 2n  - I)! d,'cnts)-I zL 
zU=t (I+TLZ,''~ 

describes scattering by small-scale fluctuations in the order 
parameter. The second function 

describes the contribution of distant dipole re-emissions. 
The series in (A2) converge absolutely. The first few terms 
of (A2) are: 

In the special case where 0 = 90", the limiting value of the 
contribution of the propagator poles for u--+ w is 

APPENDIX 6 

Spatial dispersion of the mutual diffusion coefficient of 
solutions 

Various m e t h o d ~ ~ ~ , ~ '  are available for determination of 
the properties of kinetic coefficients in the neighborhood of 
the critical point. They rely on various assumptions and lead 
to differential functional expressions for the mutual diffu- 
sion coefficient D. 

We shall show that it is possible to use a direct method, 
based on the determination of the width of the spectral func- 
tion (c(r,t)c(O,O) ),,, with the aid of the frequency mo- 
ments [see formula (3  ) 1, to establish the behavior of D. 

Fick's law cq ( t )  = - q2D(q)cq ( t )  shows that the 
spectrum of the correlator 

has the width 

y=D ( q )  q2 

When qr, 2 1, the diffusion coefficient becomes essentially 
nonlocal. Comparison of (3 ) with (B 1 ) leads to the follow- 
ing definition: 

The zero-order moment S(q)  = (c(r,O)c(O,O) ), is the 
usual structure factor of the system. In the Landau theory, 
S(q)  = B e / (  1 + q2< ). We note that the second moment 
and the higher-order moments are regular at the critical 
point for all q. For the second-order moment, this follows 
directly from the definition of concentration: 

Nt 

This means that the critical properties of D(q)  are largely 
due to the structure factor of the system: D(q) cc S -"2(q). 

The additional weak temperature dependence intro- 
duced by the second moment can be estimated as follows. It 
follows from (B2) that, well away from the critical point, 

where we have used the estimate S(q)  z B 6 ,  r,- lop8 cm. 
The coefficient Do( T) - T/g, where 6 is the shear viscosity, 
but otherwise Do( T) depends only on the molecular param- 
eters. Since the second moment is regular, its structure (B3) 
must be preserved in the neighborhood of the critical point. 
The regular parts ofD,( T) and cmust be taken in this proce- 
dure. 

Thus, in accordance with (B2) and (B3), in the region 
of highly developed fluctuations, we have 

If we use the Einstein formula D,(T) = k,T/6?rgr0 and 
take into account the deviation from the Landau theory, we 
obtain 

where 77 is the anomalous dimensionality. The structure of 
this formula is essentially different from the results in Refs. 
30 and 3 1 although it becomes identical with them in limit- 
ing cases. According to Ref. 3, the formula T, = D(q)q2 
with D(q)  given by (B4) provides the best approximation to 
experimental data on the width of the central component of 
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the spectrum of polarized scattered intensity for qr, in the 
range 0.1-10. 

'I. L. Fabelinskii, Molekulyarnoe rasseyanie sveta (Molecular Scattering 
of Light), Nauka, Moscow, 1965, Secs. 1,2, 12, Appendix I11 [Plenum, 
19681. 

'H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena 
[Russian translation, Mir, Moscow, 1973, Chap. 61, Oxford University 
Press, 1971. 

3A. Z. Patashinskii and V. L. Pokrovskii, Fluktuatsionnaya teoriya fazo- 
vykh perekhodov (Fluctuation Theory of Phase Transitions), Nauka, 
Moscow, 1982, Chap. 7. 

4A. K. Atakhodzhaev, L. M. Kashaeva, L. M. Sabirov, etal . ,  Pis'ma Zh. 
Eksp. Teor. Fiz. 17,95 (1973) [JETP Lett. 17,65 (1973)l. 

51. L. Fabelinskii, V. S. Starunov, A. K. Atakhodzaev, et al., Opt. Com- 
mun. 15,432 (1975). 

6G. I. Kolesnikov, V. S. Starunov, and I. L. Fabelinskii, Pis'ma Zh. Eksp. 
Teor. Fiz. 24,73 ( 1976) [JETP Lett. 24,62 ( 1976) 1. 

71. L. Fabelinskii, G. I. Kolesnikov, and V. S. Starunov, Opt. Commun. 
20, 130 (1977). 

'V. F. Kitaeva, G. I. Kolesnikov, N. N. Sobolev, et al., Zh. Eksp. Teor. 
Fiz. 79,431 ( 1980) [Sov. Phys. JETP 52,216 (1980) 1. 

9L. M. Kashaeva, L. M. Sabirov, T. M. Utarova, and I. A. Chaban, Zh. 
Eksp. Teor. Fiz. 79, 1257 ( 1980) [Sov. Phys. JETP 52,635 (1980) 1. 

'OD. Beysens, A. Bourgon, and G. Zalezer, Opt. Commun. 15, 436 
(1975). 

"J. D. I. Phillies, P. J. Chappell, and D. Kivelson, J. Chem. Phys. 68,403 1 
(1978). 

"D. Beysens and G. Zalczer, Phys. Rev. A 18,2280 ( 1978). 
13J. R. Petrula, H. L. Straus, K. Q. H. Leo, and R. Pecora, J. Chem. Phys. 

68,623 (1978). 
I4G. Zalczer and D. Beysens, J. Chem. Phys. 72,348 ( 1980). 

254 Sov. Phys. JETP 62 (2), August 1985 

15A. F. Andreev, Pis'ma Zh. Eksp. Teor. Fiz. 19,713 (1974) [JETP Lett. 
19,368 (1974)l. 

16E. A. Lakoza and A. V. Chalyi, Zh. Eksp. Teor. Fiz. 72, 875 (1977) 
[sov. P ~ Y S .  JETP 45,457 (19i7)i .  

I7D. Beysens and G. Zalczer, Phys. Rev. A 15,765 ( 1977). 
"I. A. Chaban, Zh. Eksp. Teor. Fiz. 69, 1550 (1975) [Sov. Phys. JETP. 

42,790 (1975)l. 
I9M. F. Vuks, Rasseyanie sveta v gazakh, zhidkostyakh i restvorakh 

(Scattering of Light by Gases, Liquids, and Solutions), Leningrad State 
University, 1977, Chap. 3. 
'q. L. Kuzmin, Opt. Spektrosk. 44, 529 (1978) [Opt. Spectrosc. 

(USSR) 44,307 (1978)l. 
"V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Kvantovaya 

elektrodinamika (Quantum Electrodvnamics), Nauka, Moscow, 1980, 
Sec. 131. 

"E. L. Lakoza and A. V. Chalvi. Zh. E k s ~ .  Teor. Fiz. 67, 1050 (1974) 
[sov. P ~ Y S .  JETP 40,521 ( 19-75) I. 

23D. W. Oxtoby and W. M. Gelbart, J.Chem. Phys. 60, 3359 (1974). 
Z4L. V. Adzhemyan, L. Ts. Adzhemyan, L. A. Zubkov, and V. P. Ro- 

manov, Pis'ma Zh. Eksp. Teor. Fiz. 22, 11 ( 1975) [JETP Lett. 22, 5 
(1975)l. 

25E. L. Lakoza and A. V. Chalyui, Usp. Fiz. Nauk. 140,393 ( 1983) [Sov. 
Phys. Usp. 26,573 (1983)l. 

26C. M. Sorensen, R. C. Mockler, and W. J. O'Sullivan, Phys. Rev. A 16, 
365 (1977). 

"S. M. Rytov, Zh. Eksp Teor. Fiz. 61,398 (1971) [Sov. Phys. JETP34, 
211 (1972)l. 

'%. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Vvedenie v statisti- 
cheskuyu radiofiziku. Ch. 11, Sluchainye polya (Introduction to Statis- 
tical Radiophysics, 2, Random Fields), Nauka, Moscow, 1978, Sec. 7. 

29A. V. Zatovskii, Ukr. Fiz. Zh. 29, 1338 (1984). 
30E. Kawasaki, An. Phys. 61, 1 (1970). 
31R. A. Ferrell, Phys. Rev. Lett. 24, 1169 (1970). 

Translated by S. Chomet 

N. P. Malomuzh and M. Ya. Sushko 254 


