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The dynamics of nonlinear magnetosonic oscillations is considered. Model equations are derived 
and used to show that hydrodynamic wave breaking may be important in systems at high Mach 
numbers. In this case a magnetosonic shock wavefront may have a "flickering" structure in which 
regions of hydrodynamic wave breaking form and decay. The density of reflected ions is much 
higher inside these regions, the plasma is more turbulent, and energy is dissipated faster. Else- 
where, the plasma can be described by the standard theory for collisionless shock wavefronts of 
laminar structure. Novel classes of solutions are found which describe stationary collisionless 
shock waves in the ion-kinetic approximation. 

The basic physics of collisionless shock waves (CSW) 
was developed by Sagdeev in Refs. 1 and 2. According to this 
theory, two competing effects--dispersion and nonlinear- 
ity--ensure that the profile of the shock wavefront is station- 
ary. However, an oscillatory structure is found if weak 
damping is included in the model.' Leter work has been con- 
cerned with finding a self-consistent oscillatory structure 
with allowance for specific plasma-turbulence mechanisms 
and for an effective collision frequency related to the plasma 
turbulence. At the same time, Gurevich and P i taev~ki i~ .~  
studied nonlinear one-dimensional plasma motion in the ab- 
sence of a magnetic field and discovered some novel effects 
such as kinetic wave breaking, which produces several peaks 
of particle-velocity distribution function and runaway of so- 
liton-like structures from the shock wavefront. In the pres- 
ent paper we study some general features of the dynamics of 
nonlinear magnetosonic waves and analyze some properties 
of quasistationary structures. 

STATEMENT OF THE PROBLEM 

We consider a plasma in a magnetic field H such that 

where n, and ni are the electron and ion densities and me, 
mi are the corresponding masses. We will analyze nonlinear 
plasma motions with plasma velocity V- VA ",c and charac- 
teristic times 7 -wpi ' ~ w G ' .  Here wpi = (4rnie2/mi ) ' I 2  

and w, = eH/mic are the plasma and gyrofrequencies of 
theions, and V, = H /(47rni mi ) 'IZ isthe Alfvenvelocity. In 
addition, we assume that 8 m i  q./H 2",~$i/wzi, where Ti is 
the ion temperature. We can then neglect the magnetic field 
and the ion kinetic viscosity in the equations of motion for 
the ions, i.e., we use for the ions the "collisionless hydrody- 
namic" approximation. Under these assumptions the elec- 
trons can be described in the hydrodynamic approximation 
with their inertia neglected, and the Lorentz force in the ion 
equations of motion can be discarded. The system of equa- 
tions describing the plasma motion is then given by' 

d n .  d 
-+-(cn.f) d t  d X  -0, 

dH 4ne n,c dcD 2YT.cn. dn, 
f Vvd3V - -- +-- 

d X c H d X  noeH d X  

where all variables vary along the X axis, and the field H and 
the solenoidal component of the electric field E are directed 
along the Z and Y axes, respectively. We use the adiabatic 
approximation with exponent y = 2 to describe the electron 
pressure across the magnetic field lines, and denote by zero 
subscripts quantities that are unperturbed, say, in the limit 
X-+  - ~ , f o r w h i c h n ,  =n ,  =no,H=Ho,@=O.Wecan 
use our assumptions to simplify ( 1)-(5) considerably. First 
of all, (1) and (2)  imply that 

We note next that in terms of the vector potential 
A = (O,A,O), where H = aA /aX and E = c-'dA /at, we 
have n, = $(A)dA /ax, where the function $(A) is arbi- 
trary. Throughout the following we will assume that the 
density-field ratio is "uniformly frozen-in", i.e., n, /H = n d  
H,. In view of our above assumptions, we can neglect in (3)  
the displacement current c-'aE /dt and the ion current; we 
then obtain 

The electron density thus depends linearly on the potential 
a': 

Since the field E does not appear explicitly in Eqs. (3),  
(5) and can easily be found from (2) if H (or @) is known, 
we can eliminate it also from Eq. (4) after integrating f over 
d V,, d V, . The integral 
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then satisfies the equation 
aE dF  e diD dF ---- + u--- 
d t  d X  m, d X  du 0, 

where ni = JFdu. Equation (5)  thus reduces to the Helm- 
holtz equation with right-hand side 

and @ can be related to the density by the integral equation 

IE-XI 0 ( X ,  I )  =2neh2 J (ai ( E )  -no) exg [ - --I dE, 
- w h 

where 

The irrotational component of the electric field is given 
by 

+- 

Physically, the above description says that because the elec- 
tron density is linear in +, the electric field is uniquely deter- 
mined by the ion density ni and depends at any point on the 
density distribution in a small neighborhood AX-A; the 
only role of the electrons is to produce in the plasma the 
familiar Debye screening (with "effective Debye radius" 
equal to A), while the sum of the electron and magnetic-field 
pressures divided by no plays the role of the electron tem- 
perature. The entire system ( 1 )-(5 ) has thus been reduced 
to the pair of equations (7), (8). Since the hydrodynamic 
approximation correctly describes many of the general dy- 
namic properties of nonlinear motion, we will derive the hy- 
drodynamic system of equations that correspond to (7),  
(8). First we observe that since the characteristic times 
r-m,i ' ( m ~ ' ,  the transverse motion of the ions is one-di- 
mensional; the ion pressure can therefore be described adia- 
batically with adiabatic exponent y = 3. The "collisionless 
hydrodynamic" equations for the plasma then take the form 

where V is the ion velocity. It will be helpful to switch to 
dimensionless variables in ( lo),  ( 1 1 ) and (7 ) , (8 ) by defin- 
ing 

cp=e@/VAZ(l+~,) m, s=X/h, ~=o,it, 

System (1 I) ,  ( 12) then becomes 

We note that if the radius of convergence of the Taylor 
series expansion of 7 (x,r) about x = xo is infinite, then Ex 
can be expressed as a finite sum of derivatives of the density, 

On the other hand, if the gradient is dv/dx > 1 in a neighbor- 
hood Ax of some point x,, the approximation 

is valid near x,; here 6 7 ~ 7  (xO + A x )  - 7 (x0 - Ax), 
where Ax is the characteristic length of the region in which 
av/dx > 1. Physically, ( 16) says that an "isolated" abrupt 
density gradient will locally enhance the electric field; for 
example, the local field E z  - 6 7  exp( - 1x1) for a step- 
function change 67  in the density. 

STATIONARY NONLINEAR WAVES 

We begin our analysis of the solutions of Eqs. (12)- 
(14) (nonlinear waves) by studying solutions that depend 
on the single variable x = x - v, r.  In this case we readily 
find two integrals of the motion, which correspond to parti- 
cle flux and energy conservation, respectively: 

where we assume that 7 -+ 1 as x -+ co , M is the nominal 
Mach number, and p ( - co ) - 0. If we assume thatB < M 
then we find the expression 

for 7 in terms of p, where I = M /p 'I2. Setting px = 0 for 
p = 0, we then get the nonlinear-oscillator equation1 

The nonlinear-wave solutions can be found by analyz- 
ing the Sagdeev potential2 and the energy levels in a potential 
well for a potential of the form 

cp2 U(y )=- - -  lp- 
2 6 

For p > 0, U is defined only on the interval O < p <  ( l /  
2) p(I - 1 )'; moreover, since we have chosen px to vanish 
forp = 0, the well will exits only ifd 'U/dp 2 1 p  = 0 < 0, i.e., 
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if M > 1 + fl. In order for a solution to exist such that 
px = 0 for e, = 0, we must have 

which implies that 

This condition becomes particularly simple if M>fl 'I2; 
in this case it is equivalent to M<2, as was first noted by 
Sagdeev. ' We stress here that there is a critical Mach number 
above which the solution is such that the potential e, is 
smoother than the density (and hence the velocity). Assume 
that 

near a maximum point X, (here 7 = M '/'Q -'I4 and 
e, = pmax ). The E vanishes at ,yo and 

aqlax=- (aI2g)'" sign ( x - x o ) ,  
which shows that the density crests for these nonlinear solu- 
tions become sharper. The electron and ion densities may 
differ greatly; for example, for M>fl 'I2 we have 

We will now use the Vlasov kinetic equation to analyze 
the nonlinear stationary waves by making use of Eqs. (7), 
(8),  which take the dimensionless form 

As before, we seek solutions that depend on x,r through the 
single variablez = x - u ,~ .  The problem then reduces to the 
stationary Bernstein-Greene-Kruskal equations5 if we pass 
to a coordinate system moving at velocity u,. The distribu- 
tion function depends only on a single variable (the energy) 
in the integral of motion (the velocity u can be neglected). If 
we choose the potential e,(z) so that e,, is some arbitrary 
function of e, and specify the velocity distribution of the un- 
trapped ions, we can then derive an Abel integral equation 
for the reflected (or trapped) ions. The solution of the Abel 
equation is well known and the problem is exactly the same 
as for a dipole sheet,6 except that in our case the electron 
density is specified ab initio. In order to analyze a solution 
that describes a collisionless shock wave, we choose the pro- 
file 

cp ( 2 )  ==cpo(l+th z /L ) .  

Then 

If the distribution function for the untrapped ions is taken to 
be of the form 

where B ( v )  = 1 for u>O and 0 otherwise, one can show that 
the quasineutrality condition for x -+ + (where 
e, = 2p0) implies that 

no= ( I +  2141,) [(2cpo+T) '"- (Zcp,)  '"]/T'". 

Our model thus yields the expression 

for the untrapped-ion density; the particle flux is constant 
and equal to 

In this case we define the Mach number M as the particle flux 
divided by the number of untrapped ions as e, -+ 0, i.e., as 
the Mach number for the ions in the incident flux; we thus 
have 

We define the temperature of the untrapped ions as 

which turns out to be 

It increases monotonically from (&3) [ l + T /  
4p0 - (1  + ~ / 2 p , ) " ~ ]  ate, = 0 to T/12 ate, = +,. 

The distribution function of the reflected ions is readily 
found to be7 

8 
--2(2cpo--W)" + ,(4U"-6wcpo+cp:) 5L cpo ( 2 9 . - ~ ) ' )  . 

The system has then three free parameters, e,,, T, and L, 
subject to the single requirement that F,,( W) > O  for 
0 < W <  2p,. This inequality restricts the range of L values 
for a specified potential e,,. This restriction can also be re- 
garded from another viewpoint as saying that each given 
width L corresponds to an interval of admissible e,, values 
(i.e., Mach numbers). We note one more curious fact that 
the ion density may depend nonmonotonically on g, if L < 2; 
in this case it has a minimum 

and a maximum 
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The density profile and the potential g, have then the form 
shown schematically in Fig. 1.  

It is easy to see the cause of the density dip on the lead- 
ing edge of the shock wavefront and of the peak on the trail- 
ing edge. The condition L < 2 means that the oscillations are 
determined almost entirely by the potential, so that depar- 
tures from quasineutrality should be important; in fact, they 
are responsible for the dip and subsequent peak of the ion 
density. Many other types of solution, including solitons, 
periodic waves, etc., also exist for our model. We note that 
the lack of a one-to-one correspondence between the Mach 
number and the width of the front is probably due to our 
neglect of plasma turbulence. Our result that there are no 
solutions with L <LC, (where LC, is determined by the equa- 
lity Frr ( W )  = 0)  should therefore be interpreted as assert- 
ing the nonexistence of stationary solutions with Mach 
numbers M > M,, . One must analyze the time-dependent 
equations in order to find the behavior in this case. 

DYNAMICS OF NONLINEAR MOTION 

We have shown that in the hydrodynamic approxima- 
tion, the density profile of nonlinear waves with M = M,, 
becomes sharper at the point where g, reaches a maximum. 
Whitham8 has observed that this sharpening implies that 
hydrodynamic wave breaking (or in other words, a gradient 
catastrophe) may occur in the system. Since this process can 
give rise to interesting observable singularities, we will ana- 
lyze the general dynamic properties of these types of nonlin- 
ear motion. We start with the case L)1; since 
/3 < W$;/W;, < 1 ,  we may also neglect the ion pressure. If we 
set E = - dg/dx in accordance with ( 14), the system ( 12), 
( 13 ) can be written as 

in terms of the Riemann invariants 1 = v + 217'12, 
r = v - 2g1'2. The standard method for solving such sys- 
tems is the following. Using a hodograph transformation we 
interchange the dependent and independent variables. In- 
troducing next a function W(l,r) such that 

X 
FIG. 1 

we obtain the Euler-Poisson equation 

whereby the Cauchy problem of the initial system is reduced 
to the Cauchy problem in the Riemann method for Eq. (22) 
(see, e.g., Ref. 9).  However, even in the simplest cases the 
solution is too elaborate to yield much insight. We will there- 
fore not strive for completeness but merely state the main 
facts that will be required (detailed derivations may be 
found in Refs. 10 and 1 1 ) . 

Simple waves, i.e., those for which one of the Riemann 
invariants is constant, are the simplest type of nonlinear mo- 
tion described by Eqs. ( 16), ( 17). As an example, consider a 
shock wave in which8 

Since the velocity increases with density, all such waves 
break, i.e., q, becomes infinite within a finite time. 

A more general result states that a gradient catastrophe 
(i.e., wave breaking) is impossible only if al,,/dx > 0 and 
dr,,/dx > 0 for allx [here l,(x) = l(x,O) and ro(x) = r(x,O) 
are the values at the initial instant]. On the other hand, sup- 
pose that dlo/dx < 0 at some point x, and let C + be the char- 
acteristic curve emanating from x,, on which d ~ /  
dt = (31 + r)/4; then the derivativedl /ax will be negative at 
all times ton C + and will reach - co within a finite time; a 
similar assertion holds for dr/dx. A detailed proof can be 
found in Ref. 1 1 .  

In terms of the physical variables v and 7, this means 
that if 

then one of these quantities (whichever has a negative deri- 
vative) will reach - co within a finite time, meaning that 
regions of multiple flow will form. 

It follows in particular, that in order for wave breaking 
not to occur one must have dd /ax > 0 everywhere, which is 
more an exception than the rule. We note that Refs. 10 and 
11 have given a detailed analysis of the interaction among 1- 
waves, r-waves and shock waves for polytropic gases whose 
equations of motion coincide with (20) and (2 1 ) . 

The next step is to allow for the finite ion pressure, i.e., 
the fact that /3 f0. Here we will assume that L> 1, so that 
Eqs. ( 12), ( 1 3 ) ,  expressed in terms of invariants under the 
same assumptions as above [i.e., E = - dg/dx + o ( L  * )  1, 
take the following form: 
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{v+q'"(I+pq)"+P-'"In [(Pq)"+ ( I + f ~ q ) ' ~ ]  ).r 

+ [u+q'(l+$q)'"] { ~ + q ' ~ ( l + P q ) ' ~ + p - ~  In [ (pq)" 

+(l+Bq)"l)x=O, (24) 
{u-q"(I+pq)'"-p-"In [(pq)'"+ (I+pq)"]), 

+ [v-q" ( l fpq)"]  {v-q'"(l+~q)'" 

-P-" ln [(pq)'"+ (I+pq)'"]).=O. (25 

The simple waves in this case are given by 

They also break, i.e., 7, becomes infinite in a finite time. 
Moreover, sinceax 1, the ion pressure can be described in an 
approximation linear in 67 if 7 < 1/P, so that in this case the 
gradient-catastrophe theorem applies without modification. 

As long as we consider the dispersionless case, we can- 
not reach any conclusions regarding the dynamics of actual 
systems. However, hydrodynamic wave breaking is also 
known to occur in systems with nonlinear dependence of the 
frequency or the wave vector. 

We examine next an equation that describes waves clo- 
sely resembling simple Riemann waves. The dispersion 
equation for oscillations described by Eqs. ( 12), ( 13) reads 

which after expansion in powers of the wave vector k yields 

for small k. In order to calculate the nonlinear term in the 
equation, we will assume that v and 7 are related by 

just as for the case of a simple Riemann wave. Substituting 
v(7) from (28) into (24), setting 7 = 1 + 67  where67 < 1, 
expanding in powers of 67, and adding a third-derivative 
term corresponding to the expansion (27), we get the stan- 
dard Korteweg-de Vries equation 

This equation has been analyzed extensively. However, since 
w grows as k fork > 1 whereas w - k in our original system, 
it will be helpful to consider a somewhat different model 
equation corresponding to an expansion of w of the form 

Although this expression is not valid for k > 1, it correctly 
reflects the qualitative w (k)  dependence both for k( 1 and 
for k > 1. In this case the equation for nonlinear waves takes 
the form 

This equation was used by WhithamS and Seliger12 as a mod- 
el to describe waves in shallow water; they showed that it 
also describes hydrodynamic wave breaking, although in the 
latter case a wave-breaking threshold must be reached. The 
proof is due to Seliger12 and the result can be states as fol- 
lows. Let G and g be defined by 

G(T)= max qI(x, T), g ( ~ ) =  min q=(x, 
I X 

then if the profile is asymmetric enough so that 

g will blow up within a finite time, i.e., it tends to - 03 as - 
(rO - T - Similarly, one can show easily that for the sec- 
ond Riemann wave [described by Eq. (24) 1 G(T) tends to 
+ co within a finite time if G(0) + g(0)  > 2/(3 + 4P) .  

The self-similar solution 

is readily found to exist if we pass to a moving coordinate 
system (chosen so that the terms containing disappear); 
moreover, the last term on the right in (30) is negligible 
during the last stage of wave breaking. Since this term de- 
scribes the electric field E, this means that the behavior of 
the wave breaking is independent of E, which can therefore 
be neglected in the analysis of the generic singularities. That 
is, we may assume that the particles move freely and do not 
interact (if we neglect the pressure), or we may use the gas- 
dynamic approximation. We stress that wave breaking has a 
threshold, and in the above analysis the threshold is due the 
difference between the characteristic gradients. It must be 
noted however, that wave breaking can actually occur under 
less restrictive conditions, for the following two reasons. As 
we showed in the long-wavelength limit, nonlinear waves 
have the fundamental property that their wavefronts be- 
come steeper. The particle motion is therefore influenced 
only by the density distribution in a region of diameter -A; 
this implies that the gradient difference used in the proof 
actually corresponds physically to a gradient threshold. The 
second reason is that when the full system of equations is 
considered, initial conditions with subthreshold gradients 
may still give rise to a profile that satisfies the conditions of 
the theorem at some time; thereafter, the dispersion will no 
longer be able to suppress the nonlinearity. 

A kinetic process resembling one-dimensional hydro- 
dynamic wave breaking was investigated by Gurevich and 
Pitaevskii (Ref. 4, p. 30). In this case the analogy with hy- 
drodynamics is complete-the nonuniqueness of the veloc- 
ity profile for finite x in hydrodynamics corresponds to a 
bifurcation of the distribution function. This bifurcation can 
be described as follows: if we choose the line I in the (x,v) 
plane so that f(u,xd) = f,,, (v) for a given x, then as the 
parameter T varies the curve of type' in Fig. 2 will turn into a 
curve of type2, i.e., a curve with nonunique projectio.~ on the 
x axis. Since we have already seen that the electric field dur- 
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count shows that av/dx becomes infinite while the density 
remains finite. In the kinetic description, the derivatives 

I * 
FIG. 2 X 

ing the onset of "multi-flow'' motion has no influence on the 
qualitative form of the singularities generated during the late 
stage of wave breaking, we can ignore pressure effects and 
analyze "generic" hydrodynamic "catastrophes" by assum- 
ing that the particles move freely (Refs. 13, 14). The trajec- 
tory is then given by the expression 

r=a+v (a) 7, (31) 

where v(a) is the spatial velocity distribution at time zero. 
The velocity distribution at time T is given by v ( a ( r , ~ ) ) ,  
where the solution a of Eq. (30) is in general not single- 
valued. We have 

~ ( a ,  T) = n  (a, 0) /det(&k+'&ik (a) ), 

n,,=av, (a) tauk. 

If we expand r near a singularity in powers of a (we can 
arrange that the singularity occurs at a = r = 0 by a suitable 
choice of the coordinate system), we find that 

ri= (Pikf 7% (0) ) ak+f/2Biklakal 

+ilsCiklmakalam. 

The singularity occurs at the points at which the Jacobian 

dr - 
det 2 = det[6ik+~Qik(0) +Bik~aka~+C,k~ma~am] 

8% 

vanishes, and according to Ref. 15 it is generic, i.e., cannot be 
removed by a small change (jiggling) of the initial condi- 
tions. It has the form of a disk 

where T, = a/v is the characteristic wave-breaking time and 
R, ,R, are characteristic gradients on the profile along the z 
and y axes. 

The interior corresponds to a "fold" singularity in the 
~ ( x )  profile, while the boundary is a "cusp" singularity (see 
Fig. 3). The bifurcation makes the velocity profile multiple- 
valued in the interior and the derivatives dv/dd and av/dx 
infinite on the boundaries. Moreover, in the "ballistic" ap- 
proximation (free particle motion), the density also be- 
comes infinite on the boundary; however, an analysis of the 
stationary solutions with the finite pressure taken into ac- 

FIG. 3 
X 

become infinite. Since dv/dx is infinite on the boundary, the 
local electric field will have according to ( 16) a spike at the 
point x, (see Fig. 4): 

E,=- dq/dx=-6q exp (- lx-xo 1 ) .  
The electron current thus increases appreciably near x,, the 
ions near the boundary are acted upon by an accelerating 
electric field, so that the ion boundary is accelerated and 
their density behind it drops, i.e., the density spike may sepa- 
rate from the "fold." Since the ion distribution function 
within such a region has several peaks, various types of plas- 
ma oscillations may build up (magnetosonic, ion-sound, 
modified Buneman instability). This elongates the "tails" of 
the energetic electrons parallel to the magnetic lines of 
forceI6 and scatters the ions, whose diffusion tends to form a 
plateau in the ion distribution function (this is confirmed by 
numerical simulation and by experimental Ma- 
croscopically, this will cause rapid local heating of the ions 
and deceleration of the overturned ion flux. We can approxi- 
mately describe how these effects alter the behavior and 
structure of the density profile by adding to the right-hand 
side of (29), a term - Y,,S~ that accounts for the momen- 
tum lost by the overturned ions. This is legitimate if Sv for 
the reflected ions is much greater than Sv in the original 
solution without wave breaking. Equation (29) thus takes 
the form 

(32) 

Here N describes the flux density of the overturned ions. 
Detailed solutions of (32) have been given in the litera- 
t ~ r e . ' ~ . ~ ~  According to Ref. 20, the single-soliton solution 
found by perturbation theory has a trailing "shelf' and the 
soliton amplitude decays as exp( - veEr). In the limit 
x + co the shelf is a train of long, dispersing waves of small 
amplitude -ye,; nevertheless, it may contain up to one- 
third of all the particles in the soliton. Plasma turbulence 
and the associated deceleration of the overturned ion flux 
thus tends to flatten out the characteristic gradients. The 
same is true if the magnetic field is taken into account-the 
dependence of the Larmor radii of the ions on their velocities 
causes a dispersive broadening of the density profile and 
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smooths out the gradients. (Of course, our analysis permits 
us to consider only the qualitative behavior of the system). 
After the smoothing has occurred the wave-breaking may be 
repeated again, with the result that the edge of the collision- 
less shock wave takes on a "flickering" structure. Disk- 
shaped wave-breaking regions may "flare up" and die out at 
different points along the front and may be accompanied by 
macroscopic changes (an increase in the plasma turbulence 
and in the number of reflected ions, electron acceleration, 
rapid heating of the oncoming flux in narrow, local regions, 
etc. ). The regions of rapid heating border on regions of qua- 
silaminar flow in which the qualitative structure of the wave- 
front is given by the solutions of Ref. 1. In closing, we note 
that the behavior described above is quite general and is not 
confined to fast magnetosonic waves-it also holds for ion- 
sound and other types of plasma oscillations which exhibit 
hydrodynamic nonlinearity and have dispersions that satu- 
rate. 

I thank A. A. Galeev and A. S. Volokitin for valuable 
discussions, and E. N. Kruchina, V. N. Smirnov, A. V. Tur, 
and V. V. Yan'kov for helpful comments. 
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