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The effect of surface plasmons (SP) on the optical properties of rough surfaces of metals is 
considered. The angular and frequency dependences of the radiation produced upon decay of SP 
and in diffuse scattering of light, as well as the photoemission current from a rough metal surface, 
are calculated. It is shown that the foregoing effects can become considerably enhanced if the SP 
damping lengths governed by their decay in vacuum and absorption in the metal greatly exceed 
the damping length connected with transitions to other SP states. The possibility of comparing 
the theoretical calculations with experiment are considered. 

1. INTRODUCTION 

The optical properties of rough metal surfaces have at- 
tracted much attention recently. The rapid pace of the study 
of this subject was prompted by the discovery of new phono- 
mena connected with field enhancement at rough surfaces, 
such as the anomalously enhanced Raman scattering by ad- 
sorbed molecules and the enhancement of second-harmonic 

A similar enhancement was observed in the 
luminescence of molecules on the surface and in metal- semi- 
conductor-metal tunnel  junction^,^ as well as in photoemis- 
 ion.^ Advances in experimental techniques have made pos- 
sible also detailed studies of the characteristics of optical 
surface excitation on rough surfaces, such as the dispersion 
law, decay, and the role in diffuse scattering of light. The 
basic result was obtained in Ref. 6, where it was shown that 
in the presence of roughnesses the spectrum of surface plas- 
mons (SP) on silver undergoes not merely a shift, but a dou- 
ble splitting. It was concluded from the experimental and 
theoretical research that in those cases when rather long- 
lived surface excitations can exist, a description of the opti- 
cal properties of the interface, in lowest order in the interac- 
tion between the light and the roughnesses, leads to 
qualitatively incorrect results. In particular, when a finite 
number of the perturbation-theory-series terms is retained, 
it is impossible to explain the form of the angular distribu- 
tion of the radiation produced by the SP decay.' In addition, 
thecorrections to the polarization operator that corresponds 
to the nth term of the perturbation-theory series are propor- 
tional to [ ~ ( w )  + 11 - n ,  where ~ ( o )  is the dielectric con- 
stant of the As E(W) - - 1 this constant tends to 
infinity. A unique strong coupling between the field and the 
roughness sets in therefore, and it becomes necessary ac- 
cordingly to sum some infinite sequence of the series terms. 

We develop in this paper, for the description of light 
scattering by rough surfaces of metals, a method that makes 
no use of perturbation theory in the interaction between the 
light and the roughnesses. The field intensities near the sur- 
face and in the waves reflected from the metal we use a for- 
malism based on representation of the Green's functions for 
the electromagnetic field in the form of functional (path) 
integrals. The problem of statistical averaging over the 
roughnesses is solved by the faster method of introducing 
functional integrals with respect to the so-called superfields, 

which include simultaneously commuting and anticommut- 
ing variables, in analogy with the procedure used in the simi- 
lar, in many respects, problem of two-dimensional conduc- 
tivity in a random medium.'' We calculate in the framework 
of this method the angular distributions for the emission of 
SP and for diffuse scattering of light, as well as the field 
enhancement near the surface. It must be noted that many 
papers devoted to the description of the influence of rough- 
nesses on the optical properties contain errors due to incor- 
rect use, in the calculations, of field combinations that are 
discontinuous on the surfa~e.".'~ These difficulties are 
avoided here by using equations reconstructed in accor- 
dance with the scheme of Ref. 8 and containing only combi- 
nation of field components and derivatives that vary slowly 
on the surface. 

2. INITIAL EQUATIONS 

The surface of a metal occupying the half-spacex, < 0 is 
described by the function 

We assume that this function obeys a Gaussian distribution, 
and the mean values designated by the angle brackets satisfy 
the equations 

g (k)  =na2 exp (-a2kZ/4), 
(2) 

E (k) = d2x& (xll) exp (-ikxll), 

where k = (k,, k,) is a two-dimensional vector, (8 ')"' is 
the mean squared height of the roughness, and a is the corre- 
lation length. The electric field E ( x ,  t )  is real and satisfies 
the Gauss relation 

div z (x, o) E (x, 0) =O. ( 3 )  

E(X, w) in ( 3 )  denotes the dielectric function of the investi- 
gated system at the frequency w. We confine ourselves for 
simplicity to a local dielectric function ~ ( x ,  o) in the form 

which corresponds to a smooth transition, over atomic dis- 
tances a, from the dielectric constant of the metal to the 
dielectric constant of the outer medium. We can neglect in 
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this case the spatial dispersion far from the bulk-plasmon 
frequency interval.833 To shorten the intermediate calcula- 
tions and to make them more lucid, we assume for the time 
being that there is no absorption in the system under con- 
sideration, i.e., Im ~ ( x ,  w ) = 0. The final expressions for the 
observed quantities will be written for arbitrary Im E (x, w). 
In the calculations that follow we consider only electromag- 
netic-field components corresponding to p-polarization, 
since they make the main contribution to the field intensity 
near the surface, and hence to all the observable quantities 
considered in this paper. Additional allowance for the field 
components corresponding tos-polarization does not lead to 
significant complications. Under the assumptions made, the 
vector field E(xl ,  k, w ) can be expressed in terms of a scalar 
function a (x,, k, o) as follows8: 

d2k' 
E-l (x,, k-kf, 0) ep (k,, kr) a (xi, kg, 0). 

( 5  
where 

We introduce, as proposed in Ref. 14, a complete set of ei- 
genfunctions aO(xl, w, k, 6) that satisfy the following one- 
dimensional equation 

a2 
--A - aO(xl, 0 ,  k. a), 

c2 

which has the structure of the equation for ap-polarized field 
in the absence of roughnesses. We have introduced in (7) the 
parameter W2 that has the meaning of an eigenvalue. By 
E ~ ( X ] ,  w) we denote the function ~ ( x ,  w) defined by Eq. (4) 
at f =O. It is convenient to choose solutions aO(xl, w, k, 6) 
that are real and are normalized as follows: 

The subscripts sp and r denote here solutions corresponding 
respectively to the discrete and continuous spectrum. We 
assume here that the inequality1' E (w) < 0 is satisfied, so that 
a continuous spectrum exists at values of W2 located in a 
region 2Jl that consists of two intervals: W2> k 'c2 and 
W2 < k 2 ~ 2 / ~  ( 0 ) .  We assume for simplicity that the discrete 
spectrum has only one branch: 

o , ~ ~ = ~ ~ ~ ~  (0, k )  . (9) 
In particular, in the case of an abrupt boundary, 

&(0)+1 
a.pZ=kZcZy ( a ) ,  7 (0)  = - . 

E ( 0 )  

From the asymptotic form of the solutions a, O(x,,w,k,W ) as 

x,  + Ifr w it follows that the condition for the existence of a 
discrete spectrum in (7)  is the inequality ~ ( w )  < 0, i.e., the 
frequency w must be lower than the frequency wp of the bulk 
plasmons. 

We expand the function a(x,  w) of (5)  in terms of the 
solutions of Eq. (7) : 

a ) =  dQaba (RE) aaO (x,, 0 ,  B.) erp (ikx,,) . ( 11) 
a=sp.r 

We have introduced here the notation 

Substituting ( 5 )  and ( 11 ) in the equations for the field ~ ( k ,  
W )  we arrive at a system of equations for the quantities 
b, (aa 1: 

Here 

(kk') 6e (xi, k-k') 
fa~=c2J dxl {T 

i (k-k') 

6 ~ - '  (XI, k-k') -kkr - - aaO(xi, w, Q.)a,Y (xi, 0. QB)}. (14) 
E (k-k') 

We have introduced in (14) the quantities S~ (x , , k )  and 
SE- (x1, k),  which differ from zero only at atomic distances 
(along the coordinate x, ) from the surface and are given by 

d 
6~ (XI, k) =e ( ~ 1 ,  k) - (2nI26 (k) eo (xI) =-i (k) -- e, (xi) , 

dxi 

6 ~ - '  (xi, k) =E-' (xi, k) - (2n) '6 (k) (xl) 

The reason for retaining in ( 15) only terms of first order in 
{ (k) is that addition to SE and ~ E - I  of terms of second order 
in {(k) can be reduced (in the first nonvanishing approxi- 
mation in the interaction with the roughnesses) to a change 
of the real components of the quantities W2 and W:p in Eqs. 
( 13). The resultant additional effects reduce to an insignifi- 
cant shift of the surface-plasmon spectrum and to a change 
of the coefficient of specular reflection of the light. 

By virtue of the properties (7), the functions a, '(x,, w, 
a,  and^; ' (xl)  ( d  /dxl)az (x, GI, 0, ) vary slowly withx,. 
We expand these functions in power of x, at the point x,  = 0 
under the integral sign in ( 14), where they are multiplied by 
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the quantities SE(X,, k)  and SE-' (x,, k).  Retaining in (15) 
only the principal terms of the expansion in the parameter 
Sw/c, we obtain the following expressions for the values of 
( 14) that will be needed later on: 

f i , , (k ,  a ,  k', a') 

Here a: (x,, w, R, ) and EL ' (x, ) (d  /dx, )a: (x,, w, R, ) 

replace, at the accuracy considered, the quantities obtained 
by solving the abrupt-boundary problem. Use of the reason- 
ing that led to (16) raises no problems connected with the 
series expansions of the functions SE(X', k )  and SE- ' (xl, k )  
at singular points or with the appearance of products of sin- 
gular functions in the integrals. Such problems are encoun- 
tered, e.g., in Refs. 11 and 12. 

The formal solution of ( 13 ) can be represented in the 
form 

b. (P) = b,Y(n) - d Q f l  d P ,  
P , T - a P , r  

The quantities 

bSpo ( k )  = ( 2 x )  ' 6  ( k - - k g )  bsPo 

and b," ( k ,  07) = (2x) '6 ( k - k , )  6 ( a 2 - m y  ( I . "  

in (17) denote the coefficients of the expansion of a (x, w )  in 
( 11 ) at 6 = 0, while Dap denote the Green's functions for 
Eqs. ( 13 ). The equations for Dap are 

x {L),,(Q,, Q,) (k'-k") f T p ( C 2 T ,  Q,) L),ro), (18) 

where 

is the Green's function for a smooth metal surface. The fields 
b, (R, ) can be expressed with the aid of ( 17) and (18) in 
the form 

b s p  ( k )  = D S p , , p  (k, k o )  D,; -' (ko) 5,p0 

-bD, , , , (k ,  k,,  o ) ~ , '  o )  bra, 

b, ( k ,  a) =D,,,p ( k ,  a, k , )  D,;-' ( k , )  b s p o  

+D, , . (k ,  a ,  k", ( 1 , ) ~ :  - I  ( k , ,  o )  brO.  (20) 

Equations (20) are analogous to the corresponding scatter- 
ing-theory equations.I5 They are valid in the absence of ei- 
gensolutions of (13) that are localized along the surface. 
The possible existence and the properties of localized solu- 
tions not considered in the present paper is at present under 
di~cussion.'~ They certainly do not arise at sufficiently low 
values of 5 '. 
3. EQUATIONS FOR MEASURABLE QUANTITIES 

In the optics of rough metal surface, it is of interest to 
detect observable quantities such as the electromagnetic- 
field intensity near the surface, or the angular distributions 
of the radiation produced in diffuse scattering of light and in 
SP decay. In the parameter interval of interest to us, which 
corresponds to creation of SP, the surface-wave intensity 
near the interface exceeds considerably the intensity of the 
bulk r-waves. We therefore consider hereafter the interac- 
tion of the r-waves with one another and with the sp-waves 
in the first nonvanishing order of perturbation theory. Prin- 
cipal attention will be paid to the description of the interac- 
tion between sp-waves. 

Using (4), ( 1 1 ) , and (20), we can represent the mean 
value of the electromagnetic field intensity near the surface 
at x, = 6(xII  ) + x(: in the form 

J i i ( ~ i Y  =(Ei(xi0,  x l l ) E i ' ( t l O ,  x l l )  ) 

= 1 eo-' ( x i o )  e,' ( k , ,  k , )  a,O (x io ,  o, k , ,  6)) brC 1 j' 

where S is the surface area extended to infinity. We obtain 
similarly an expression for the angular distribution of dif- 
fusely scattered light. The time- and surface-averaged ener- 
gy flux in the q/q direction, where q = { (w2/c2 - qi ) ' I2 ,  

ql, ), is equal to 
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x ( D S P , * ,  (k, k')D, p,,, ( k ,  k') >?g (k' 

Here k ,  = - id /ax ,  and k  ; = - id / dx ; .  In the expression 
for (D,D z )  in ( 2 2 )  we have retained only the terms corre- 
sponding to the ladder approximation." It must be noted 
that when P,, ( q )  is calculated in a narrow angle interval in 
the backward direction at I k ,  + qll 1 lsP < 1 ,  where 1, is the 
SP damping length, account must be taken also of terms 
corresponding to the so-called fan diagrams for ( D ,  D  ), 
which can be represented in the following manner1': 

The dashed lines correspond here to the Green's functions 
D  : and D  7 the solid lines to the Green's functions (D,,, ) 
and ( D  gsp ), and the wavy lines to the interactions with the 
roughnesses. At qll = - k, the contribution of the fan dia- 
grams to P,,, ( q )  is equal to the contribution of the ladder 
diagrams, and allowance for them doubles the second term 
in ( 2 2 ) .  Away from the backward direction, the terms corre- 
sponding to the fan diagrams decrease rapidly1' and contain 
at Ik, + qll lisp > 1 an additional factor ( Ik, + qll II,, ) -'that 
is small compared with the corresponding terms in ( 2 2 ) .  
The contribution of the fan diagrams is therefore significant 
only in a very narrow angle interval in the backward direc- 
tion; this angle does not exceed 1' at reasonable values of the 
parameters (3'a2=: 106A4, 2.rrc/o =: 5  . lo3 A and&=: 5 ) .  It is 
as yet impossible to measure the intensity of diffusely scat- 
tered light at such small deviations from the backward direc- 
tion. All other terms not included in ( 2 2 )  contain, in the 
entire range of scattering angles, an additional small factor 
of order (k,, 1, ) -2 (Refs. 17 and 18), where ksp is the SP 
wave vector. 

The first term of ( 2 2 ) ,  which describes a direct trans- 
formation of the incident light into diffusely scattered light, 
was calculated earlier, for example in Ref. 1 1 ,  in which the 
interaction of electromagnetic waves of sp and r type with 
roughnesses was taken into account only in the lowest non- 
vanishing orders of perturbation theory. The first term in 
( 2 2 )  describes the creation of surface waves, the transitions 
between them, and finally their decay into radiation. It will 
be shown below that in the case of highly reflecting metals 
the second term, which was not considered in earlier papers, 
can exceed the first. Finally, the angular distribution of the 
radiation produced upon decay of SP is expressed as follows: 

c2 d2k 
P - -  - 

8no (2n)' { 1% (kt, ~ I I )  [qe, (h', qll) I I 

1 
x - ( D ~ P , S P  ( k ,  k o ) ~ . ; , * ~  (k ,  ko) ) 1 D,:-~ (ko)  b .2  1 2 }  . 

S x,=z,'-.m 

( 2 3 )  
Representing the Green's functions Dsp,, and D  :,, that en- 
ter in (21 ) - (23 )  as ratios of functional integrals,19 we can 
express the quantities Jii (xy ), P,,,, Psp in terms of the fol- 
lowing integral: 

d2k d2k' x -.- ' (h)' (2n)' 
hi ( k )  h2 (k ' )  b!;' ( k )  b!;" (k) 6:;)' 

x (k ' )  b.6f' (k ' )  

x exp [ -S b,,, i,, 5 )  I 

X Q-' [ j D^~.,D%. e r p ( - - ~ ( ; . , ,  i., 5 ) )  ] . ( 2 4 )  

The actual form of the functions h, and h, in ( 2 4 )  follows 
from a comparison of ( 2 4 )  with Eqs. ( 2 1 ) - ( 3 4 ) ;  the func- 
tional s(iSp, i , ,  6) is the effective action, variation of which 
yields Eqs. ( 13 ) : 

The indices 1 and 2  in ( 2 5 )  pertain respectively to the 
Green's functions D,,, and D :,, . The functional integra- 
tion with respect to Db in ( 2 4 )  is defined in accordance with 
Ref. 19, and it can be verified that ( 2 4 )  is the inverted per- 
turbation-theory series. The functional integrals ( 2 4 )  are 
calculated in the Appendix by introducing the superfields. 
As a result, if the inequalities 

- 
I , p k s p ~ l ,  k.,a<:1 IT gz/a2<y2 ( o )  ( 2 6 )  

are satisfied, we obtain 
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Here x,  = 3/2, x * , = - 2, x *, = 1/2, while the quanti- 
ties 1;;' and I$" have the meaning of the SP damping 
lengths due respectively to radiation into the vacuum and to 
transitions into other SP states. If (26) is satisfied, these 
quantities can be expressed in the f ~ r m ' ~ ' ~  

We emphasize that the cancellation of I :iP' in the denomina- 
tor of the term (27) with I = 0 is due to the following exact 
relation (sum rule) : 

x (I+O ( Z ~ ; ~ ) / Z ~ ~ ' )  1). (29) 

U(k,kf ) denotes here the kernel of an equation of the Bethe- 
Salpeter type8."for (D,,, (k, k l )D z , ,  , (k, k') ). The valid- 
ity of (29) can be verified by comparing the sequence of 
irreducible diagrams for I $' and U(k, kt) ,  as is done when 
considering the conductivity of random media."We note 
that expression (27) for the integral J can also be obtained 
by directly summing the ladder sequence of diagrams in the 
crossing technique." 

4. COMPARISON WITH EXPERIMENT 

The results of the preceding sections allow us to write 
down formulas for various measured quantities. Thus, tak- 
ing into account the explicit form of the functions 
a: ( x , ,  W ,  Q, ), we obtain from (22) and (27) the following 
expression for the partial radiation intensity Pdig (Of, p ), 
normalized to the incident flux, into a solid angle 
d n  = sin OfdO dp for diffuse scattering of light: 

- I E - I ~ ~  0"- a2 - - I'a'exp( - 7 (ql1-k(,)z] 1 ( l+rP(q~~))  
16n cos 0 ck 

x (l+r,(ko))cos 0  cos B f  cos ( p f - ~ - '  

1 &-I i 2  a4 
i- --pa-{[ I E I - ~ I  i-r,(y,,) iLsinL 

24n cos tl c4 

x cos2 0 ,  I[ 1 E 1 -' I I-rp(ko) 1 'sin' U 

+2 ( E I - '  Im rp (qll) Im rp (k,) sin 20 sin 20f cos c p f  

(l:iP') 
X cosZ Of cos 2 9 f  ---} 

(1:; ) -'+ (1:;)) -1+2/a(l(;;)) -I  

1 
x 10 (- 2 a2kok,. )I. (% I )  a'y ;P,, . 

Here 
0 

k, = - c (0, sin 0,O) 

0 
and qll= - (0, sin O f  cos c p f ,  sir1 O f  sin c p f )  

C 

are the projections of the wave vectors in the wave incident 
on the metal and in the scattered wave on the plane of the 
surface, I o ( z )  is a modified Bessel function, rp (k )  is the am- 
plitude of the coefficient of reflection of p-polarized light 
from a smooth metal surface, calculated from Fresnel's for- 
mulas, Of is an angle in the incidence plane and measured 
from the normal to the surface, and the quantity 

has the meaning of the SP damping length due to absorption 
in the metal. 

An expression for the intensity Psp (Of, pf ) of the radi- 
ation due to the SP decay and propagating along the surface 
with a wave vector k ,  and an amplitude g,, is similar in 
form: 

X sin 0,  cos r p f +  (-E) -"' (I-rP (q,,) ) cos 0 ,  ! 
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X Im r ,  ( q , , )  sin 20, 

(1:ip)) -i 

X cos cp f  
( L ( " r ; )  - I +  ( L ( " ' ) )  - i + 7 / 3  (L(y - i  

s P 

1 + _ I  I+r , (q , , )  I2sin cos 2q, 
b 

In ( 3 1 ) ,  Of is an angle in the SP incidence plane and mea- 
sured from the SP propagation direction. The first terms in 
( 3 0 )  and ( 3  1 ) describe a direct transformation of the light 
incident on the metal and of the SP into scattered light. The 
second terms of ( 3 0 )  and ( 3  1 ) take into account, respective- 
ly, the possibility of transformation of the incident light into 
SP, transitions between various SP states, and their subse- 
quent decay into vacuum. These terms do not arise if only 
the first terms of the perturbation-theory series are retained. 
Therefore the formulas used up to now in the litera- 
tUre7.8,1 to calculate P,,, and Psp comprised the first two 
terms of ( 3 0 )  and ( 3 1 ) .  In the case ( I $ p ' ) - ' >  ( I $ ' ) - '  
+ ( I $ " ) ) - ' ,  however (these inequalities are valid, e.g., for 
silver in the interval 2.5 eV < EG < 3.5 eV), the second terms 
of ( 3 0 )  and ( 3  1 ) are larger than the first. The frequency and 
angular dependences of the first and second terms of ( 3 0 )  
and (31 ) are different, so that the contributions of the differ- 
ent processes to the scattered-light intensity can be separat- 
ed. It follows from ( 3 0 ) ,  in particular, that allowance for 
only effects connected with creation and rescattering of SP 
can lead to the abrupt decrease, observed in Ref. 21, of the 
scattered-light intensity when the limiting SP frequency 
(more accurately, the limiting frequencies at which 
k ,  a > 1 ) is approached from below. The first term of ( 3  1 ) 
as a function of Of has, at fixed pf, one maximum as 6  varies 
from 0  to 180". The second term of ( 3  1 ) has two maxima 
symmetric about the normal. This picture is due to the fact 
that SP with different wave-vector directions exist on the 
s u r f a ~ e o n a ~ a r i f  (I:?')-'> ( I : ; ' ) - '  + ( I : : ) ) - ' .  Plotsof 
Psp ( 6  f )  with two maxima were observed in a study7 of the 
decay of SP on silver, and found heretofore no natural expla- 
nation. 

Attention must also be called to one more difference 
between our results and those of Refs. 1 1 and 12 and used to 
reduce the experimental data. The calculations carried out 
in Refs. 1 1 and 12, where only the first terms of the perturba- 
tion-theory series are retained, lead to the conclusion that 
even as Im ~ ( w )  + 0  the SP are absorbed in the surface layer 
of the metal, and that at I E ( w )  1 - 1 this effect makes the 
principal contribution to the change, due to roughnesses, of 
the specular-reflection coefficient. Our results show that, as 
expected in the case Im E ( W )  + 0 ,  the SP cannot be ab- 
sorbed in a metal, but allowance for the transitions between 
the various SP states leads to a corresponding change of the 
specular-reflection coefficient. 

Equation ( 2 7 )  yields also an expression for the field 
intensity Jiinear the surface, defined in (21  ). For the normal 

field components, for example, it takes the form 

Ill ( x t 0 )  = 1 E~ (xio) 1 -' 1 D1 ( 0 ,  k o )  1 

Here E ,, ( 0 ,  k o )  = - [ 1 + rp ( k , )  ]sin 6 g p  and D l  ( 0 ,  
k , )  = [ 1 - r, ( k , )  ]COS 6 g p  are the intensities of the tan- 
gential field component and the normal induction compo- 
nent at the surfaces, calculated for the case of a smooth metal 
surface, and Z?, is the field amplitude in the wave incident 
on the metal. Expression ( 3 2 )  is close to that obtained ear- 
lier in Refs. 22. It follows from ( 3 2 )  that in the presence of 
roughnesses, when ( I  :?') -' > ( I  -' + ( I : : ) ) - ' ,  the 
field intensity near the surface can increase substantially (by - 10 times in the case of silver at EG = 3  eV) compared with 
the field intensity on a smooth surface. This increase of the 
field leads to a number of experimentally observable effects, 
e.g., to an increase of the photoemission current from a 
rough surface. Recognizing that the photoemission current 
is proportional to the field intensity near the ~urface ,~  we 
obtain the following expression for the measured ratio SYp 
of the quantum yields of photoemission from a rough and a 
smooth surface inp-polarized light: 

The factor t introduced in ( 3 3 )  takes into account the possi- 
ble difference between the photoemission matrix elements 
corresponding to transitions induced by the normal and tan- 
gential field Figure 1 shows the results of a comparison of 
calculations in accordance with Eqs. ( 3 2 )  and ( 3 3 )  with the 
experimental data obtained in Ref. 4 in a study of photoemis- 
sion from silver in a 0.5 mol solution of K2S04. It can be seen 
from the figure that at parameter values 5 2 a 2 z 4  . lo7 A4 it is 
possible to achieve quantitative agreement between theory 
and experiment. We note one other important consequence 
of ( 3 2 )  and ( 3 3 ) .  It can be seen from these equations that 
when the mean squared dimension 8 of the roughnesses is 
increased the photoemission current should first increase, 
and then become constant at values > 8 i, for which the 

FIG. 1.  Comparison of the theoretically calculated frequency dependence 
of6Yp - 1 with experiment. The solid and dashed curves are respectively 
plots of the experimental data of Ref. 4 and of the values calculated from 
Eqs. (32) and (33) at t = 1/l&I2. The optical constants of silver, used in 
the calculations, were taken from Ref. 25. 
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inequality (1 $' ) -' > ( I  i;') - ' is satisfied, but 5 is still less 
than a2. Such a dependence of the photoemission current on 
was observed in e~periment .~ 

APPENDIX 

We rewrite (24) in the form of a single functional inte- 
gral over superfields +b that contain as their components both 
commuting variables b and anticommuting (Grassmann) 
onesx. Using notation analogous to that of Ref. 10, we intro- 
duce the eight-component supervectors 

Introduction of integrals over the superfields + makes possi- 
ble averaging over 6 in general form, up to direct calculation 
of the Green's function. After integration with respect to 6 
andx, the evaluation of the integral (24) reduces to calcula- 
tion of a generating functional Z ( a i ,  pi ) i = 1,2 with effec- 
tive action S,,: 

Here 

d2k - s (q.,, h,, h,) = i  I $., ( k )  (2% (aih* (k)+a2hz(k) 1 

( % , 2 , ) i , = ~  npH ijf 21, 

decay into r-waves emitted from the metal. The SP-spectrum 
shift Ar resulting from the interaction of the sp- and r-fields 
reduces to an insignificant modification of the function 5:p 
and will be disregarded. At 2 2/a2 < the last term in the 
expression for S,, turns out to be significant only at values 
k "I , k '2' 9 k (3) and k ''' that are close to the root k, of the 
equation u2 - r3: (k) = 0. Accordingly, when the inequal- 
ities (26) are satisfied, the calculation results do not depend 
on the details of the law that governs the decrease ofg(k) at 
large k. Taking the foregoing into account, we can simplify 
greatly the calculations, if (26) is satisfied, by using the sub- 
stitution 

Direct calculations show that allowance for the additional 
terms of order (a2k'"k'2')n in the expression for 
g(  Ik'" + k'2'I ) leads, if (26) is satisfied, to small corrections 
of order (a2k, 2 ) n  in the final expressions. 

It follows from (A.2) that the determination of the gen- 
erating functional reduces to solution of a nonlinear problem 
for +bsp (k ) .  It is to seek an approximate solu- 
tion by using the Hubbard-Stratonovich t ran~formation,~~ 
which permits the action to be linearized by~n~oduc$g  ad- 
ditional fields. Introducing the tensor fields Q, P, and Rq, we 
get 

z = J D ~ . ,  D~ D B  DB erp {- (-1 - I S  sp J 5 
(an), 

h A h 

Each of the matrices Q, Pi, and Rq in (AS)  is made up of 
four (4  X 4) supermatrices, for example 

The quantity T, characterizes the SP damping due to their 
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s n , n * -  - 6'""-elam"T.e, - 
A - A 

(A.6) 
b?nn+=bmne2,mnT. dZTr ,  

B '""*=~,~""T~~^ T' 
1 .  

The elements of matrices 2," and b,, are commuting varia- 
bles, while those of matrices &,, are anticommuting. The 
symbol S Sp denotes a supertrace over the matrix variables 

s S p  Q=S Sp  Qi'+S S p  a2'=sp (cii1+ciZ2) - i sp  (b"+^bZZ) . 
(A.7) 

Comparison of (24) with Eqs. (21 )-(23) shows that the 
functions h, (k)  and h, (k)  in the expression for S($sp, h,, 
h,) can be represented in the form 

h. ( k )  = 2 i h c z ( - e )  -lhk[ dAn' k2+2 r, d/.'kk, 
1=2,3 

where do, di , and dV are coefficients independent of the wave 
vector k. Taking (A.8) into account, we make in (AS)  the 
linear substitution 

The substitution (A.9) cancels out the contribution of 
S(+bXp, h, ,  h,) to the functional (A.5). After calculating the 
derivatives with respect to a,, a,, p,,  and 0, we obtain the 
following expression for the integral J: 

A h h  

The functional F(Q, P, R )  in (A. 10) is given by 

+ C Bij ( q )  R ,  ( -q )  ] 

-1n ID+., exp [ -S (lp... a. p, f i  ) I .  (A.11) 

Since the factors preceding the exponentials in the integrals 
of (A. 10) contain variables only at q = 0, it suffices to cbtain 
$e e~plicit~form of the functional F for the fields Q(q), 
Pi (q) and RV (q) with q close to zero. In analogy with the 
procedure in Refs. 10 and 23, we r y r e s p t  the @nctional F 
as an expassionjn $e de~iationkSQ, <Pi and 6RV from the 
minimum Q = Q O, Pi = PP and RV = R ;, which is obtained 
by equating t c z ~ o  the vcriations of (A. 1 1 ) with respect to 
the variables Q, Pi,  and Rv . Analysis of the equations SF/  
SQ(q) = 0, SF/6Pi (q) = 0 and SF/SRV (q) = 0 by pertur- 
bation theory shows tkat %e ~ i n i m u m  of (A. 1 1 ) is reached 
on a class of matrices Q O, P P, R which are constant in coor- 
dinate space. Taking the foregoing into account, weAobt%in 
?om (AS)  and (A. 11 ) the following equations for Q O, P P, 
R ;. 

d2k - a2 ~ ~ = - i ~ a ' c ~ n " *  ( - E )  -'A - ( k )  k3 exp(  - - k 2 )  
(an)' 4 '  

h 

where D, , spis tke Gzeen's function corresponding to the 
QO, Po,  R O ) :  

Bap,,p ( k )  = {a2-6j8pz ( k )  - i r r  ( k ) i -2n" ' c2 i  (-el -l1*k 
(A.13) 

x [,0k~+2 ~ P l % k l  + fiilOkLk.] e ip (  - $ k 2 ) } .  

Following the calculation method described in Ref. 17, we 
obtain2' from (A. 12) - 

A h  h 

From the structure of the matrices Q O ,  P P, and R ; it follows 
that the functional F is zero at the minimum. Expanding F 
about the minimum and confining ourselves to small devia- 
tions, we obtain at (I:;')-' > ( I  $') -' 
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2% 
-682'; ( q ) )  (6Q2' ( - q )  - 6 8 ;  ( - q )  -6822 ( - 9 )  ) 

5 + - ( 6 ~ : '  ( q )  -6Riz2 ( q )  ) ( 6 ~ 3 ~ ;  ( - q )  4x2 (-q) 
12 

1 + 7(6f i z t2  ( q )  -68:;  (4)) (68:;  ( -(I)  
L 

Substituting (A. 15) in (A. 10) and evaluating the Gaus- 
sian integrals we arrive at expression (27) of the text. 
Allowance for terms of order ( c ! ~ Q ) ~ ,  (SP, )4 and (6RV )4 in 
the expansion of F leads ta corrections3' of relative order 
(k,Isp )-'In (/$'/I :;') to the quantity J. 

"Since surface plasmons can exist only at e(w ) < 0, it is just this frequency 
region which is of further interest. 

"Note that the system of nonlinear equations (A. 12) has several solutions 
at large enough 6 '. We have retained, following Ref. 10, only that solu- 
tion which yields the correct ex~ression for the SP damping and goes 
over continuously, in the limit as 6 ' + 0, into the results of perturbation 
theory. A separate analysis is necessary to determine the meaning of the 
remaining solutions. 

3The influence of terms of higher order in SQ, SP, and SR,. in F can be 
analyzed, using the renormalization-group equations, by the same proce- 
dure as in the analysis of surface c o n d u ~ t i v i t y . ~ ~ ~ ~ ~  
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