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The difference between the temperature dependences of the mobilities of positive and negative 
ions in superfluid 3He-B is related to exchange interaction between quasiparticles and helium 
atoms from ice-like shells surrounding positive ions. Exact wave functions are obtained for a 
quasiparticle in the field of a spherical potential barrier of large but finite height. These wave 
functions are used to calculate the exchange scattering by an ion, and it is shown that the super- 
fluid transition influences exchange scattering less than potential scattering. The results agree 
approximately with experiment. 

I. INTRODUCTION ion weakens logarithmically with decreasing temperature, 

According to prevailing notions concerning ion struc- 
ture, an electron placed in helium becomes surrounded by a 
spherical cavity of microscopic size, whereas a positive ion, 
in view of the electric field, is contained in a region in which 
the pressure is high enough to crystallize a small region 
around the ion. 

Study of ion motion in 3He at low temperatures1-'j has 
revealed a large difference between ions of opposite sign. 
This become particularly pronounced in experiments per- 
formed at high pressures, p z 3 0  atm. It  was estimated6 that 
under these conditions the radius a-  of the bubble around 
the electron and the radius a +  of the solidified heliums 
should become practically equal ( a +  =a-  =. 10 A) ,  so that 
their mobilities should have a similar behavior. It was ob- 
served, on the contrary, that in the normal phase the mobil- 
ity p- ( T) of negative ions at Tc < T<50 mK is almost con- 
stant, but the mobility of positive ions increases 
logarithmically with rising temperature. The difference is 
preserved also when superfluidity sets in, and p+ ( T )  in- 
creases with decreasing temperature more slowly than 
p - ( T) . The difference in the temperature dependence can- 
not be attributed to the small difference between the ion 
radii, and points to a qualitative difference between the 
mechanisms whereby the quasiparticles interact with ions of 
opposite sign. 

One of the possible scattering mechanisms that distin- 
guishes different ions may be the exchange interaction. In 
the case of a negative ion the quasiparticle scattering is due 
to repulsion by the electron contained in the bubble, whereas 
in the case of a positive ion the quasiparticle interacts with a 
solid-helium iceberg. The potential scattering can therefore 
be supplemented by exchange scattering from the helium- 
atom iceberg with frozen surface. i t  was shown in Ref. 9 that 
allowance for exchange scattering in the normal phase can 
explain the logarithmic increase of p + ( T) with decreasing 
temperature. In the approximation in which the quasiparti- 
cles collide elastically with the ion, exchange scattering is 
similar to electron scattering in a metal by a paramagnetic 
impurity i.e., the Kondo  effect."^'^ If the sign of the ex- 
change constant is that of a ferromagnet, i.e., the same as 
between quasiparticles and a liquid, the interaction with the 

and the mobility increases. 
It follows from experiment5 that at T < Tc the relative 

mobility p + ( T)/p + ( Tc ) of positive ions increases with de- 
creasing temperature noticeably more slowly than p - ( T) / 
p - ( Tc ) for a bubble. The value o f p  - ( T) was calculated in 
Ref. 12 and provides a good quantitative description of the 
results of experiments near Tc . It  follows from the results of 
Ref. 12 that p ( T) /p ( Tc ) is independent of the ion radius 
and is determined only by the modulus of the order param- 
eter A(T) and by the character of the interaction between 
the quasiparticle and the ion. In the present paper the cause 
of this difference is taken to be the exchange interaction of 
the quasiparticles with the iceberg. 

We assume that the ion moves at constant velocity, 
meaning that recoil in collisions is disregarded. This as- 
sumption is based on experiments with bubbles at high pres- 
sures,' where, in accordance with this assumption, the mo- 
bility is independent of temperature at any T >  Tc. This 
circumstance seems to indicate that the use of hydrodynam- 
ic concepts to estimate the effective masses of ions in a degen- 
erate Fermi liquid is not fully justified. There is at present no 
complete solution to the problem of the ion recoil ener- 
gy. I3, l4  

2. SCATTERING BY A SPHERICAL POTENTIAL 

The exchange interaction between an atom of a liquid 
and a surface atom located at a point R is of the form 

where the Greek subscripts label the spin of the liquid atom, 
and the Latin ones refer to the surface atom. The function r 
is concentrated in a region having a linear dimension of the 
order of the diameter d of the 3He atom and its value Vo is of 
the order of the repulsion between two atoms separated by 
the same distance, i.e., Vo< Uo, where Uo is the potential bar- 
rier produced by the entire ion. We shall assume that the 
exchange interaction of the quasiparticle with the surface 
has the same form ( 1 ) .  The scattering amplitude is deter- 
mined by the probability of finding the particle at a point 
where the exchange potential differs substantially from zero, 
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i.e., under the barrier of height V,, multiplied by the value of 
this potential. Although this probability is low at large V,, 
this product tends to a finite limit. To take better account of 
this circumstance and to simplify the calculations, we make 
the substitution 

and assume R to be arbitrarily located on the surface of a 
sphere of radius a. To obtain the cross section for exchange 
scattering by the entire ion, we multiply the cross section for 
scattering by the potential (2),  averaged over the directions 
of R, by the total number Ns = 4?ra2dns, of the surface ions, 
where n, is the density of the solid 3He. 

To calculate the Born corrections for V, we need the 
exact wave functions in the potential U,. This is needed more 
in a superfluid liquid than in a normal one, for otherwise the 
singularities in the density of states lead in the calculations to 
integrals that diverge with respect to energy. The scattering 
states are obtained from the Bogolyubov equation'5v16 

where the subscript A numbers two different spin states. We 
assume the order parameter in ( 3 ) to be equal to its value in a 
homogeneous medium, so that Eqs. (3)  become linear. It is 
shown in Ref. 17 that the deviation of the order parameter 
from the equilibrium value at distances on the order of the 
ion radius is small in the parameter a k , A / ~ ~ .  In a layer of 
thickness -k , ' around the sphere the deviations are sub- 
stantial, but it can be shown, by estimating the influence of 
A(R) - A by perturbation theory, that the correction to the 
resulting wave functions will be of higher order in this pa- 
rameter. The assumption that (3)  is valid in the effective 
region of the potential is not supplementary. As Uo-+ w the 
wave functions penetrate into the sphere to a distance - ( r n ~ , ) - ' / ~ .  The pairing interaction has a nonlocality ra- 
dius ro> k ,  '. At U,>E, we can therefore neglect the 
change of A inside the ion when the wave functions are calcu- 
lated . As Uo+ cc it is necessary that (3  ) be applicable only 
in the exterior and on the boundary of the ion. 

Equation (3)  is similar in many respect to the Dirac 
equation; we can seek accordingly stationary states with 
definite angular momentum, with projection n of this mo- 
mentum on the z axis, and with parity in the form 

where I = j f 1/2, 1'  = 2 j - 2, and O,,, is a spherical 
spinor." Using the properties of spherical spinors (Ref. 18, 
Chap. 11, 5 lo),  we obtain for the radial functions the system 
of equations 

where 

Consider the region r > a. We introduce the notation 

It is easily verified that there are two vector functions (regu- 
lar and singular at the origin) corresponding to a given mo- 
mentum k and to an energy E ,  = (g, + A2)'I2: 

f, ( k )  = ( 2 n k )  ' u  ( k )  J1+8l9 ( k r )  
( sgn x u  ( k )  l l+ ln (k r )  

(7)  
f . (k )  = (2nk)"  ( ~ ( k ) N i + ~ ~ ~  ( k r )  

sgn x v ( k )  NI -+~I ,  ( k r )  

where 

and the notation for all the special functions is that used in 
Ref. 19. The significant difference between (3 )  and the 
Dirac equation is the additional double degeneracy with re- 
spect to a transition from a state with momentum k to a state 
with a dual momentum i; such that 1; = z, 6, = - gL. A 
quasiparticle with 5, > 0 will henceforth be called a particle 
(thep-branch) and one withg, < 0 a hole (the h-branch). In 
the absence of a potential, the solutions of (3)  can be chosen 
in the form of plane waves with definite momentum k and 
polarization A:  

where 117'A'  ), il = 1, 2 is an arbitrary complete set of spin 
functions. The scattering state is specified by the require- 
ment that as r-+ w the wave functions each be a superposi- 
tion of a plane wave and a spherically diverging wave: 

where 

Since the group velocity of the particles is directed along i, 
and that of the holes oppositely, it can be seen that both 
spherical waves describe particles and holes that move away 
from the center. The superposition of a plane and spherically 
convergent wave is similar in form 
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Such solutions can be sought for in the form of a superposi- 
tion of waves of type (4)  with a radial part 

Taking into account the formula for the expansion of a plane 
wave in spherical waves 

Dk,& ( r )  = ( k r )  -'l2Z (Qjln(k)  1 q")) 

and the equality i" = - sgn x jlil+ ' , the requirement that 
the asymptotic conditions (9)  or (10) be satisfied reduces 
the number of constants to two: 

y=(Q,,, ( k )  Iq'" '>/ik(2n)'".  (13) 

In the case of an impermeable sphere, the condition that the 
functions vanish on the surface r = a determines a, and b,. If 
the momenta are replaced by Fermi momenta wherever pos- 
sible with respect to the parameter k,aA/&,, we obtain1' at 
k>k ,  

out 1 
a, ( k )  =-- [ - u 2 ( k ) t , + u z ( k ) t i - i t l t i l ~  I-\] , 

Zllf  ( k )  Ek 

out A tl-tr' 
b, (k)=-- Z[ , ,=- i t ,+ i t l~+( l+ t l t l , )  

2 E k  z t~ ,  ( k )  ' 

(14) 
and at k < k, 

out a ,  ( k )  = b y 1  ( K ) ,  blUt ( k )  =a? ( K ) .  (15) 

It is important to note that the degenerate states we have 
constructed are orthogonal: 

j f k ( r ) 8 r ( r ) ~ d r = ~ .  (16) 

The equations for waves that satisfy ( 10) differ from ( 13) by 
the substitutions 

It follows from ( 13) and ( 14) that as r-+ 03 and at k > k, the 
scattered wave takes the form 

!ince the quasiparticle velocity v, = dEk/d  k is equal to 
kv,{, /E,  , the ratio of the flux density of the quasiparticles 
scattered in the i direction to the density of the incident flux 
yields an equation for the differential cross section 

The quantities F, and Fh are the amplitudes for scattering a 
particle with momentum k in the direction of i in the cases 
without and with a change of the branch, respectively (An- 
dreev scattering2'). To calculate the transport properties we 
must know the probability of the transition for which the 
momentum, and not the velocity of the final state, is directed 
along i. The momentum of the scattered wave ( 18) in the 
"particle" channel exp(ikr) is equal to ki, i.e., it has the 
required direction, but the momentum of the wave in the 
"hole" channel exp( - izr) is equal to - z?, i.e., it is direct- 
ed counter to ?. Therefore the cross section of the k-+kl tran- 
sition (the " impulse" cross section) is given by 

dozmp/dQ= ( 2 n )  [ I F ,  ( k ,  k )  1 2 + / ~ , ( k ^ ,  - k )  1'1. (20) 

Let us simplify this expression. We introduce the operator 

After averaging over the polarization A, replacing the right- 
hand side by an arithmetic mean with lk > 0 and {, < 0 (this 
is permissible in the calculation of the impulse cross section, 
for when k goes though the Fermi surface the momentum of 
the incident wave does not change direction), and substitut- 
ing (14) and (15), we obtain 

From the properties of spherical spinors18 

Q,!,, (r) = - o ~ Q J I ~  ( r )  (23) 

it follows that 

Tr (A,,+A,,) =Tr (A:[ ,A,,,) . (24) 

Using this equality, the explicit form of the operators A 
(Ref. 12) 
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..A 

n= [r?;] [sin 0 ,  cos 0=kr 

and theAsymmetry of the trace with respect to the inter- 
change kt+? we can derive the relation 

i.e., prove the invariance of the trace to the interchanges 
Jc*M,lt+m1, I 't+m. This interchange does not alter the de- 
nominator in Q, so that it can be applied to individual terms 
of the numerator, and Q can be reduced to the form 

For comparison with Ref. 12, we introduce the analogous 
notation 

i  a l l ,=  -- ( t i  1 t t  ) B I ~ . =  -- ~ t l  
Zil ,  EZ , , ,  ' 

In terms of which the expressions for the cross section (22) 

coincide with (B. 13 ) of Ref. 12 if the latter is converted to an 
explicitly real form. For a normal liquid, where A = 0, we 
get from (29) the usual expression 

-= do" k,-' Iz ( 2 l f l )  el*. sin 6 , ~ ~  <k iT)  I ' . (30) 
dQ 1 

To find the values of the function on the surface of the 
sphere at a finite potential Uo, we note that at r  < a there are 
two independent vector functions that are regular at the ori- 
gin, viz., the solutions (3) '  which take at Uo)&, )A the form 

The particular solution (7)  and (3 1 ) can be used to 
construct the radial part of the general solution of (3) .  For 
the case of incident particles (k  > k, ) the solution that satis- 
fies (9) is 

fri ( r )  = 0  (a-r) [ B - f  ( k - ' )  +B+f (k,') ] + 
+0(r-a) y [ i f , ( k )  +aoUt( f , ( k )  + i f , ( k ) )  +bout(f ,(i l .)  - i f , ( E ) )  1. 

(32) 

The conditions that this function and its derivative be con- 
tinuous on the sphere yield equations for B * 

out 
aIIB-+aIzB+=fii , a z i ~ - + a 2 z ~ + = ~ ? i ,  
( k - 'a )  ( k - 'a )  (k+'a)  i T Z l - ~ ~ 9  (k+'a)  

aij= ( k - ' a ) ~ Z l ~ - l , s  (k- 'a)  - (k+'a)  GZl~-llz (k+'a) 

B 0 u t = y { k a ( 2 n k ) n  ( u ( k )  [ iJ l ->h  ( k a )  + a O u t ~ ~ t ' j l ,  ( k a )  ] 
sgn xv  ( k )  [ i J , ~ - ~ ,  ( k a )  +aouiH:f!;, ( k a )  ] 

+boutEa ( 2 6 )  " ( u ( E )  H1L:j8 (Ea) 
sgn xv  (K) Hi?!,, (Ea) 

)I. (33) 

Since B * - ( k 4 )  -', it suffices to substitute in (33) the am- 
plitudes a, and b, obtained from the solution of the problem 
with Uo = a. Recognizing that for Uo+ a and I- k,a> 1 
we have 

it follows from (32) and (33) that 

f,""' ( a )  = p i /  ( k o a ) .  

The Fermi momenta can now be substituted, accurate to T, / 
E ~ ,  everywhere except in the coherence factors u(k)  and 
v(k),  and the quasiclassical asymptotic form of the Bessel 
functions can be used: 

H I $  ( x )  = - t ( 2 / n )  '" (xa-p2)-Ik e x p ( - i s l ) ,  
p=l+1/2, x=k,a, 61=n1/2- (x2-p2)'"-p arctg ( p l x )  , 

sin (61-61-1) [I- (l/k,a) '". (36) 

As a result, the wave functions of the scattering states are 
reduced to the form (which is valid for all k2k, ) 

x( ( ' ) B ( k ;  jl) i1Qjl,,(;) 
- ( " B ( k ;  jl) i l 'ozQll f , ,  (i) 

It is important that, apart from phase factors, the phase 
shifts 6, for scattering by a sphere in a normal liquid enter 
the obtained functions only in the combination 6, - 6, * , . It 
can be seen from (36) that this circumstance, the complicat- 
ed expression for 8, notwithstanding, permits effective sum- 
mation over the partial waves, replacing the sums over I by 
easily calculated integrals. 

Equations (37) generalize the equations introduced in 
Refs. 9 and 2 1 for a normal Fermi gas to include a superfluid 
liquid. In the limit as A 4  they go over into the correspond- 
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ing equations of a normal system, where at k > k, 
( + I  

(r  1 Y k , J o U t + q k  , 
and at k < k, 

<r 1 Y ~ , J O U ~ + Q ~ - '  , 
and the definition of $:*' is the same as in Ref. 22. This 
corresponds to the treatment of holes as time-reversed parti- 
cles. 

3. EXCHANGE SCATTERING 

The exchange-interaction operator in the Bogolyubov 
equation that corresponds to ( 1 ) takes the form 

The contribution of the exchange scattering to the mobility 
is calculated in the same way as the contribution of the po- 
tential scatteringI2: 

where v2 is the index of the branch of the final state of k, and 
allowance is made for the fact that the transition probability 
does not depend on the branch of the incident quasiparticle. 
The bar over the T matrix denotes averaging over the spin 
states of the surface atom located at the point R, . It is con- 
venient first to calculate the quantity 

S ( E )  = J dki dk2 ( l - k k , )  I TkrlVi,k,i ,(E) 1: (40) 
1 1 7 . 2 ~ 2  

and next find the mobility from the relation 

In the first Born approximation in V, we have 

The value ofS(E) is obtained using (37) via straightforward 
but laborious calculations. Incidentally, on going to higher 
corrections in V, these results can be used without change. 
Let us describe a more efficient procedure. It is first neces- 
sary to sum explicitly in (37) over j = I f 1/2 and over the 
projection of the angular momentum n. We must next, in 
succession, sum over A ,,, , find the related traces, and aver- 
age them over the states of the impurity spin. It is necessary 
to consider separately and add the contributions made to 
S ( E )  from the usual (k,, k,>k,) and Andreev 
(k2 < k, < k,) scattering. The integration in (40) over the 
momentum directions reduces, by use of the identities 

5 d t P i g  ( t ~ )  = AL S d k ( k f i )  ?J (iiR), (43) 
A A .  . j dkk' k ' f  (LR) = d t  [3 ( ~ R ) z  - I ]  (GR)  

+ + sil l d t  11 - ( t R ) z ]  5 $6) (44) 

to finding a certain set of integrals of the Legendre polyno- 
mials P, and P :. As a result we get 

where 

wl=lIZII [ I -  ( l / k F a )  '1 "', $1=81+1-8jl 
(46) 

Z,=cos 1 E/E I + i  sin $I. 

The omitted constant factor can be obtained by comparison 
with the analogous expression for a normal l i q ~ i d . ~  For a 
qualitative comparison with experiment it suffices to study 
the mobility at A/T, 4 1, namely calculate in the expansion 
of (pN/pB )ex the numerical cofficient of the term linear in 
A. In this limit, expression (41 ), which takes the form 

can, by subtracting and adding under the integral sign the 
value X of the function X N  in the normal phase, be rewrit- 
ten as 

CC 

The integral converges and is determined by the region x - 1. 
Were it possible to neglect the influence of the pairing on the 
character of the quasiparticle scattering and assume the 
cross sections in the normal and superfluid phases to be iden- 
tical,23 the presence of a gap in the excitation spectrum 
would give rise to the increase in mobility described by the 
first term of (48). The first term thus yields the correction 
due to the statistical factor (the change of the distribution 
function), and the entire influence of the altered quantum 
mechanics is contained in the second term. From (48) we 
get 

Numerical calculation yields c, = - 0.6. 
It is convenient to represent the structure of the suc- 

ceeding Born approximation in graphic form, using the 
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FIG. 1. 

methods of Ref. 10. The sum (38) in the first iteration is 
shown in Fig. 1, where a dashed line denotes the Green's 
function of the preudofermion corresponding to the spin of 
the surface atom, and the solid lines denote normal and 
anomalous Green's functions of the quasiparticles. They are 
connected with the components of the Bogolyubov equation 
solutions by the relations 

where the subscript a stands for k, A, or the sign of the ener- 
gy. Solutions of ( 3 )  with negative energy are obtained from 
these by making the substitutions (u(k)+ - v(k),  
u ( k ) + ~ ( k ) , ~ ( ~ '  +cr. Although in the second-or- 
der approximation the matrix amplitude of the exchange 
scattering is no longer diagonal, it can be shown by direct 
calculations that the off-diagonal components are smaller 
than the diagonal ones relative to the parameter (k ,a )  -'. 
CONCLUSION 

In the model calculated, the exchange interaction was 
assumed weak compared with the potential one. There are 
no particular reasons for this in real 3He. It is therefore 
meaningful to compare only the qualitative predictions with 
experiment. It follows from the calculations for potential 
scattering 12 that near T, 

In the first Born approximation (49) the contribution from 
the exchange scattering depends somewhat less on A. It can 
be shown that if the exchange is weak the use of the second 
Born approximation decreases this dependence even more. 
This means that when simultaneous account is taken of both 
interactions, the ,u: (T)  dependence is weaker than 
p-B  ( T), in qualitative agreement with the experimental re- 
sults. calculation of the higher Born corrections is made 
difficult by the fact that starting with the third approxima- 
tion it is necessary to take into account the rescattering of the 
quasiparticles by various surface atoms. In addition it was 
assumed everywhere that the spins of the iceberg atoms are 
free. There are experimental data (see Ref. 24 and the bib- 
liography therein) indicating that the surface layer of solid 
3He bordering on the liquid has a tendency to acquire ferro- 
magnetic ordering at TZ 2 mK. If the exchange scattering 
by an iceberg with a ferromagnetic shell is larger than by one 

magnetic correlations will also improve the agreement with 
experiment. 

The contribution of the exchange to the mobility can be 
determined quantitatively from experiments in strong mag- 
netic fields H z 6  T. The magnetic field aligns the spins of the 
quasiparticles and thereby, excludes exchange scattering. 
Under these conditions the behavior of ions of different signs 
will be determined only by their dimensions. An additional 
possibility of studying ion structure, mentioned in Refs. 25 
and 26, is to compare their interactions with vortices. 

The author is indebted to V. I. Mel'nikov and V. P. 
Mineev for helpful discussions. 
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