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A method is proposed for investigating the spatial structures of one-dimensional quantum sys- 
tems of interacting atoms and spins. The method is based on deriving exact quantum representa- 
tions for the stationary mean values in a coherent-state basis. Specific examples are considered, 
and conditions are found for the existence of commensurate and incommensurate phases and for 
quantum chaos. The physical interpretation of the solutions and their relation to the ground state 
are discussed. 

INTRODUCTION 

Theoretical studies of the structure of matter based on 
nonlinear dynamics'-9 are attracting increased interest. This 
method of structural classification is used to describe sys- 
tems classically and is based on analyzing the solutions of the 
nonlinear transformations that determine the equilibrium 
position of the structural elements (atoms, ions, spins, etc. ) . 
One of the most important results is that there exist several 
types of spatial structure (commensurate, incommensurate, 
chaotic), and their dynamic excitation spectra have been 
studied. The nonlinear dynamics technique is also of interest 
for quantum systems, both for studying the possible spatial 
structures and for analyzing the spectrum of the excitations. 
Reference 10 introduced one possible scheme for introduc- 
ing nonlinear transformations for the mean values that de- 
scribe the spatial structure in the quantum case. 

In this paper we offer a quite general approach for 
studying the structure of quantum chains which employs 
nonlinear dynamics and consists in the following. We use the 
Heisenberg picture and take the initial states to be suitably 
constructed coherent states [either Glauber states la) (Ref. 
1 1 ) or spin states Ip) (Refs. 12, 13 ) 1, depending on the 
system under study. We then average the Heisenberg equa- 
tions over these states as suggested by Sinitsyn and Tsuker- 
nikI4 for boson systems and by Zaslavskil" for spin systems. 
The resulting c-number equations form a closed system of 
linear partial differential equations for the observables. We 
can use the stationary points of these dynamic equations of 
motion to determine the structure of the chains by minimiz- 
ing the energy of the system with respect to the coherent- 
state basis. The physical significance of the solutions and the 
relationship with the ground state problem are discussed be- 
low and in the Conclusions. 

FORMULATION OF THE METHOD 

@+, a } = ( .  . . ; a,+, 6,; a,+, a,;. . .), [a,, a,,+]=s,,. 

and a,+, an are the boson creation and annihilation opera- 
tors. To each operator iin =a, ( t  = 0)  at initial time t = 0 we 
associate the coherent state a ) such that 
iin la, ) = a, lan ). weletj'=7({af ,a)) be an operator-val- 
ued!unction and project the Heisenberg equation of motion 
for f on the coherent-state basis {/a)) ,  where la) is a pro- 
duct state of the form la) = n, la, ). According to Ref. 14, 
the closed c-number- equation for the function 
f(t)=f(t,{a*,a)) = (alf  la)  in the basis {la)) reads 

h 

where the operator K, is given'by 

( l a )  

We consider En ar2trary many-body boson system with 
the Hamiltonian H = H({iif ,a)), where 

As noted above, the quantities {a, a*, a/&, d/da*) are 
taken at time t = 0. 

y e  %ow 50nsiger a spin system with the Hamiltonian 
2= H({s+, S - ,P I ) ,  where 

A h h 

and S:  = S: f is: and S', a? the corresponding spin 
projection operators for the spin Sn : 

According to Ref. 15, the Heisenberg equatio%of %oti%n for 
an arbitrary operator-valued function&jj({S +, S -, S ' 1 )  
is given by 

544 Sov. Phys. JETP 62 (3), September 1985 0038-5646/85/090544-07$04.00 @ 1986 American Institute of Physics 544 



after averaging over the initial spin (or generalized) coher- ONE-DIMENSIONAL QUANTUM CHAIN OF ATOMS IN A 
ent states ILL) (Refs. 12, 13); here g(t)=g(t;  { P * ,  PERIODIC EXTERNAL POTENTIAL 
p)) = (plglp). In the Heisenberg picture the wave func- Consider a one-dimensional system of atoms interact- 
tion Jp) is independent of time and is given by12 ing with an external spatially periodic field. We write the 

Hamiltonian in the f0rm~9 '~  
I p)= J-J I pn)= 11.. . , p*, p*, . . .), 

(3) R = ~ ~ + ~ ~ ( I ~ + , - ~ . - ~ ) ~ + v . ~ ( ~ - c o B ~ . ~ ~ ) ,  
1 * 2m 2 

1 p i  p 2 ) - ( -  f i  p - )  0 ,  SnzlO)=RSIO). (7)  

where the spin S is understood to be the same for all n. The 
linear equations ( la) ,  (2a), ( 1 b) , and (2b) describe the evo- 
lution of arbitrary c-number functions f ( t )  and g(t) .  

In our subsequent~nalysis ofboson and spin chains, we 
will take the operators f to be A, andh, , the coordinate and 
momentum opzrators for the nth atom; 2 will be one of the 
spin operators S Lj' ( j = x,y, or z, and n is the number of the 
atom in the chain). We thus have f = { x ,  p} andg = {S'" ). 
We want to find the equilibrium positions for the mean val- 
ues f( t )  and g(t) ,  i.e., the solutions of the equations f = 0, 
g = 0. These solutions determine the stationary points of 
Eqs. ( la) ,  ( lb) .  The equations for the stationary points can 
thus be expressed in the form 

The following important fact should be stressed. Since Eqs. 
(4a), (4b) describe stationary solutions, we have 

and it is easy 2 find %n explicit expression for the action of 
the operatorsK, and K, on the functionsx, ,p ,  , SLJ'. Equa- 
tions (4a), (4b) are systems of algebraic equations for the 
stationary mean values of the atomic positions x, in state 
la) and for the stationary means of the spin projections S iJ) 
in state Ip). Of the many solutions of Eqs. (4a) [ (4b) 1, we 
choose the one that minimizes the functional F defined by 

The conditions for a minimum are 

where f,,, andg,,, are the parameters with respect to which 
the minimization is carried out (there are r and r', respec- 
tively, such parameters altogether). 

We will regard the solutions of Eqs. (4a), (4b) as deter- 
mining a possible equilibrium structure of the system. The 
method will be described more fully below; for now we illus- 
trate it in some specific examples. 

where A, and j, are the coordinate and momentum of the 
nth atom, a is the equilibrium distance between the atoms in 
the chain for V, = 0, m and y are the atomic mass and the 
elasticity coefficient, and q, = 2.rr/ao, where a, is the spatial 
period of the external field. We will deal with the displace- 
ment operator ii, of the nth atom relative to the external 
potential rather than with El, : El, = f i n  + na,. The Hamil- 
tonian in (7) then becomes 

8=z ":-I- ): ( Z i . + , - d . - 6 0 0 ) i + ~ o ~  (1- eos q18,) ,  
n 2 m  n n 

(8)  

where 

[ a n ,  pn , ]  =ifi6,,,,, 6= (a-a,) lcz, ( - 1 < 6 < ~ )  

If we write 2, and;, in terms of operators 8: and 8, as 

we see easily that [in -8; ] = a,,. for arbitrary 7. In what 
follows we will choose 7 so that (6a) holds, i.e., the mean 
energy of the system in the class of states la) is a minimum. 
In this procedure, the equilibrium structure is sought for a 
class of wave functions that describe single-node coherent 
states. We use (5)  and (6a) to select the state by varying the 
parameters, including 7 (see below). With (2a), Eq. (4a) 
for the stationary points for system (8)  becomes 

pn=O, ~,+,+u,-~-2u,- ( ~ l l / q , )  sin q,u,=O, (10) 

where 

The exponential is present in ( lo),  ( 1 1 ) because operators 
of the type 

act on the function p, = i(fi7/2) ' I2  (a: - a ,  ). In analyz- 
ing the solutions of ( 10) it is helpful to transform to canoni- 
cal "action-angle" variables: 

Equation ( 10) then yields the standard recursion formulas1' 

~,+,=l , fM sin cp,, ~ n + i = ~ p c + ~ n T i ,  (12) 

which determines the equilibrium quantum-mechanical 
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mean positions of the atoms in the states la). The formal 
difference between (12) and the classical limit (fi = 0 )  is 
that M depends explicitly on 7 and fi ( 1 1 ) . Equation ( 11) 
implies that we always have M ( 7 )  <M(fi  = O)=M,,, 
where M,, is the value of M in the classical limit. We will 
show below that this inequality has several important conse- 
quences in the quantum mechanical treatment. 

Transformations of the type ( 12) are presently under 
active s t ~ d y , ~ , ~ , " - ' ~  and results are available for the isolated 
resonance approximation," among others. The classical 
limit for system (7)  was analyzed in the isolated resonance 
approximation in Ref. 6 by employing an effective Hamil- 
tonian. Following that treatment, we write the effective Ha- 
miltonian 

m c= 

aer = P / P + M  eos ip 6 (2-n) = 1 ' / 2 + M Z  cos (p-2nlz) 
n=-io 1 3 - c O  

for the transformations ( 12), where z is a continuous atomic 
variable. The corresponding equations of motion are 

We see easily that the transformations ( 12) determine the 
solution of these equations at the points I,, = I ( z  = n - O), 
p, = p ( z  = n - 0 ) .  Resonances occur at I, = 2al (I  = 0, 
+ 1, ...). The solution simplifies greatly in the isolated reso- 

nance approximation,17 because in this case the motion 
along I is localized in a neighborhood of I, if the initial con- 
ditions are close to I,. In this approximation Eqs. ( 13) be- 
come 

dJ , /dz=M sin $:, d$ , /d z=J , ,  

where J, = I - I,, V, = p - 27rlz. These equations corre- 
spond to the resonant Hamiltonian H, = J:/2 + M cos V, . 

The condition 

must hold for the isolated resonance approximation to be 
valid; here AJ, = 4M 'I2  is the width of the resonance in 
terms of the action variable (the width of the region inside 
the separatrix), and SJ, = J, + , - J, = 277 is the distance 
between resonances. The solutions Y, (z, x, ) and J, (z, x, ) 
inside and outside the separatrix are known to be expressible 
in terms of elliptic functions; the corresponding phase trajec- 
tories are shown in Fig. 1. The solutions will be classified in 
terms of the parameter 

(we will henceforth drop the subscript I). The solutions in- 
side and outside the separatrix correspond to O<x< 1 and 
1 <x(M -11', respectively, where the condition x ( M  - ' I 2  is 
necessary for the isolated resonance approximation ( 14) to 
be valid. 

Although many solutions V, Jexist, we are interested in 
the one that minimizes Fb [condition (6a) 1.  The minimiza- 
tion is carried out with respect to the parameters x and 77 for 
a specified value of S, after which the number of the reso- 
nance I is chosen. Moreover, in the isolated resonance ap- 
proximation we replace the summation by an integration 
when calculating Fb . The difference from the classical case6 
is due to the fact that Fb is also minimized with respect to the 
additional parameter 7. It is found that the value 77, of 7 
satisfying (6a) is given by 

for all x in the admissible range O(x(M -'I2.  For M in 
(10)-(14) we thus have 

The minimization of Fb with respect to x gives the critical 
values of S: 

for which the mean position of the atoms is described by a 
soliton solution4 (the resonance number I is chosen to mini- 
mize IS - 1 / ). These critical points are indicated in Fig. 2 by 
S:', sf. For 18 - I I,, )S, , the relative position of the atoms is 
periodically modulated with a spatial period 

which is incommensurate with the external field period a,. 
Such an atomic configuration is called an incommensurate 
phase.4v20 For IS - 1 / ,, < 6, the atoms are arranged peri- 
odically at locations xLO' = na,(l + 1 ) that are multiples of 
a, (these regions are hatched in Fig. 2) .  The range of S val- 
ues for which the commensurate phase exists is given by 

FIG. 1. FIG. 2. 
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Figure 2a and 2b correspond to the classical (fi = 0) and 
quantum cases, respectively. The chief differences between 
the classical and quantum cases in this approach are due to 
two factors: 1 ) the inequality AQ < A,, =AQ (fi = 0 )  holds, 
so that the region of commensurate phase is narrower in the 
quantum case; 2) the function q = q(6)  behaves differently 
for S close to the critical value 6, for existence of the incom- 
mensurate phase. For instance, if we expand the function 
q(S) at the point S, = AQ/2 and consider values 6>6,, we 
get 

Since Sf=S, (fi#O) is less than S:'(fi = O), q(6)  changes 
more slowly in the quantum case (particularly for u ') 1 ). 

The above results imply that in the context of our meth- 
od, the influence of quantum effects is determined by the 
parameter 

which apart from a constant factor coincides with the quan- 
tum parameter jl introduced in Ref. 4 on the basis of dimen- 
sional analysis: 

We note that the quantum parameter u can be expressed as 

where c = (ya/m) 'I2 is the characteristic speed of sound in 
the chain. Quantum effects may thus be important near the 
commensurate-incommensurate phase transition because 
the speed of sound 

We will now pause briefly to discuss the properties of 
the solutions of ( 12) that describe a chaotic quantum struc- 
ture. 

The transbfmations (12) for the quantum means ad- 
mit stochastic solutions even in the isolated resonance ap- 
proximation ( 14). Indeed, such solutions form an every- 
where-dense subset of the I ,  e, plane.17.18When ( 14) holds, 
the width of the stochastic layers is exponentially small. 
These layers are broadest near the separatrices of the funda- 
mental resonances ( x  - 1, see Fig. 1 ). Their widths are of 
order17.18 

The stochastic layers (deformed tori) alternate with stable 
trajectories, which dominate when (14) holds. We may re- 
gard this as justification for minimizing the functional Fb 
over the solutions $(z, x) ,  J ( z ,  x ) .  However, it should be 
noted that even with the isolated resonance approximation 
( 14), a chaotic phase may be present near the commensura- 
te+incommensurate phase tran~ition.~." 

In the opposite case of overlapping resonances: 

most of the I,  p phase plane for ( 12) is chaotic and the mini- 
mization of Fb becomes a difficult problem."19 However, 

since the quantum transformations (12) are formally the 
same as for the classical case, the "quantum trajectories" for 
the mean atomic positions in the state la) should have the 
same formal properties as their classical analogs, and in this 
sense the classical results in Refs. 5, 7, and 18 should also 
describe the case ( 16). 

The most important properties of quantum systems 
when ( 16) holds are as follows. First, even though the mea- 
sure of the stochastic trajectories is large while the measure 
of the stable trajectories is small of order M -I/ '(  1, the sto- 
chastic trajectories form numerous metastable states with a 
close-range order and spatial correlations that decay expon- 
entially with distance. The decay of the phase correlations 
for the transformations ( 12) is typically of the 

where n in the exponential may be approximated by unity. 
The formula 

thus gives the characteristic correlation length for the aver- 
age atomic positions. Since M = M(7) ,  the correlation 
length may vary with 7. One can choose 7 only by imposing 
some additional constraint (e.g., by requiring that Fb be a 
minimum). Nevertheless, according to ( 1 1 ) nQ in the quan- 
tum case always exceeds the corresponding classical value, 

where 

Equation ( 11 ) implies that quantum effects always raise the 
threshold amplitude Vo of the potential for the onset of cha- 
os. The quantum and classical stochastic parameters M ( 7 )  
and M,, in ( 12) are related by 

where M,, = ~ & / y .  Expression (20) implies that the sto- 
chastic component is strongly suppressed in the ultra-quan- 
tum region 49:/477%1. We also note that for large m, the 
influence of the harmonics cos(qom2,, ) in the potential ( 7 )  
is negligible compared to the fundamental harmonic, be- 
cause the inclusion of quantum effects gives rise to an addi- 
tional factor exp( - mu 2, in M in Eqs. ( lo),  ( 12). This 
suppression in the quantum case was noted in Ref. 4. 

ONE-DIMENSIONAL SPIN CHAIN 

We will examine the properties of the solutions of (4b) 
for spin systems by treating the example of a Heisenberg 
ferromagnet with spin S> 1 in a field with single-ion anisot- 
ropy. The Hamiltonian is of the form 
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where J >  0 is the exchange interaction constant for nearest 
neighbors and D is the field anisotropy constant. For this 
system the stationary equations (4b) for the observables be- 
come 

sin On+, cos One'Qn*~-cos On+,  sin O,eiQ"-sin 0 ,  cos O,-ie'Qn 

D 2s-1 + cos 0 ,  sin B,-,e'Vn-l+ --eqn sin 20,=0, (22) J 25' 

sin On+,  sin 0 ,  sin (cp,+l-rp,) =Z=const, 

where we have made the change of variables 

The constant 6 in (22) is determined by the condition that 
the functional F, in (6b) be a minimum: 

BF,/dz=O, d2F,/dE'>0, 

which implies that 6 = 0 and pn = pn + , . Making the 
change of variables In + , = sin(0, + , - 6, ), we can then 
rewrite the first equation in (22) as a two-dimensional map- 
ping: 

I,+,=I,+K sin 20,, (23) 

 arcsin sin I,+, (mod n) , 

Transformations similar to (23) have also been derived in 
Ref. 8 for the DNA model and in Ref. 7 for the classical xy- 
model for spin chains. The transformations (23) are gener- 
ated by an equivalent dynamical system with the Hamilton- 
ian7 

8 .,=I arcsin I+ (1-1') *+K cos2 0 6 (t-n) , 

which corresponds to the equations of motion 

=K C sin (20-21 it), 

dOldt=d%eff / d I=o  ( I )  =arcsin I 

System (25) describes a nonlinear pendulum moving at fre- 
quency o ( I )  in response to external forces applied at inte- 
gral times t = n. For D > 0, F, is minimized by the solutions 
8, = a/2, In = 0, which correspond to a hyperbolic point in 
the 1, 8 phase plane for (23). In this case all the spins are 
ferromagnetically ordered and lie in the xy plane. For D < 0, 
the hyperbolic points 8, = 0, 1, = 0 also minimize F, ; in 
this case the spins lie along thez axis and Fs is independent of 
the angles pn . Since the minimizing solutions correspond to 
hyperbolic points with Lyapunov constants 

this means that for a nonzero anisotropy D the system may 
be unstable, i.e., an unordered structure may form. The 
transformations (23) were studied numerically in Ref. 7, 
where it was shown that for K20.3 an amorphous state 
forms which consists of an unordered sequence of structures 
resembling Bloch domain walls. 

APPROXIMATION OF THE GROUND STATE 

We now consider how well our method approximates 
the solution for the ground state by considering examples of 
spin systems for which solutions are known (either exactly 
or in the mean-field approximation). As a first example we 
consider an Ising ferromagnet with spin S = 1/2 in a trans- 
verse magnetic field. This model admits an exact ~olut ion,~ '  
and a solution is also available in the mean-field approxima- 
t i ~ n . ' ~  

We write the Hamiltonian in the form 

where J >  0 is the rate constant for the nearest-neighbor ex- 
change interaction and G is the magnitude of the external 
magnetic field. In this case expression (4b) takes the form 

Making the change of variables 

y.=e'" tg (0 , /2 ) ,  I,=cos 0. sin O,-, , 

we find from the first equation in (27) that pn = 0 or n. 
Expressions (27) then reduce to the two-dimensional map- 
ping 

2G 
I.+,=cos ~ r c s i n [  -I. cos-I 0. + - tg 0.1 sin 0.. 

.I 

The solutions of (28) minimizing the functional Fs (6b) are 
given by 

Solution (27) is doubly degenerate in the angle p: 
p,, = pn + , = 0 ( n )  . We see from the solutions ( 29) that 
for G / J <  1 

while for G /J> 1 

These results coincide with the ones found by the mean-field 
method,22 which also agree with the classical solutions. The 
mappings (28) in this case coincide with the classical limit 
for the system with Hamiltonian (26).  
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For systems with single-ion anisotropy ( S > l ) ,  the 
structure-determining mappings (4b) agree with the classi- 
cal expressions apart from the renormalization of certain 
constants. For instance, for system (21 ) the mappings (23) 
are the same as the classical ones7 except for a renormaliza- 
tion of the constant K which makes K depend explicitly on 
the spins  (24): KQ = K(S),  where KQ is the quantum value 
of K. In the classical limit fi4, S+ w , fiSiconst, KQ coin- 
cides with the classical value Kc,. The renormalization is 
necessary because the spins at a single node are correlated. 
There are no correlations among spins at different nodes 
when a coherent-state basis consisting of single-node wave 
functions is chosen. We note that the usual procedure in the 
mean-field approximation is to include the single-node cor- 
relations and neglect correlations between different nodes. 
As in the mean-field method (see, e.g., Ref. 23), the mini- 
mum principle for the functional F, (6b) plays an important 
role. The wave function jp) in which the structure is deter- 
mined is constructed from single-node coherent states Ip, ), 
whereas in the mean-field approximation one constructs the 
wave functions from the eigenfunctions of the one-particle 
Hamiltonian. We can see how these approaches differ by 
considering a spin system with the Hamiltonian 

where J >  0 is the exchange interaction constant, D > 0 is the 
anisotropy constant, and the spin X> 1. The mean-field ap- 
proach for system (30) and S = 1 leads to the following so- 
l u t i o n ~ . ~ ~  The ground-state energy Emin is equal to D - J, 
and in this case 

On the other hand, the method proposed above gives the 
solutions 

for (30). In terms of the results for the ground state, our 
method is thus a modification of the mean-field method and 
yields a rather crude approximation to the structure of the 
chain (30). 

However, the method can be improved so as to approxi- 
mate the ground state solution more closely. One approach 
is to replace the single-node coherent states la, ) and Ip) by 
suitable collective coherent states and then use them to find 
the structure. We will consider such a modification below 
for the model ( 8 ) . 
STRUCTURE OF AN ATOMIC CHAIN USING COLLECTIVE 
COHERENT WAVE FUNCTIONS 

We consider a system with the Familtonian (8 )  and 
introduce the auxiliary Hamiltonian H, for an effective lin- 
ear chain: 

Taking A, = li, + , , i n  =in + , , and using the collective ex- 

citation operators a, +, a, for system (3 l ) ,  we find 

1 k n -  
ob' = - m (8+4y sin2 -) N . 

We define the collective states 

at t = 0 and will choose the constant B to minimize the func- 
tional Fb (5) ,  where we now use the collective states (33) as 
the la) states. Projecting the Heisenberg equation of motion 
for li,, a, for the chain (8 )  onto the coherent states la) 
(33), we find that Eqs. (4a) for the equilibrium positions of 
the means u, lead to transformations ( 10) with M given by 

rather than by ( 1 1 ); here K (  k )  is the complete elliptic inte- 
gral of the second kind with modulus 

Thus, M is also given by (34) in the transformations (12). 
We minimize Fb with respect to the parameters x and k in 
the isolated resonance approximation ( 14) and write x,, k, 
for the minimizing values. The main results are that Fb (k,, 
x,) <Fb (qO, xo) ,  where Fb (k,, x,) and Fb (vo, xo) are the 
minimum values of the functionals F,, (5 )  for the collective 
states (33) and single-node coherent states, respectively. In 
the isolated resonance approximation, the state [a),, (33) 
minimizing Fb ( 5 )  is energetically more favorable. The chief 
difference from the case considered above is that no com- 
mensurate phase exists in the states la),,, (33) if the quan- 
tum parameter a>a, 2 ' l 4 f i ,  which agrees exactly with 
the result found in Ref. 4. We will now show how the param- 
eter a, arises. For a commensurate phase, IS - 1 I,, < S,, 
x, = 1 and the equation fork, is 

Since we are using the isolated resonance approximation, 
M(k,) /4 is 4 1 in the right-hand side of (36) and k, is close 
to unity [however, the solution k, = 1 does not give the min- 
imum Fb (k,, x,) 1. Writing k, as 

we find from (36) that E satisfies the equation 
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where a ( & )  is slowly varying. Equation (38) has a solution 
for E # O  only if a2<.rrG. For a2>af =rfi we have 
ko = 1, and in this case the renormalized potential vanishes. 

We can interpret this physically as follows. According 
to (35), k, = 1 is equivalent to the vanishing of the constant 
B in (3  1 ) . For B = 0, mean-square quantum fluctuations 
build up with unbounded magnitude and cause the average 
potential of the external field in the corresponding states to 
vanish. 

CONCLUSIONS 

The above technique for determining the structure of 
quantum systems differs to some extent from existing meth- 
ods, in which one analyzes the ground state. In our case, a 
"structure" is a system in which the means are stationary in 
certain coherent states. The coherent states la), Ip) consid- 
ered above are in general excited states of the system and 
include the minimizing states /a),in, 1 ~ ) ~ ~ ~ .  Thus, as far as 
the ground state is concerned our method is a modification 
of the mean-field approximation. We note that other modifi- 
cations may also give a better approximation to the ground 
state (for instance, collective coherent states can be used, as 
shown above). 

We point out that the coherent states can also be regard- 
ed as states that are excited in the system in response to a 
previous collective excitation (e.g., due to phonons or spin 
waves). Equilibrium structures of the type considered may 
thus occur in coherently excited systems. In particular, a 
nonzero temperature T may cause such an excitation, and 
the problem then arises of whether one can construct a "tem- 
perature coherent state" la ( T )  ) which provides an equiva- 
lent description of thermal effects. 

The above results may also be of interest in terms of the 
possible approach to chaos in quantum systems. To our 
knowledge no exact quantum mapping leading to chaos have 
been analyzed in the literature. Although the chaos is "spa- 
tial" in our case, it has all of the characteristic features of 
stochastic trajectories in classical dynamical  system^.^,^,','^ 
In a separate paper we will analyze the small-oscillation 
spectrum for the structures considered above. 
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