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A uniaxial two-dimensional crystal is shown to be thermally unstable at all temperatures at the 
tetragonal-monoclinic transition point. The form of the phase diagram near the transition is 
found. 

A great many adsorbate-substrate systems are known 
today in which uniaxial two-dimensional crystals form (see 
Ref. 1 for more details). The adatoms in these crystals are 
constrained to move in a single direction (because of the 
pronounced anisotropy of the potential relief of the sub- 
strate, for example). These uniaxial crystals are incommen- 
surate with the substrate for a wide range of covering coeffi- 
cients 8 (defined as the number of adatoms divided by the 
number of atoms in the top layer of the substrate). A contin- 
uous phase transition from tetragonal to monoclinic symme- 
try is observed in a wide variety of incommensurate crystals 
as 8 changes's3; we will refer to this as the T - M transition 
below. 

A complex superstructure (lattice of solitons or domain 
walls) is present4 in incommensurate crystals near the point 
at which the crystal and substrate are commensurate. As we 
move away from this point, the potential of the substrate 
merely modulates the lattice of adatoms slightly. For simpli- 
city we will consider the case when the incommensurate 
crystal supports a quasiacoustic mode,4 i.e., the substrate is 
effectively smooth as far as the crystal is concerned. We thus 
arrive at a uniaxial two-dimensional crystal model described 
by a Hamiltonian of the form 

Here A ,  and A, are the elastic moduli and u=u, is the unique 
nonzero component of the displacement vector. Figure la  
shows the tetragonal lattice and the direction of the displace- 
ment vector. In the monoclinic phase the lattice is inclined at 
an angle q,; however, there is no change in the distance 
between the atomic rows (which extend along the x axis), 
because this distance is determined by the topography of the 
potential surface of the substrate (cf. Ref. 1) .  Figure lb  
shows a unit cell of the monoclinic phase. 

At T = 0, the free energy density F near the T - M 
transition point 6, can be expanded in powers of the inclina- 
tion angle q,. If q, changes continuously then F should be 
given by the Landau expansion 

for a phase transition of the second kind5 (for definiteness 
we will assume that the monoclinic phase forms as 8 in- 
creases). Then for 0 < 8, the average value of q, is zero and 
the tetragonal phase is present, while for 8 > 8, the angle 
p, = (a ( 8  - 8,)/2y) "' is nonzero and a monoclinic lattice 

forms. If 6 < 8, then q, = au/dy, i.e., a(8, - 8)=A2. Thus, 
A, vanishes at the transition point and one must analyze the 
higher order y-derivatives. The Hamiltonian H and the cor- 
relation function 

therefore have the form 

at the T - M transition point. The exponential decay of G 
implies that no translational order is present in the system at 
8 = 8, for any T >  0. The analysis in Ref. 6 shows that nema- 
tic ordering can occur in a system with Hamiltonian (3)  for 
O< T<T, .  

Let us consider some possible melting mechanisms near 
the T - M transition. If 8 < 8,, the Hamiltonian describing 
the system is given by ( 1 ) with A,+O as 8+8,. The Hamil- 
tonian ( 1 ) is isomorphic to the Hamiltonian in the XYmod- 
el, in which case dislocations (vortices in the XYmodel) are 
responsible for the phase transition.' In the low-temperature 
phase the dislocations are bound together in pairs, while in 
the high-temperature phase depairing occurs and breaks up 
the order. The transition temperature is given by the expres- 
sion' 

FIG. 1. Unit cells for the tetragonal ( a )  and monoclinic phases ( b ) .  
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FIG. 3. Phase diagram; 8, is the point at which the transition occurs from 
the tetragonal ( I )  to themonoclinic (11) phases; region I11 corresponds to 
an anisotropic liquid. 

FIG. 2. An antiphase domain (the lines show the atomic rows). 

In addition to dislocations, domain-wall excitations 
may occur between domains pa of opposite signs in the 
monoclinic phase (see Fig. 2),  and this provides another 
possible melting mechanism. There are two types of domain 
walls, which lie along the X and Y axes, respectively. Walls 
along the X axis resemble magnetic domain walls in uniaxial 
crystals,' and their energy per lattice period along the X axis 
is given by 

Walls along the Y axis are similar to small-angle grain boun- 
daries, which are known to consist9 of a series of dislocations 
spaced a distance I = a/2p0 apart. The wall energy is the 
sum of the energy of the dislocation in a region of radius I 
plus the energy of the core. The first contribution is of order 

The second contribution does not vanish as A + - 0  because 
the dislocation has a finite energy E- (AlA3)'/3a2/b at 
A = 0 (Ref. 6 ) .  The asymptotic expression for the wall ener- 
gy J2 per lattice period is therefore 

J,-EbIl o: A'". ( 7 )  

We next estimate the transition temperature for melting due 
to formation of antiphase domains. If we neglect excitations 
of the dislocation-pair type, the melting of the monoclinic 
phase into a liquid will be isomorphic to the anisotropic Ising 
model with exchange constants J, and J2. The expression for 
the transition temperature T3 islo 

for A+O 

The melting temperature T2 for the dislocation mechanism 
[cf. (5)  ] is cc A"', i.e., in principle we have T2 > T3 as A-4 ,  
and the melting of the monoclinic phase near the T - M 
transition should be isomorphic to the Ising model. Of 
course, because of the slow divergence of the logarithm 
In( l /A),  it is quite possible that T2 < T3. However, in either 
case a square-root cusp dependence of the melting tempera- 
ture on A should be observed experimentally. Figure 3 shows 
a typical phase diagram (the possible nematic phase at 
8 = 0, is not indicated). We note in closing that an unor- 
dered phase was in fact observed between the tetragonal and 
monoclinic phases in the above e ~ ~ e r i m e n t s . ~ . ~  

I am deeply grateful to V. L. Pokrovskii for a discussion 
and valuable comments, and also to V. K. Medvedev and A. 
G. Fedorus for explaining the experimental situation. 

'I. F. Lyuksyutov, Zh. Eksp. Teor. Fiz. 82, 1267 (1982) [Sov. Phys. 
JETP 55,737 (1982)l. 

'V. K. Medvedev and I. N. Yakovkin, Fiz. Tverd. Tela (Leningrad) 21, 
313 (1979) [Sov. Phys. Solid State 21, 187 (1979)l. 

3M. Grunze etal . ,  Phys. Rev. Lett. 51, 582 (1983). 
4V. L. Pokrovsky and A. L. Talapov, Theory ofIncommensurate Crystals, 
Chur. Harwood Publ. ( 1984). 

5L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd ed., Vol. 1, 
Pergamon Press, Oxford ( 1980). 

6J. Toner and D. R. Nelson, Phys. Rev. B 23,316 ( 1981 ) .  
'A. Z. Patashinski1 and V. L. PokrovskiI, Fluktuatsionnaya Teoriya Fa- 
zovykh Perekhodov (Fluctuation Theory of Phase Transitions), Nauka, 
Moscow (1982). 

D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Me- 
dia, Pergamon Press, Oxford ( 1960). 

'J. P. Hirth and J. Lothe. Theorv o f  Dislocations, McGraw-Hill, New . - 
York (1967). 

'OM. Fisher, Rep. Prog. Phys. 30, 615 (1967). 

Translated by A. Mason 

616 Sov. Phys. JETP 62 (3), September 1985 I .  F. Lyuksyutov 616 


