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An analysis is made of a steady-state distribution of nondegenerate free electrons which absorb 
radiation and then emit spontaneously a cascade of dispersion-free optical phonons, and of the 
transient process which establishes such a distribution. I t  is shown that monochromatic radiation 
induces relaxational oscillations of the electron distribution, and that the period and decrement of 
such oscillations depend strongly on the ratio of the radiation R and phonon w, frequencies (it is 
assumed that R/w, = p  + W, wherep = 1, 2, ... ; 0 < w < 1 ) .  For an integral phonon-photon 
resonance (w = 0 )  there is no transient process at all. In the case of fractional resonances 
(o = M  /N, M  and N are integers) with low values of N  the relaxation process is short-lived; on 
increase in N, the oscillation period rises proportionally to Nand the decay time proportionally to 
N ', i.e., the transient process becomes increasingly longer. An allowance for a weak energy 
relaxation in the case of a quasielastic interaction with acoustic phonons may have a considerable 
influence on the transient process and on the steady-state distribution. I t  is shown that peaks of a 
distribution of the Kumekov-Perel' type are obtained not only near an integral resonance, but also 
for small offsets from fractional resonances when a system of N quasiequidistant peaks appears in 
the distribution. A description is given of a possible way of controlling the localization of such 
peaks in the case of arbitrary radiation intensities by utilizing additional radiation with the oppo- 
site sign of the frequency offset relative to an integral or a fractional resonance. 

1. INTRODUCTION 

Absorption of infrared radiation by free carriers (we 
shall consider specifically electrons) at low temperatures 
when the optical phonons are frozen out is accompanied 
(when R > a o ,  where R is the radiation frequency and W, is 
the optical phonon frequency) by rapid emission of optical 
phonons by a photoelectron and by dropping of this electron 
to the passive range of energies ( E  < ha). Under intense 
photoexcitation conditions the electron distribution is far 
from equilibrium and it exhibits a number of special features 
which will be studied below. 

The energy transfer involving electrons in the passive 
region (Fig. l a )  is described by a difference equation with a 
given dimensionless transition energy w = fl/wo - [R/wo]; 
here and later the square brackets in similar expressions will 
denote the integer part; energy will always be measured in 
units of h a .  Two cases are possible: commensurable 
( W  = M / N  is a rational irreducible fraction) and incom- 
mensurate (w is irrational). In the former case (Fig. l b )  the 
electrons initially localized at an energy E' < 1 return to the 
previous state after N  transitions. The electrons then cross N  
"levels" in the passive region and become distributed dif- 
fusely between them in the course of their drift because of the 
probabilistic nature of the transitions. At high values of N 
the drift time governing one cycle of passage through the 
passive region increases proportionally to N and the time for 
the spreading between all the levels is proportional to N 2 .  
For this reason we can expect radiation to induce relaxa- 
tional oscillations of the electron distribution with a period 
and decrement dependent strongly on the ratio of R to w,. 

The commensurate case corresponding to relatively low val- 
ues of N will also be called by us a fractional photon-phonon 
resonance of order N. 

In the limit N -+ CQ (i.e., on transition to the incom- 

FIG. 1. Energy scheme of electron transitions: a )  absorption of a photon 
of frequency = ( 2  + o ) o ,  followed by emission of two phonons in a 
cascade; b )  transitions in the passive region in the case of a commensurate 
photon-phonon resonance at o = 2/3; c )  evolution of an electron in the 
case of positive and negative offsets from a half-integral resonance. 
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mensurate case) the concept of discrete "levels" loses its 
meaning and a smooth (averaged over a small energy inter- 
val) steady-state distribution1 is established. The transient 
process can then be described by selecting conveniently 
(Fig. lc)  the rational part of the transition energy w with a 
relatively small denominator N, writing down 

where w' is the "offset" (detuning) energy of a photon- 
phonon resonance of order N. A quasisteady electron distri- 
bution is established rapidly between N intervals in the pas- 
sive region. Further evolution of this distribution is 
governed by slow (determined by transitions in steps of w') 
drift and diffusion within intervals of width N -'. 

In the case of a small offset from a resonance the distri- 
bution may exhibit qualitative singularities due to the fact 
that the direction of the offset drift is governed by the sign of 
w ' .  In the presence of two radiations (resonances of the order 
of N1 and N2 with offsets w; and w;, where w;w; <O) a 
distribution between N intervals is rapidly established (here, 
N is the lowest common multiple of N, and N,) and the drift 
fluxes may, for some ratio of the intensities of the radiations, 
be balanced out1' at a point E, . If the sign of the drift velocity 
at the energy E, changes on increase in E from positive to 
negative, the electrons become bunched near E, + l/N, 
where 1 = 0, 1, ..., N - 1, forming a system of quasiequidis- 
tant peaks. However, if the velocity corresponding to E, 

rises, then the electron density at these points is low and the 
electrons collect at the boundaries of the intervals at the en- 
ergies 1 /N, where 1 = 0, 1 ,. ..,N. A similar system of N peaks 
at the points E, + 1 /N appears if the drift due to radiation 
characterized by a positive offset is compensated by a nega- 
tive drift due to quasielastic relaxation in the passive region 
(for example, in the case of scattering by acoustic phonons). 
A peak of this kind is considered in Ref. 2 for the case of an 
offset from an integral resonance (w = 0 or 1 ) . 

These singularities are clearly pronounced if the fre- 
quency of spontaneous emission of optical phonons vo is 
much higher than the frequency of energy relaxation in the 
passive region Y,, , which is governed by the scattering on 
acoustic phonons or by the electron-electron scattering. The 
frequency of phototransitions v, is limited by the condition 

so that in the passive range of energies the distribution is far 
from equilibrium because of v, )Y,, and the density of elec- 
trons in the active region (E > 1 ) is low because of the strong 
inequality on the left-hand side. If phototransitions assisted 
by optical phonons predominate, the condition v0>vr is 
equivalent to an allowance for just one-photon transitions in 
theelectric field E cos Rt of the radiation, i.e., it is equivalent 
to the condition of smallness of the parameter 

where m is the electron effective mass. 
Certain semiconductors satisfy the inequality VO%Yq, 

by a large margin (3-4 orders of magnitude) at helium tem- 
peratures (see, for example, Ref. 3). The requirement 

Y, > vqe can be satisfied using high-power (megawatt) far- 
infrared lasers that have been developed recentlya4 

We shall use the exact transport equation for electrons 
in the field of an optical wave to obtain an approximate 
transport equation for electrons in the passive region which 
allows for the rapid emission of a cascade of optical phonons 
(Sec. 2). We shall then solve the problem of relaxation of the 
electron distribution in the passive region when radiation is 
turned on abruptly (Sec. 3 ) . We shall then consider the ap- 
proximation of a small offset in the case of integral and frac- 
tional phonon-photon resonances (Sec. 4) and investigate 
the case of compensation of drift fluxes leading to systems of 
peaks in the electron distribution (Sec. 5 ) . In Sec. 6 we shall 
consider the influence of quasielastic energy scattering on 
the distributions obtained earlier. Ways of observing experi- 
mentally these results will be considered in the Conclusions. 

2. TRANSPORT EQUATION FOR ELECTRONS IN THE 
PASSIVE REGION 

The kinetics of electrons in a homogeneous high-fre- 
quency electric field of monochromatic laser radiation is de- 
scribed by the distribution function o$ the canonical mo- 
menta f(p, t )  (Refs. 5 and 6).  In the one-photon 
approximation corresponding to y( 1 the anisotropy of f(p, 
t )  is weak. In the case of the electron energy distribution 
function f ( ~ ,  t ) ,  which varies slowly (compared with the 
radiation period 2?r/fl) in time, we obtain the following 
transport equation which allows for the spontaneous emis- 
sion of optical phonons I,,, , quasielastic energy relaxation 
h 

I,, , and one-photon stimulated emission and absorption of 
radiation ?, : 

Here, E'" is the dimensionless density of states for the as- 
sumed quadratic dispersion law, 

lo,,f ( e ,  t ) = v o ( e + j ) f  ( & + I ,  t ) - v o ( e ) f  ( E ,  t ) ,  

1  - [i? ( & - I )  It';, 
.& 

do (5)  

vo ( 8 )  = 

is the emission frequency of optical phonons in the case of 
the deformation (do) and polarization (po) mechanisms of 
the electron-phonon scattering [it should be pointed out 
that the frequency vO(&) is defined in an unconventional 
manner: usually3 the scattering frequency is understood to 
be Y , (E ) /E~ '~ ] ,  and 

f , f  ( e ,  t )  = v , ( E ,  e + I + p + w )  f (&+I+  p + o ,  t )  

- v ~ ( E ,  e - l + p + o ) f ( e ,  t ) + v , ( e ,  & + I - p - a )  

x f ( e + l - p - a ,  t ) - v r ( e ,  e - I - p - o ) f ( e ,  t )  (6)  

is the change in the number of electrons as a result of one- 
photon transitions assisted by optical phonons (do orpo). If 
phototransitions involve the scattering of momentum by in- 
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teraction with impurities, then instead of Eq. (6)  we can use 

i,f (e, t )  =Y. (8, e+p+o) [f (e+pf a ,  t)  -f (e, t )  I 
+v.(e, e-p-o) [f(e-P-a, t)-f(e, t) I. (7 )  

The phototransition frequency v, (E,E') is given by the ex- 
pressions 

zp0-' (eel) "', PO, 

v.(E, e')=r e'"+e"" 
4rcl-l ln 1 - I el~l -e"~~ I im, 

(8 )  
where O(E)  = 1 for E > 0 and O(E)  = 0 for E < 0; the times 
rdo and rp0 are defined by Eq. ( 5 )  and rim represents the 
momentum relaxation time for an electron of energy fiw, in 
the case of scattering by impurities. Phototransitions assist- 
ed by acoustic phonons are ignored compared with those 
governed by Eqs. (6)  and (7) .  

In the active energy range (E > 1 ) the function f ( ~ ,  t )  is 
found from the difference equation derived from Eq. (4)  if 
we retain only i,,  and one-photon inflow of electrons from 
the passive region (0 < E < 1). The function f ( ~ ,  t)  is as- 
sumed to vary slowly with time (t)rd0, rpo ) and quasielastic 
relaxation as well as multiphoton processes are ignored on 
the strength of Eq. ( 2 ) .  The solution of this difference equa- 
tion gives f(a, t )  for the active region in terms of the distribu- 
tion function in the passive region and then it determines the 
transfer of electrons from the active to the passive region 
because of a cascade of optical phonon emissions. This gives 
the following closed equation for the passive region 

a f (e* t )  = + I ~ . E ,  t 0 < e ~ 1 ,  
at ( 9 )  

==-v,(e, e+p+o) f (e, t)+e(o-e)v,(e+l-o, e+l+p) 

~f (e+l-o, t)+8(e-o)v,(e-o, e+p)f (e-o, t). (10) 

Equation ( 10) and all the expressions given below apply to 
phototransitions involving the participation of an impurity; 
in the case of transitions assisted by phonons, Eq. (10) 
should be modified by replacingp withp - 1. Equation (10) 
is derived for the case ofphototransitions to the active region 
( p >  1 applies in the case of impurity scattering denoted by im 
andp22 corresponds to the phototransitions assisted by op- 
tical phonons) . In the p  = 0 (im scattering) and p = 1 (do 
andpo scattering) cases, there is no inflow to the range E > w 
so that the last term is missing from Eq. ( 10). In thep = 0 
case the phototransitions accompanied by optical phonon 
emission are forbidden by the law of conservation of energy. 

The initial condition for Eq. (9)  can be any initial dis- 
tribution, including an equilibrium Maxwellian distribution 
at the bottom of the passive region ( T 4  1 ) . Quasielastic re- 
laxation of the energy in Eqs. (4)  and (9) is generally de- 
scribed by a differential operator 

[As before, the density of states E " ~  is "introduced" into 
Y,, (E) .]  If throughout the passive region the quasielastic 
relaxation process is due to the scattering by acoustic phon- 
ons (da) under conditions of their constant distribution 
(which is assumed in the estimates obtained below), then 
T(E) = T and vqe (E)  = vq, ( 1). It should be pointed out 
that Eq. ( 1 1 ) is valid also in the presence of a heating static 
electric field F; we then have 

where D(E)  is the diffusion coefficient. 
The substitution of Eq. ( 1 1 ) into Eq. (9)  makes the 

latter a differential-difference equation and we have to for- 
mulate the boundary conditions at the limits of the passive 
region where Eq. (9)  is defined. These boundary conditions 
are the normalizability condition f ( ~ ,  t)  in the interval (0, 1 ) 
as well as the condition 

which appears because of the postulated strong inequalities 
of Eq. (2) .  

3. RELAXATIONAL OSCILLATIONS OF THE ELECTRON 
DISTRIBUTION WHEN RADIATION IS SWITCHED ON 

We shall now consider the evolution of the distribution 
f ( ~ ,  t)  when monochromatic radiation of constant intensity 
is switched on at the moment t = 0. The relationship 
between f(s, t )  and the initial distribution f ( ~ ,  0 )  can be 
conveniently written in the form 

1 

which contains the Green function describing the electron 
density G,. This function is defined by the equation 
R ( I )  

a - Gt(e, ef)  =-'B (e, e+p+o) G, (e, e') 
at  

Replacing the continuous variable E with a discrete one 

we can represent the Green function by a series 
m 

G(e.  8'1-x GL(t)6(e-el). (16) 
k-0 

In the case of Gk ( t )  we can derive from Eq. ( 14) the follow- 
ing chain of equations 
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-- dGk(t) --AGk(t) +pk-lGk-, (t) ,  Gk(0) --0, k-I, 2.. . ., 
dt 

Bh=B(eh, ek+p+o), k=O, I , & .  . . , 
which is integrated step by step, so that the exact expression 
can be obtained for Eq. ( 16).. 

At high radiation intensities the qualitative features of 
the general case are retained in the Pk =Po approximation 
(which is valid ifp) 1 ); we then find that 

(Bat)" Gk ( t )  = - e-kt. 
k ! 

According to Eq. ( 18), Gk ( t )  first rises, passes through a 
maximum at t,,, z k /&, and then falls; the maximum value 
of Eq. ( 18) is [it should be noted that the right-hand side of 
Eq. ( 19) is valid when k) 1 ] : 

Thus, electrons which start from the origin of a discrete k 
axis drift along this axis at a constant (if Pk =Po) velocity 
and spread diffusely around a drifting maximum of the dis- 
tribution. The width of the packet is in the same ratio to the 
total distance of drift along the k axis as k - ' I 2  = (Pot) - ' I2.  

However, it is interesting to consider the distribution 
not along the k axis but in the interval (0, 1)  of the E axis 
which is crossed repeatedly by an electron during its k-axis 
drift. An explicit expression for G, (E, E ' )  is obtained simply 
in the commensurate case when w = M / N  and the function 
( 15) is periodic: E, + , = E, . In this case, we find that Eq. 
( 16) transforms into a sum over N levels: 

6,(e, e') =x 8k(t)6(e-ek), 

The sum 9, ( t )  can be calculated directly [after Laplace 
transformation of exp(Pot) Y k  ( t )  we obtain a geometric 
progression] and we then find that 

N-I 

If N = 1 (integral resonance) there is no transient pro- 
cess at all and the initial distribution is of the steady-state 
type. If N = 2 (half-integral resonance), monotonic relaxa- 
tion with a damping decrement y ,  (2)  = 2P0 takes place. If 
N>3, the relaxation becomes oscillatory and the term with 
I = 1, N - 1 decreases more slowly so that the largest damp- 
ing decrement is Po[ 1 - cos(2?r/N) ]. The period of such 
relaxational oscillations is 2?r/P,sin(21r/N). We can see 
that if N) 1, then switching on of radiation results in weakly 

damped (with a decrement 27?pO/N ') relaxational oscilla- 
tions (period N/B,) of the distribution of electrons in the 
passive region. The Q factor of the oscillatory process rises 
on increase in N. A steady-state distribution of the particles 
between N levels is uniform ifp, =Po. 

Equations ( 18)-( 2 1 ), obtained on the assumption that 
pk =Po, become much more cumbersome when this as- 
sumption is not obeyed, so that we shall give only the expres- 
sions for the steady-state Green function 

In the case of two radiations of frequenciesp, + w ,  and 
p, + w,, the right-hand side of the equation for the Green 
function contains terms analogous to Eq. ( 14) and charac- 
terized by phototransition rates PI and 0 II (in the approxi- 
mation p,,, ) 1 1, which are governed by the radiation pow- 
ers. The Green function can therefore be described 
conveniently by a double series 

where GkIkZ ( t )  represents a chain of equations which is anal- 
ogous to Eq. (17) and is defined on a discrete k,k, plane. 
Such equations can be solved using the Green functions ( 18) 
(G") and G"" contain the coefficients PI and PI , ,  respec- 
tively) : 

G,,,(t) --G:,~' (t) ~ k y ~ ( t ) .  

In the doubly commensurate case when w ,  = M , / N ,  and 
w2 = M2/N2, we can use the periodicity of in the k,k, 
plane to obtain the Green function on the E axis: 

where Y (Is"' are given by expressions analogous to Eq. (20) 
and containing parameters of the first or second radiation. 
In the passive region there are now N levels (Nis the smallest 
common multiple of N, and N,) and the relaxation in time 
between these levels is found by superposition of the tran- 
sient processes described above and involving monochro- 
matic radiations. A steady-state distribution corresponds to 
a uniform occupancy of these levels, so that 

This pattern can be generalized in a natural manner to 
the case of a large number of independent radiations. 

4. APPROXIMATION OF A SMALL OFFSET 

In the above analysis of a fractional transient process in 
the case of a photon-phonon resonance of order N, we have 
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used three time scales: the time for a transition between 
neighboring levelsp , ', the time for drift across the interval 
(0, 1 ), i.e., the oscillation period N/&, and the time for dif- 
fuse spreading of the initial distribution between all the lev- 
els N2/po. Hence, we can see that a steady-state distribution 
is never established in the limit N -+ co. However, in prac- 
tice such very large values of N are not of interest because 
there are always mechanisms that ensure an energy indeter- 
minacy SE, SO that only the average number of particles in 
this interval is physically meaningful. Therefore, a finite- 
difference analysis in the preceding section is meaningful for 
N <  (SE) - I ,  whereas for N >  we have to use the ap- 
proximation of a small offset from a frequency of some frac- 
tional resonance with a sufficiently small denominator N. 
The offset w' is introduced by the relationship (1)  and it 
should be selected so as to satisfy the requirement of small- 
ness of the change in the electron density in the energy inter- 
val 

We shall begin with the case of a small offset from an 
integral resonance, when w' = w< 1 (positive offset) or 
w' = w - 1, 1 - w(1 (negativeoffset). When theinequality 
of Eq. (27) is obeyed, the operator IjP' describing photo- 
transitions in Eq. (9)  [see Eq. ( 10) ] can be expanded so that 
in the absence of quasielastic scattering n (E, t )  is given by the 
equation 

when allowance is made for the energy dependence of the 
radiative drift velocity v, ( E )  (giving rise to fundamentally 
new effects under flux competition conditions discussed be- 
low) and for the radiative diffusion coefficient D, depending 
smoothly on E applies when p )  1. 

The boundary condition to Eq. (28 ), supplementing 
the normalization, will be the quasiperiodicity requirement 

according to which the interval (0, 1 ) closes to form a ring, 
by analogy with the discrete pattern in the preceding sec- 
t i ~ n . ~ '  Equation (29 can be derived formally by considering 
the exact difference equation in the interval (0, 0') [or (w, 
1 ) if o' < 01 and assuming that the contribution of this re- 
gion to the normalization is small. 

The Green function of the problem (28)-(29) describ- 
ing the evolution of a &like distribution at the moment t = 0 
is described by the following expression in the case of a con- 
stant velocity u,  : 

OD 

It is clear from the series (30) that in the case of short times 
t<Dr/4 the distribution drifts along the E axis (and the di- 
rection of the drift is the same as the sign of the offset), 

spreading slowly, and crossing periodically the interval (0, 
1 ) in a time /v, / - I .  Such oscillations are described by the 
function (4D, t( 1 ) : 

- (e-e'-v,t-~e-e'-~~t])~ 
G, (e, el) = (4nDrt) -I1' exp{. 

4D7t 1. 
( 3  1) 

The damping decrement is governed by the asymptote of G, 
obtained for long times [by expanding Eq. (30) as a Fourier 
series] 

G, (E,  E') =1+2exp (-n2D,t) cos ne cos n (E '+u ,~ )  

SO (exp (-4n2D,t) (32) 

and it is equal to r 2 D , .  These results are in agreement with 
the above analysis of the commensurate case. 

We shall now consider an offset of a half-integral pho- 
ton-phonon resonance (w = 1/2 + w; (w' / (1/2) when the 
expansion of the difference operator I jP ' f  for the distribu- 
tion n ( ~ ,  t )  which varies in the half-intervals (0, 1/2) and 
( 1/2, 1) gives a system of two differential equations. Intro- 
ducing functions which vary in the interval (0, 1/2) 

ji(E, t)='l,[n(e, t )+n(~+' /2 ,  t ) l ,  (33) 
R(E, t )  =n(&, t )  - n ( ~ + ' / ~ ,  t ) ,  

we obtain for them the following equations (we are assuming 
that p% 1, so that the coefficients v, and D, are constant): 

It follows from Eq. (34) that after times greater than 1/ 
2& the populations of the half-intervals equalize ( f i  ap- 
proaches zero exponentially) and we have to consider then 
the evolution ofthe distribution E (E, t )  within a half-interval 
by supplementing Eq. (35) with the boundary conditions 
specifying periodicity of 7i (E, t )  in the interval (0, 1/2). This 
condition is derived by analogy with Eq. (29) from the re- 
quirement of the smallness of the contribution of a narrow 
range of energies near E=:  1/2 where the differential expan- 
sion of the difference operator is invalid. The relaxation ii (E, 
t )  is described by a Green function analogous to Eq. (30) 
and applicable to the half-interval (0, 1/2) and the present 
results differ from those in the case of an offset from a whole 
resonance only by halving of the oscillation period [v, in Eq. 
(35) does not change, but the interval decreases] and by an 
increase of the offset-induced damping decrement by a fac- 
tor of 4. 

The same results can be obtained by investigating offset 
one-third resonances, etc. However, an increase in the multi- 
plicity of a resonance N reduces the oscillation period of ii (E, 
t )  to l/Nvr, whereas the time needed to establish a uniform 
occupancy of N levels (i.e., rapid decay of ii) deduced from 
Eq. (2  1 ) is N 2/2$p0. Hence, the offset must obey the condi- 
tion 

if the method considered above is to be valid. 
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5. ENERGY DISTRIBUTION IN THE CASE OF COMPENSATION 
OF DRIFT FLUXES 

In the case of two radiations which have opposite offsets 
relative to an integral resonance or relative to fractional re- 
sonances M,/N, and M,/N, (in the latter case one of the 
resonances may be integral), the situation becomes compli- 
cated because of the competition between drift fluxes men- 
tioned in the Introduction. Then, the steady-state distribu- 
tion does not always tend to a quasiuniform state and 
discrete peaks may appear in the distribution. In the general 
case of compensation of the fluxes, a system of peaks appears 
in N intervals, where N is the lowest common multiple of N, 
and N,. We can describe these peaks if we allow for the de- 
pendences of 0, (E, E + p,  ) and PI, (E, E + p,) on E, which 
we have avoided deliberately above by going to the limit 
Pl.2 + 03. 

We shall consider the vicinity of a integral resonance 
when n (E, t)  is given by Eq. (28) and 

Ifp, = p,, the drift due to the two radiations is equivalent to 
the drift due to one of them (0, ) subject to an effective offset 
w f = w ;  + (P r I / f l r )~ ;+  If by selecting 0,,/0, (where 
w; w;  < O), we balance out the effective offset, then at each 
point in the passive region we annul the drift as in the case of 
an exact integral resonance. However, we now have D, #O, 
so that the initial distribution gradually diffuses and be- 
comes smeared out over the passive region in a drift-free 
manner. 

Ifp, #p,, the situation changes radically because by a 
suitable selection of the ratio of the radiation intensities3' we 
can suppress the drift only at the "rest point" E = E,, where 

If the velocity v, (E) at the rest point changes from positive 
to negative on increase in E, then the drift on either side of E, 

is directed toward that rest point and it compensate diffusion 
from E, to the periphery. In such a situation we can expect a 
peak of the distribution near E, and this peak is similar to 
that discussed in Ref. 2. The solution of the steady-state 
equation (28) with the parameters (37) gives a Gaussian 
peak (and later we shall use C to denote the normalization 
constant) 

This expression is valid if 

so that a peak is fairly narrow and the boundary conditions 
are unimportant. The left-hand inequality in Eq. (40) en- 
sures that the distribution (27) is smooth. The transient pro- 
cess of the establishment of such a peak is monotonic and it is 
characterized by a damping decrement - x, . 

However, if the velocity v ,  ( E )  near E, changes from 
negative to positive on increase in E, the drift on both sides of 

the rest point is directed to the edges of the passive region 
where electrons collect. Since v, ( E  = 0; 1 ) #O, it follows 
that the widths of the resultant "half-peaks" can be estimat- 
ed from Eq. (28) to be D,/v, ( E  = 0; 1) - iw:,z I (it is as- 
sumed that iw; + w; 1 - lw ,,, ' 1  ), so that determination of 
the peak profile requires an analysis of the difference equa- 
tion at the edges of the passive region. The solution is fairly 
cumbersome and it will not be given here. It should be noted 
simply that variation of the parameters of the radiations can 
alter only the width of a "half-peak" given above, whereas in 
the case of Eq. (39  1 the distribution may be shifted by radi- 
ation within the limits of the passive region. 

The characteristic features of the mechanism of the 
compensation of fluxes in the case of fractional resonances 
can be seen in the simplest example of two radiations, one of 
which is offset from an integral resonancep, and the other 
from a half-integral resonancep, + 1. The distribution of the 
particles between the half-intervals n (E, t )  and n (E + 4, t)  
(we now have 0 < E < 1)  can be described conveniently by 
introducing Ti(&, t ) ,  as in Eq. (33 ), as well as 

n(e, t )  p (e, 8+p2+1/2)-n(e+'la, t )  p(e+llz, e+p,S1) 
= 2 

" p (8, e+pz+llZ) +p (e+'/,, e+pz+l) 

which obeys a system of equations similar to but more cum- 
bersome than Eqs. (34) and (35). In the absence of an offset, 
the quantity i i ( ~ ,  t )  introduced by Eq. (41) rapidly vanishes 
(after a time 1/20] because for an arbitrary energy E of a 
half-interval the steady-state numbers of arrivals and depar- 
tures become equal: 

After a long time we can expect relaxation of ii (E, t )  in a half- 
interval, which is described by Eq. (28) with an effective 
drift velocity [with the diffusion coefficient still given by Eq. 
(3711 

The problem of Ti(&, t )  differs from the case of an integral 
photon-phonon resonance only by the fact that a half-inter- 
val is considered and the energy dependence v, ( E )  is more 
complex. Depending on the slope of v, (E) ,  we find that ii ( E )  

neither has a peak EJ [v, (E: ) = 0 ]  at the rest point, analo- 
gous to Eq. (39), or narrow half-high peaks at the limits of 
the interval ( 0 , t ) .  The distribution over half-intervals n ( E )  

and N(E + 4 )  are found from the definition of Ti(&) and the 
relationship (42). The energy dependences of the photo- 
transition rates0 in Eq. (42) modify somewhat the shape of 
the peaks and an extremum of a peak [in the case of a falling 
dependence v, ( E )  ] shifts away from the points EJ and E: + 4. 
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FIG. 2. System of peaks which appear under conditions of compensation 
of drift fluxes [the dashed curves represent the energy dependence of the 
drift velocity v,  ( E )  1. 

If v ,  (E)  rises, electrons collect in narrow regions near the 
points E = 0, 4, 1. 

A similar analysis can be made of the general case of two 
radiations which are offset relative to fractional resonances. 
Once again after the stage of fast relaxation between N levels 
described by Eqs. (22)-(25), there remains only the equa- 
tion for 

N-1 

a(., t )  =N-~Z  n(s+lIN, f), 
1-0  

which describes relaxation in the interval (0, N - ' ) . Only the 
relationships between E(E) and the distributions between 
the levels n (E + I /N) , as well as an expression for the aver- 
age drift velocity analogous to Eq. (43 ), are more cumber- 
some. This is due to the fact that an allowance for the energy 
dependence of p requires a solution of the problem (22)- 
(25) of the distribution between N levels when P, #const. 
We shall not give the relevant formulas because the resultant 
pattern of peaks (Fig. 2) is qualitatively similar to the cases 
discussed above. The conditions which must be satisfied by 
the radiation intensities and by a;,, are now more stringent 
because they have to be satisfied within the interval 1/N. For 
this reason there may be a change in the system of peaks (and 
a change in their number), and a change from peaks to a 
smooth distribution when the pump intensity is varied. Such 
a situation is described below (at the end of Sec. 6)  for the 
simpler case of competition between radiation and acoustic 
fluxes. 

6. INFLUENCE OF QUASIELASTIC DRIFT AND DIFFUSION 

In Secs. 3-5 the influence of the operator I,, f on the 
relaxation process and steady-state pattern has been ignored 
completely. Here we shall allow for this influence subject to 
the following assumption: the rate of quasielastic energy re- 
laxation, governed by the frequency v,, ( E )  in Eq. ( l l ) ,  is 
low in the sense of the condition (2), but at the same time 
sufficiently high to compete with the offset effects, i.e., it 
makes a significant contribution to v ,  ( E )  and D, in Eqs. 
(28) or (35). 

We shall begin by allowing for the quasielastic trans- 

port in the case of an offset from an integral resonance. Sup- 
plementing the right-hand side of Eq. (28) by the addition of 
I ,  f in the form of Eq. ( 1 1) and restricting the analysis to the 
case when T(E) = T, we once again obtain Eq. (28) but with 
renormalized coefficients: v, ( E )  and D, should now be re- 
placed by the following expressions 

v ( 8 )  =v, ( E )  -E"'v,, ( E )  f TY,, ( 8 )  /2e1", (44) 

If quasielastic transport is due to acoustic phonons with a 
uniform distribution, then v,, ( E )  a E and the corrections 
which are then introduced are largest for E = 1, whereas 
they disappear in the limit E + 0. In addition to the renor- 
malizatioi of U ( E )  and D(E) ,  an allowance for quasielastic 
transport is related to the need to satisfy the boundary condi- 
tion (12). 

We shall be interested only in sufficiently large values of 
v, ( E )  = w'P, when there is a real competition between two 
types of drift. We shall distinguish qualitatively two cases: 
(wl() T and (o l (<T .  If /a'\ ) T, then throughout the passive 
range we have D(E)  zD,, i.e., only the radiative contribu- 
tion to the diffusion process remains. Consequently, the 
quasielastic correction to V ( E )  is always negative and in the 
case of a positive offset from an integral resonance in the 
range 

there are peaks in the distribution because of the compensa- 
tion of v ,  ( E )  by the quasielastic drift (without the need for a 
second radiation beam). These are the Kumekov-Perel' 
peaks.2 For the values of w'P(1, 1 + p )  outside the range 
(45) the steady-state distribution is 

It should be pointed out that if the offset is positive, then 
U ( E )  is minimal for E = 1, so that the distribution described 
by Eq. (46) exhibits a monotonic rise in the passive region, 
i.e., it always exhibits an inversion. 

The approximate distribution (46) does not satisfy the 
condition (12). We can show that the exact distribution 
n ( ~ )  differs significantly from Eq. (46) only in a narrow 
layer near E = 1, where n ( E )  decreases rapidly from C / 
Iv(1) 1 to 0. The width of this layer is small not only com- 
pared with the characteristic scales of Eq. (46), but also 
compared with the offset Io'l Consequently, we can obtain 
the dependence n ( ~ )  for this case by ignoring the "offset" 
equation (28) and solving the exact difference equation. A 
similar need arises also when dealing with the lower limit of 
the passive region at E = 0. 

On the whole, in the case when Iwll)T[for 
(w' lB( 1,l + p ) 2 Y,, ( 1 ) 1 we can conclude that the condi- 
tion ( 12) introduces no significant corrections to the distri- 
bution n ( E )  obtained subject to the quasiperiodicity condi- 
tion (29) (when u, is replaced with u )  both in the range of 
smooth distributions and in the range of peaks. 

In the other limiting case of /w'l< T almost throughout 
the passive region we can ignore the contribution of D, to 
D(E) since the diffusion process is of thermal nature. In the 
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case of a positive offset from an integral resonance, the solu- 
tion of Eq. (28) subject to Eq. (44) and to the boundary 
condition ( 12) is 

de' 
n ( e ) = ~  

If V(  1 ) > 0, it follows from Eq. (47) that 

the solution (48) differs from that given by Eq. (46) in a 
layer of the order ofD( 1 )/v( 1 ) which shrinks on increase in 
the offset. As long as wI2g Tv,, ( 1)/P( 1,l + p ) ,  the thick- 
ness of this layer exceeds w', and, therefore, we can use Eq. 
(48). 

If v(1) < 0, the solution (47) gives the distribution in 
the form of a peak at E = E, [where V(E, ) = 01 and then in 
the limit 1 - E, ) T we have 

An analysis of the solution (47) allows us to follow readily 
the change from the distribution (49) to the Maxwellian 
distribution at the bottom of the passive region when w'P( 1, 
1 + p )  and the energy E, are both reduced. 

In the case of negative offsets (a' < 0 )  from an integral 
resonance the solution (47), which predicts only cooling of 
an electron gas and its progressive localization at E = 0 on 
increase in Iw'P(0, p )  1 ,  becomes rapidly invalid. The error 
resulting from the use of Eq. (47) in the case of negative 
offsets is due to the fact that near the upper limit of the 
passive region in a layer (1  - a ' ,  1)  Eq. (28) is no longer 
valid [because of the function 8(w - E )  in Eq. ( 10) 1. The 
difference equation which then has to be solved for the w' 
layer is readily shown to reduce to 

for n(  1) = 0 [i.e., the condition ( 12) must be applied to the 
solution of Eq. (50) 1 .  Outside thew' layer the solution anal- 
ogous to Eq. (47) becomes 

where x = Tv,, (1)/P(0, p )  lw'1 ' I 2 .  The formula (52') and 
the explicit form of J ( x )  are obtained from Eq. (52) by the 
replacement of n ( E )  with the first term on the right-hand 
side of Eq. (51) subject to Eq. (44).  If x(1, the factor 
J ( x )  -J(O) isoftheorder of 1, and thequantity C1Iw1IJ(x) 
is close to the total number of "cooled" electrons 8,  [i.e., of 
the electrons described by the first term on the right-hand 
side of Eq. (51 ) 1. The left-hand side of Eq. (52) is close to 
the total number of electrons $3, in the smooth part of the 
distribution. We can conclude from Eq. (52) that if x g l ,  
then 

so that in a narrow range of offsets when 

the distribution is dominated by the "cooled" electrons and 
in the case of a strong but opposite inequality the distribli- 
tion assumes the form given by Eq. (46) and the contribu- 
tion of the "cooled" component can be ignored at the bottom 
of the passive region. 

An allowance for the quasielastic transport in the case 
of a positive offset from a fractional resonance of order N 
also gives rise to a system of N peaks located at the points 
E, + I /N,  whereI=O,l, ..., N -  1. 

The system of peaks exists in the range of intensities 

and we have E, = 0 at the lower limit of the interval (55), 
whereas E, = 1/N applies at the upper limit. The width of 
the interval (55) is comparable with the width of the interval 
(45) for an integral resonance, but it is shifted in the direc- 
tion of higher radiation powers. A comparison of the width 
ofthe peak with the width of the interval N - ' yields a strong 
inequality which governs the possibility of detection of the 
peaks in the case of an offset from an N t h  order resonance 

I v(E') ) 
so that as Nincreases, the temperature has to be lowered and 

n(e) =c, exp (- j d e r  
D(E') the offset reduced [and, consequently, the radiation intensi- 

C 
ty has to be increased-see Eq. (55) 1 .  

C We shall consider also the case w = 1/N+ w' when +-[ I V ( E )  I 1 - e x p ( - j  de~b 'v (e ' ) I ) ) ]  , 
D(E') wl(l/N. In this case an increase in the radiation intensity 

( 5 1 ) should first produce a wide ( - N - ' I 2 )  single peak which . . 

i.e., it consists of a "cooled" solution given by the first term 
on the right-hand side of Eq. (5  1 ) and a smooth distribution 
close to Eq. (46) and represented by the second term. The 
solution of Eq. (50) obtained in the form of Eq. (5  1 ) gives 
the relationship between C, and C: 

gradually passes through the whole passive region, and this 
is followed by a smooth distribution which splits into a sys- 
tem of N peaks at still higher radiation intensities. These 
peaks cross intervals ofwidth N -' and go over to the smooth 
distribution. Similar transitions between smooth distribu- 
tions and systems with different numbers of peaks may occur 
in the case of offsets from fractional resonances of different 

(52) orders or in the case when the drift fluxes created by two 
radiations are balanced out. 
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7. CONCLUSIONS 

The investigated features of the transient process and 
the steady-state distribution of electrons in a radiation field 
alter a number of transport phenomena. We shall now con- 
sider some possibilities of experimental observation of the 
predicted results. 

a )  Relaxational oscillations of the electron distribution 
give rise to oscillations of thep-conductivity, i.e., the photo- 
current has a damped high-frequency component. We can 
also observe the dependence of the steady-statep-photocon- 
ductivity on the intensity of frequency of the pump radi- 
ation. 

b) In addition to a change in the electrical conductivity 
as a result of a redistribution of electrons within the passive 
region, there is also a change in the diffusion coefficient and 
this can be deduced from the photo-emf which appears due 
to a spatial gradient of the electron density (as described in 
Ref. 7).  

c)  When carriers of both signs are present in a sample, 
their nonequilibrium distribution (due to infrared-radiation 
pumping) may be identified not only from a change in the 
density because of the energy dependence of the recombina- 
tion, but also directly using hot luminescence (see, for exam- 
ple, Ref. 8) .  

d )  A redistribution of electrons in the passive region is 
in principle detectable also on the basis of submillimeter lu- 
minescence when intraband transitions take place. Since 
among the above distributions there are several variants of 
inversion behavior, the spectral dependence of the lumines- 
cence may be nonmonotonic. 

These effects should occur in electronic semiconduc- 
tors (InSb, GaAs, etc. ) for typical parameters 40, = 20-40 
meV, vo- 1012-1013 set-', and vqe 5 lo9 sec-I at helium 
temperatures. The radiation intensities needed to satisfy Eq. 
( 2 )  correspond to the megawatt range of CO, laser radiation 
which can be tuned in a range 9.2-10.7 ,u sufficient for the 
observation of the above-mentioned strong spectral depen- 
dences. We can also use a submillimeter laser in the 
range- 30,u when the necessary intensity of the radiation is 
an order of magnitude less [see Eq. (3 )  1. 

The dissipation of energy by acoustic vibrations is as- 
sumed in estimating vqe and this predominates in compen- 
sated materials. However, if the scattering of electrons by 
one another (or by carriers with the opposite sign) predomi- 
nates, we must allow for such scattering. 

The authors are grateful to V. I. Perel' for valuable dis- 
cussions of the main results and to L. F. Linnik for an ac- 
count of the potentialities of infrared experiments. 

"Such a compensation of the drift velocity occurs "on the average" for the 
whole system of N intervals, because rapid transitions with energies M I /  
N, and M,/N2 take place and these impose a distribution in a system of 
intervals. 

"It should be pointed out that the condition (29) is in conflict with the 
boundary conditjen ( 12). This is due to the fact that, without allowance 
for the operator Iq,J Eq. (9 )  is a difference equation describing carrier 
transitions only in the passive region without crossing the boundaries of 
this region. This property of Eq. (9)  is retained also when the differential 
equation (28) is used. The need for the condition ( 12) ixrelated solely to 
the allowance for nonradiative transport described by I,,J 

"In the case when several radiations are present (or when several photo- 
transition mechanisms are active), we can encounter several rest points 
in the interval (0, 1 ) .  The resultant distribution is obtained by combina- 
tion of all the cases discussed above. 
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