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In the region of variable-range hopping, electrons undergo tunnel hops over large distances and 
are scattered by other impurities. The effect of scattering on the wave function of a tunneling 
electron is studied by numerical simulation. The corrections to the localization length are found. 
They agree well with the predictions of the analytic theory. The behavior of the sign of the wave 
function is studied for a simple model of a binary alloy. As the fraction of scatterers with a 
negative scattering amplitude increases, a second-order phase transition occurs from a behavior 
such that the wave function retains a memory of its initial sign to a behavior such that the sign of 
the wave function at large distances becomes unpredictable. Aharonov-Bohm oscillations in the 
hopping conductivity are examined. The resistance may fluctuate by an order of magnitude. The 
sign transition observed in this study should be seen as a change from an oscillation with a normal 
flux quantum to an oscillation with a superconducting quantum. A new mechanism for a negative 
magnetoresistance is found in the region of variable-range hopping. 

1. INTRODUCTION 

A hopping conductivity with a variable hopping range 
(variable-range hopping) is a general mechanism for the 
low-temperature electrical conductivity of disordered sys- 
tems with localized states, e.g., doped semiconductors. 

In the variable-range hopping regime, electrons hop 
between donors which have energies close to the Fermi level 
and which are separated from each other by a distance r 
much greater than the average distance between donors, 
N - ' I 3  ( N  is the donor concentration; for definiteness, we 
assume a lightly doped, compensated, n-type semiconduc- 
tor). The probability for a tunnel hop between donors 1 and 
2 with energies&' and E~ is proportional to I - E,) ', ifI, 
the resonant overlap integral, determined by the repulsion of 
the levels of these donors, satisfies I< (E '  - E,/. If there were 
no other donors between donors 1 and 2, the integral Iwould 
be of the form I, = I hO'er'", where a = W(2m ~ E I  ) ' I2  is the 
localization length of the wave function of an isolated donor 
with energy E, and I;'' is the coefficient of the exponential 
function. Actually, in the course of tunneling between do- 
nors 1 and 2 an electron is scattered by a large number of 
donors within a cigar-shaped surface of revolution of length 
rand diameter ( ra)  ' I2 .  As a result of the scattering by donor 
i, a scattered wave 

arises, where +bin, is the wave function of donor 1 at point ri 
in the absence of donor i, 

is the amplitude for scattering by the donor potential, which 
we assume to be a short-range potential, and E~ is the energy 
of the level of donor i. According to ( 2 ) ,  we have p > 0 at 
E ,  < ci and p < 0 at E,  > ei. The integral I is formed by sum- 
ming the contributions of multiple scattering along various 
paths along the donors of the cigar-shaped region between 
donor 1 and donor 2. An important point is that if the energy 

is negative the backscattering which would elongate the 
tunneling path can be ignored. 

The simplest manifestation of scattering during tunnel- 
ing is an N-dependent correction to the length a.  A random 
arrangement of impurities makes I a random quantity, and 
the value of this correction may depend on the nature of the 
averaging. For a hopping conductivity we are interested in 
the q ~ a n t i t y ' . ~  

where (...) means an average over the positions of the scat- 
terers. The correction Aa = a ( N )  - a was calculated in 
Refs. 3 and 4 and was found to be different in two cases 
differing in the relative size S I / I  of the fluctuations: homo- 
geneous (SI  /I( 1 ) and fluctuational (S I  /I) 1 ). If the scat- 
tering amplitudes of all donors are identical and equal 
to p ,  in the homogeneous regime, which prevails at3 
B ( N p 2 a )  'I2( 1, we would have 

while in the fluctuational regime4 (B) 1 ) we would have 

Aa=Ca ( N u 3 )  '" ( ln  B )  "', ( 5 )  

where Cis  a numerical coefficient. Hydrogen-like impurities 
can be described4 by expression (5) ;  under the assumption 
C Z  1, that expression can explain some of the increase in a 
which is observed in experiments on variable-range hopping 
Iong before the insulator-metal transition. 

A topic of considerable interest is how the scattering of 
a tunneling electron affects the magnetoresistance in the 
variable-range hopping regime. It has been s h o ~ n ~ , ~ . ~  that 
scattering changes the decay of I (  r ) at large values of r in the 
direction perpendicular to the magnetic field H. If the field is 
weak, so that we have A = cfi/eH>ra, then in the absence of 
scattering we have 
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When scattering does occur, expression ( 6 )  holds only if 
?a/24/1 4gIln B 1; in the opposite limit we have 

where 
[ { " a ) ) '  } 1 1 3 ]  

b=a 1- - - IlnBl2 , 
32 ?. 

Expressions (7 )  and ( 8 )  were found in Ref. 2 for scat- 
tering by a large number of weak scatterers ( Ip / (a) .  A simi- 
lar picture of a transition from (6 )  to ( 7 ) ,  (8 ) ,  only with a 
replaced by a ( N ) ,  holds for the homogeneous regime with 
strong scatterers ( p 1 )a) ,  which donors actually are in 
p r a ~ t i c e . ~  For the fluctuational regime, however, we have 
not been able to find even an estimate of a ( N )  - b in the 
weak-field region. The behavior Z(r, H) in such fields is 
quite pertinent, however, since experiments on variable- 
range hopping are interpreted by means of equations derived 
with the help of (6 ) ,  so that they determine the values of a 
and the critical indices near the insulator-metal transition.' 

In the present paper we report a numerical simulation 
of tunneling with scattering in two- and three-dimensional 
systems. The results of simulations with H = 0 agree well 
with expressions (4 )  and (5 )  at B g 1  and B) 1, respectively; 
the coefficient Cin ( 5 )  turns out to be 1.0 + 0.1. Unexpected 
results emerge from a study of scattering with negative am- 
plitudes. Analysis of the distribution function f ( I )  of the 
quantity I shows that with increasing N a second-order 
phase transition occurs at B z  1. This phase transition can be 
summarized by saying that at small values of N a plus sign is 
encountered on the quantity Zmore frequently than a minus 
sign is, while at the phase transition f (I) becomes an even 
function. In a search for an effect which is sensitive to this 
sign phase transition, we have settled on the Aharonov- 
Bohm effect, which has previously been studied only in met- 
als. The resistance of a hollow thin-walled cylinder of a pure 
metal oscillates as a function of the magnetic flux @ pene- 
trating the cylinder with a period CJ, = ch /e equal to the 
normal flux q u a n t ~ m . ~  It was shown in Ref. 9 that the resis- 
tance of a cylinder made of a dirty normal metal should os- 
cillate with a period equal to the "superconducting" flux 
quantum @,/2. Such oscillations were observed in Ref. 10. 
In the present paper we report the first study of Aharonov- 
Bohm oscillations in a material exhibiting a hopping con- 
ductivity. Our numerical simulation shows that in this case 
oscillations can occur with a period of either @,or CJ0/2. The 
transition between the two situations, as the concentration 
of scatterers is changed, is a second-order phase transition 
and is a consequence of a transition in the sign of structure of 
I .  The results of the present study were summarized briefly 
in Ref. 11. 

The Aharonov-Bohm effect was simulated for a sample 
surrounding a solenoid. To study the magnetoresistance we 
consider samples which are immersed entirely in a uniform 
magnetic field. At B 5 1 the magnetoresistance is found to 
agree well with expressions (6)- (8) .  At B )  1 withp > 0, the 
function I ( r ,  H) is qualitatively the same as at B Z  1, but in 
the presence of scatterers withp < 0 the magnetoresistance is 
negative in a very weak field; i.e., the quantity (In 11') in- 

creases with increasing field. We do not believe that this ef- 
fect is a consequence of a shift of the mobility threshold in 
the magnetic field.12 As we will show below, the causes of 
this effect are strong fluctuations of the quantity 1 1' and the 
logarithmic nature of the averaging in ( 1 ). For low concen- 
trations of scatterers with p < 0, the negative magnetoresis- 
tance rapidly gives way to a positive magnetoresistance, and 
all the results of the simulation are in good qualitative agree- 
ment with experimental data on germanium.' At high con- 
centrations of scatterers wi thp < 0, the negative magnetore- 
sistance becomes large, and it completely displaces the 
positive magnetoresistance from the weak-field region. This 
situation is usually not observed experimentally, possibly be- 
cause of many-electron effects, which we have not consid- 
ered here. 

2. MODEL AND CORRECTIONS TO THE LOCALIZATION 
RADIUS 

For the calculations we use an Anderson model with the 
Hamiltonian 

where i and j are the sites of a square or simple cubic lattice, 
the operator ai+ creates an electron at site i in a state with an 
energy E ~ ,  and cj is equal to V <  0 for nearest neighbors and 
0 otherwise. The energies of the leftmost and rightmost sites, 
E~ and E*, at the opposite ends of a diagonal of the square 
(Fig. 1 ) or of a body diagonal of the cube, are assumed to be 
approximately zero. Sites 1 and 2 represent donors with ap- 
proximately equal energies, between which tunneling occurs 
in variable-range hopping. The distribution function of the 
energies of the other sites is 

w h e r e x ~ 0 . 5 ,  W> 0, A > 1 ,  and W/IA / ) I  V 1 .  Thelast two 
inequalities correspond to the situation deep in the insulat- 
ing region or, physically, the case of a lightly doped semicon- 
ductor. We calculate the resonant integral I between sites 1 
and 2: 

where 

(r) is the set of oriented paths from site 1 and to site 2 (one 
such path is shown in Fig. 1 ); (i, ) are the sites on this path 
other than sites 1 and 2; ai = 1, A for E~ = W, W/A; 2k = 4 
or 6 is the number of nearest neighbors in the corresponding 
lattice; and n = 1 is the number of sites on the side of the 
square or the edge of the cube. We ignore paths with returns, 
since they contain additional powers of the small parameters 
A I V  /Wand  V  / Wandcontributeonly smallcorrections to 
ha. 

The quantity I can be calculated not only at site 2 but 
also at an arbitrary site i. For the arbitrary case, we should 
take kn  in ( 1 1 ) to mean the minimum number of steps lead- 
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FIG. 1. Lattice used in the simulation of the quantity J. Sites 1 and 2  are 
the source and observation point. The arrow shows one of the oriented 
paths between these sites. The square at the center of the lattice is used in 
Section 3 to simulate an aperture in which a solenoid is placed. The dashed 
line is a "cut" on which the phase changes discontinuously. 

ing from site 1 and site i. Let us examine the case x = 0, in 
which we have ai = 1 for all i; i.e., there is no scattering. In 
this case, J is equal to the total number of oriented paths 
from site 1 to site i, and it can easily be evaluated by a com- 
binatorial approach. For definiteness, we focus on the three- 
dimensional case. For site i with coordinates (z, p,  p) in a 
cylindrical coordinate system with origin at point 1 and with 
polar axis z directed to point 2, under the conditionp<z, we 
find 

where 

Iis the lattice constant, and the subscript 0  corresponds to an 
ordered lattice. 

The decay of I near the z axis is thus anisotropic. Since 
the theoretical expresssions ( 4 )  and ( 5 )  describe the iso- 
tropic problem, it is convenient in comparing with these ex- 
pressions to transform to the coordinate system r' = ( p', z ) ,  
in which the functional dependence of I onp'  andz along the 
z axis is isotropic (an "I-system"). This transformation is 
described bypI2 = p2a,/a,; near thez axis, it puts ( 1 3 )  in the 
form 

as in isotropic systems. The following Green's function can 
be expressed in terms of Io :  

According to ( 15), the Green's function near the z axis in an 
I-system has the usual form for an ordered system at energies 
in the tunneling region. Up to this point we have been de- 
scribing the case in which we have ai = 1 for all i. Let us 
assume that at the point i in a cubic lattice there is a scatterer 
witha, = A # 1. The Green's function can then be written as 
the sum of direct and scattered waves: 

where the scattering amplitude p is 

We have calculated J numerically for finite values of x  
and various values ofA, using a grid with n( 100 for the two- 
dimensional case and a grid with n  (24 for the three-dimen- 
sional case. Our approach is to calculate J ,, in succession for 
all sites beginning with site 1.  For this purpose we use the 
expression J ,i = 2,  a, J ,, , which follows from ( 12); here k 
is the index of the nearest neighbors on the left of site i. For 
each specified pair of x and A values, we studied up to 2000 
realizations of the aggregate {a,), and we calculated the 
distribution function f (J) and the averages (In1 J 12), (J ), 
( J 2 )  over the realizations. 

Figure 2  shows L as a function ofx according to calcula- 
tions from (3 )  for the three-dimensional case with A = 2, 10, 
20, - 1 ,  - 8, and - 18. For comparison with ( 4 )  and ( 5 ) ,  
here are the equivalent theoretical expressions: 

22 
L(x )=zN,ya ,  =-x(A-I), B < l ,  

a, 
(19)  

z  
L (x) =2Cz (N ,a l )  '" ln"B=2C - ~ " 3 - ' ~  In" B, BBI, (20)  

a 
where 

Expressions ( 19)-(21) were origially written in the I-sys- 
tem, in which the concentration of scatterers is denoted by 
N,. We then transform to the laboratory system, using the 
obvious replacement Nla ,  = X I  -3a,. As a result, the equa- 
tions and applicability limits take a form convenient for 
comparison with the results of the simulation. It can be seen 
from Fig. 2  that in the case B<l all the results agree with 
( 19). At B )  1 ,  the results for A = 10 and 20 are described 
well by (20)  with C =  1 .0 iO . l .  For A = - 8 and - 18,  
expressions (21)  and (20)  give rise to the same values of 
L ( x )  as are found with A = 10 and 20. It can be seen from 
Fig. 2  that, in agreement with this prediction, the experimen- 

FIG. 2. The quantity La2/2z , ,  as a function of x for various values of the 
parameter A  ( z , ,  = 2 4 ~ 9 1 ) .  The points show the results of simulations for 
the following values of A:  X - A  = - 1; A-A = 2; 0 - A  = - 8 ;  0- 
A  = 10; + -A = - 18; 0 - A  = 20. The dashed lines correspond to 
( 19)  and the homogeneous case; the solid lines correspond to the fluctua- 
tional case, i.e., expression ( 2 0 )  with C = 1. 
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FIG. 3. The x dependence of A p = p+ - p  and of the quantity L ( T ) ,  

defined in (25), demonstrating a sign transition at x = 0.05 (two-dimen- 
sional case, A = - 1 ). 

tal points forA = - 18 and 20 at B )  1 are approximately the 
same. The same tendency is seen, less obviously, for 
A = - 8 and 10. 

3. SIGN PHASE TRANSITION AND AHARONOV-BOHM 
OSCILLATIONS 

In the preceding section we analyzed results for 
(In1 J / 2). We begin this section with an analysis of the distri- 
bution function J .  We first consider results obtained in the 
two-dimensional case for A = - 1, in which the ai take on 
the values f 1. Analysis of 2000 realizations of the aggre- 
gate (a,  ) shows that the nature of the distribution function J 
varies withx. At small x we have J >  0 in most of the realiza- 
tions, while at x)x, = 0.05 the probabilities for positive 
( p + ) and negative ( p - ) values of J become equal. Figure 3 
shows Ap = p +  p -  as a function of x for n = 100. The func- 
tion Ap(x) does not depend on n for n > 20; i.e., it corre- 
sponds to the limit n+W. The nature of this function indi- 
cates the occurrence of a second-order phase transition. 
Accordingly, at x < x, , in the limit n+ w , we can predict the 
sign of the Green's function GIZ ( E  = 0 )  = I with some 
confidence, while at x > x, the two signs are equally prob- 
able. Figure 4 shows the distribution functions of the differ- 
ence lnjJl - (InlJI)  separately for J > O  and J < O .  At 
x = 0.03, these two peaks in the distribution function are 
very different, while at x = 0.05 the difference disappears. 
At x > x, , the distribution function f ( J )  of J is even. How- 
ever, to say that the distribution function f ( J )  is an even 
function does not in this case imply ( J  ) = 0. The quantity 
( J )  can be calculated exactly; it is 

The first factor in this expression is the total number of paths 
from point 1 to point 2, while the second is the contribution 
of one path, averaged over the realizations. We see that we 
have ( J  ) > 0 up to x = 0.5 and that this average has no struc- 
tural feature ofany sort at the transition point x, = 0.05. We 
believe that because of the exponentially large scatter in the 
values of J from realization to realization the value of ( J  ) at 
x > x, is determined by exponentially rare but very large 
positive values of J .  In the limit n + ~  the contribution of 

these values to the normalization of the distribution function 
exponentially vanishes. I t  is in this sense that the distribu- 
tion function is even at x > x, . Support for this interpretation 
comes from the behavior of the theoretical value (J),,,,. 
While at  x < x ,  this theoretical value agrees well with 
expression (22) with x > x, , it has a random sign and a ran- 
dom magnitude. The difference In1 (J,,,,) / - l n ( J  ), where 
( J  ) is given by (22),  is proportional to (x  - x, ) . We believe 
that the reason for the discrepancy between (J,,,, ) and ( J  ) 
is that the number of realizations studied is not adequate to 
"capture" those rare realizations which determine (22).  We 
have also calculated the value of ( J 2 ) .  We found no features 
of any sort in this quantity at  x = x, ; this was to be expected, 
since this quantity is also determined by very rare events. We 
believe that the same factor means that an analytic calcula- 
tion of ( J  2,  can provide no information about the sign transi- 
tion. Less understandable is the result that there is no notice- 
able structural feature at x = x, in the values from the 
numerical simulation for the quantity (1nlJ 12), which is de- 
termined by typical realizations. 

A similar sign transition is observed in the three-dimen- 
sional case. With A = - 1, - 4, and - 8 we find 
x, = 0.135,0.025, and 0.01, respectively. All the qualitative 
results in the three-dimensional case are the same as in the 
two-dimensional case. 

Can we explain the origin of the sign transition on the 
basis of expression ( 1 )? Let us assume that in the three- 
dimensional case $,, is a plane wave e - ''" which is incident 
from the half-space z < 0, and a donor 3 with p < 0 is at  the 
origin of our cylindrical coordinate system ( p, p, z )  (Fig. 
5 ) .  Beyond this donor a region with $ < 0 arises. The surface 
bounding this region is described by 

FIG. 4. Distribution functions f ( y )  of the quantity y = InlJ i - (InIJ I), 
plotted separately for J <  0 and J >  0. Solid lines: x = 0.03. 1-J> 0; 2- 
J<O.  Points: x = 0.05. A-J>O; 0-J<O (two-dimensional case, 
A =  - 1 ) .  
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terms of the sign of each variable. At the point x = x, the 
function F ( J , ,  J,) takes the form F(J:, J: ). From (25) we 
then find 

cc m 

FIG. 5. Region beyond a scatterer with p <O (donor 3 )  in which the 
condition $GO holds (hatched region). 

and is cigar-shaped with a length on the order of Ip 1, a diam- 
eter on the order of ( I p  la ) ' I 2 ,  and a volume = ,~~~a /32n- .  
The fraction of the volume which is occupied by all regions 
withp < 0 is Nf l  = B * / 3 2 ~ ,  where N is the concentration of 
scatterers. When B 4  1, in which case this fraction is small, a 
positive sign is clearly more probable than a negative sign for 
the incident wave function at large distances. It seems likely 
that the transition to an alternating-sign situation should 
occur at  some critical value of Nf l  on the order of unity, i.e., 
at 

where B, is a critical value. Expression (24) relates N t o p  at 
the transition point. According to (21 ), it follows from (24) 
that in our lattice model the quantity x, (A - should be 
identical at the transition point for different values ofA. In- 
deed, we find that this quantity varies only from 11.2 to 17 as 
A is varied from - 1 to - 8. 

How will this transition which we have discovered be 
manifested in Aharonov-Bohm oscillations? For the nu- 
merical simulation of this effect in the two-dimensional case 
we assumed ai = 0 for all i in a 7 x 7 square at the center of 
the lattice; i.e., we set up an impenetrable aperture where the 
solenoid is located (Fig. 1 ) . The magnetic flux (a) through 
the aperture is taken into account by multiplying a, by elp, 
where p = 2n-@/O,, at all the sites along the cut running 
from the lower corner of the aperture (the dashed line in Fig. 
1).  

We calculated the quantity L ( p ,  x )  = ( ln l J (p ) /  
J ( 0 )  12). Figure 6 shows L ( x )  as a function o f p  forA = - 1 
and various values of x. At x <x, the magnetoresistance is 
seen to have a period of 277. As x is increased the quantity 
IL ( r ,  x )  / decreases, vanishing at x = x, (Fig. 3 ) .  At x > x, 
the magnetoresistance is negative for p and has a period of T. 

The transition to a phase which is disordered in terms of the 
sign of J thus causes the period a, to be replaced by a period 
Qd2. To clarify the relationship between these effects, we 
write J i n  the form J = J, + J,, where J, and J, are the sums 
along paths running above and below the solenoid. We can 
then write 

CC 

where F ( J l ,  J,) is the distribution function of the values of J, 
and J,. At x = 0 we have 

F ( J , ,  J2) =6 (Jl-J12) 6 (Jz-J/2) and L (cp, 0) 

in accordance with Fig. 6. As x is increased, the function 
F ( J , ,  J,) becomes progressively more nearly symmetric in 

According to (26),  at  x > x, the oscillation period is n-, and 
the magnetoresistance is negative for all p. Clearly, the peri- 
od n- arises in (25) because when we add n- to p the phase 
factor e'p changes sign; the effect is equivalent to a change in 
the sign of J,. Since the distribution in J, is of even parity, 
however, there is no change in L ( p ,  x )  . 

The reason for the negative sign of the magnetoresis- 
tance can be seen most easily at p = n-/2, where a difference 
( ln(J :  + J i ) )  - ( ln ( J ,  + J,),) arisesin (25).Thisdiffer- 
ence is positive, so that taking an average of the logarithm 
always emphasizes small values of its argument, and when 
the magnetic flux is absent the argument varies far more 
than when a flux is present. 

It can be seen from Fig. 6 that at  small values of p a 
negative magnetoresistance prevails even for x < x, . To find 
the reason for this result, we rewrite (25),  expanding in p( 1 
and introducing the variable J = J, + J,: 

q2 L(V,  x) = J dl ,  J ~ J F ( J , ,  l - l , ) ln[  ?+I, ( I , J ) ~ ]  . (27) 
-0I -ID 

At p g l ,  expression (27) is dominated by values 
J<lp ~ ~ J 1 ~ g l J 1 ~ . I f F ( J , ,  - J2)#0,wef indfrom(27)  thatat 
Ip 14 1 we have 

c.- 

Clearly, the negative magnetoresistance which we have 
found does not arise because localized corrections to the 
conductivity which result from traversing closed loops in 
two directions are s u p p r e ~ s e d , ~ . ' ~  since our simulation com- 

FIG. 6 .  The quantity L ( x ) ,  defined in (25),  versus the phase p for various 
values of x (the curve labels; two-dimensional case; A = - 1 ) .  
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FIG. 7. The quantity L ,  +( lnIJ(H) /J(O)  1') as a function of the dimen- 
sionless magnetic field H / H  for the three-dimensional case and various 
values ofA and x: 1-x = 0; 2-A = 8, x = 0.001; 3-A = 2, x = 0.5; 4- 
A = 20, x = 0.01; 5-A = - 8, x = 0.01; &A = - 1 ,  x = 0.1; 7- 
A = 20, x = 0.1; 8-A = - 8, x = 0.02; 9-A = 8, x = 0.1;  1 0 -  
A = - 1 ,  x = 0 , 5 .  Shown separately in the inset is the region of very weak 
fields. H<O.OlH. 

pletely ignores these loops. It is interesting to see what 
expression ( 2 6 )  predicts if we arbitrarily assume F ( J , ,  
J , )  = f ( J , )  f ( J , ) ,  where f ( t )  = ( y f i ) - ' e - ' 2 ' 9  is a 
Gaussian distribution function. In this case we find the re- 
sult 

which is roughly twice as large as the experimental values of 
L ( p ,  0 . 5 ) .  

Similar numerical simulations were carried out in the 
three-dimensional case with A  = - 1 .  It was assumed that a 
cylinder was cut from a cube in the direction perpendicular 
to the body diagonal connecting sites 1 and 2. To simulate a 
solenoid placed in this cylinder, we multiply the contribu- 
tions from all paths which pass below the cylinder by elp.  It 
is found that, as in two dimensions, the oscillation period 
changes and the positive magnetoresistance disappears com- 
pletely where the sign changes. Curiously, at  x = 0.5 the 
theoretical function L  (p, 0.5 ) is very close to ( 2 9 ) ,  telling us 
that at x = 0.5 the distribution function of J i n  three dimen- 
sions is described considerably better by a Gaussian distribu- 
tion than in two dimensions. 

4. SIMULATION OF THE MAGNETORESISTANCE 

In this section we report the results of a simulation of 
the effect of a magnetic field on tunnel hopping. We consider 
only the three-dimensional case. In contrast with Section 3, 
we simulated a situation in which an entire 25 x 25 X 25 cube 
is immersed in a uniform magnetic field directed perpendic- 
ular to the vector r,,. There are no apertures of any sort 
inside the cube, of course. In a magnetic field H ,  the quanti- 

ties 4j  in ( 9 )  acquire a phase factor 

V,,=V exp (icpi;) , cpij= (e l2hc )  H [ri, r,] . ( 3 0 )  

The change in 1 V j j  in fields H(&/el  can be ignored. As a 
result, we can replace expression ( 12) for J  by 

J= z exp ( iqr)  I-J a,. 
1r1 I I P J  

where the a; have the same meaning as in ( 12) ,  and p ,  is the 
sum of the phases p i j  corresponding to all steps of the path 
r. The values of J  are calculated in succession, beginning at 
the left. A new value of J , ,  is found in the formula 

J, j= z J,.a. exp ( iy,,) , 

where i runs over the three nearest neighbors on the left of 
sitej. On the diagonal connecting points 1 and 2  we calculate 
the quantity L ( H ,  r )  = ( l n l J ( H ) / J ( O )  1 2 ) ,  where r  is the 
distance to point 1 .  Figure 7  shows results on L ,  ( H )  -L ( H ,  
r I 2 )  for several values of the parameters A  and x. The mag- 
netic field is expressed in units of H = 2cfi/el ,, where I is the 
lattice constant. 

At x = 0 ,  i.e., in the absence of scattering, the results of 
the simulation for L ( H ,  r )  are in excellent agreement with 
( 6 ) ;  the latter predicts the following for L ( H ,  r )  : 

The meaning of a is none other than the quantity a, = 1 /A  
defined in ( 13 ) , ( 14) .  Curve 1 in Fig. 7 is in fact a parabola 
L ( H )  = P ( H  /H) ' ,  and to compare the coefficient f l  with 
( 3 2 )  we should note that we have r , ,  = 2461 .  

We begin our study of the effect of scattering with the 
case A  = 2, x = 0.5 (curve 3 ) .  Noting that the average value 
of a, in this case is 1.5, and the deviations from the average 
are f 0.5,  we can expect that this case is still within or at the 
boundary of the range of applicability of the weak-scattering 
theory., As we mentioned above, this theory leads to ( 3 2 )  in 
the case L  ( H )  (In B, i.e., as long as scattering does not play 
an important role. In the case at hand we have In B=: 1, so 
that we should expect ( 3 2 )  to hold, i.e., that curves 3 and 1 
will coincide at L  ( H )  < 1 .  In fact, we find that these curves 
are very close together at L < 3. As the field increases 
further, the scattering becomes important, and L ( H )  I in- 
creases in proportion to H * I 3 ,  in agreement with ( 7 )  and 
(8 ) .  Simultaneously, the behavior changes from L ( H ,  
r )  a r 3  to L ( H ,  r )  a r .  Furthermore, we have not only a 
qualitative but a good quantitative agreement between curve 
2  and expressions ( 7 )  and ( 8 ) . 

We now turn to the case of strong scatterers ( A ,  1 ) .  
Figure 7  shows results for A  = 20 and for x = 0.0 1 and 0.1 
(curves 4  and 7 ) .  We see from Fig. 2 that at x = 0.01 the 
system is at the beginning of the fluctuational region, while 
at x = 0.1 it is deep inside it. For the fluctuational case we 
havenot been able to construct an analytic theory for magne- 
toresistance in weak fields, with a ( N )  - b<Aa [in stronger 
fields, with a ( N )  - b)Aa ,  the theory of Refs. 5 and 6 should 
hold for arbitrary B]. It can be seen from Fig. 7 ,  however, 
that the behavior L ( H )  is qualitatively the same as in the 
homogeneous case. In extremely weak fields, with 
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L ( H )  = /?(H/R),, and withx = 0.01, the coefficient is the 
same as in the absence of scattering, while at x = 0.1 it is 
smaller by a factor of about two. At L ( H )  > 1 we have 
L ( H )  = qH" in each case, wheres = 0.8-0.9, and the coeffi- 
cient q, like/?, falls off slowly (apparently, logarithmically) 
with increasing x. Here we have L ( H ,  r )  a r3 in the region 
L ( H , r )  < 1 a n d L ( H , r )  a r i n t h e r e g i o n L ( H , r )  > 1 .Upto  
this point we have been discussing the results for the case 
A > 0, in which the contributions from all paths to J a r e  posi- 
tive, and the magnetic field can only cause cancellation of 
the contributions of the individual paths, because of the fac- 
tor elp, so that a positive magnetoresistance will be estab- 
lished. This reduction will be most effective in the absence of 
a scattering, and it will become far weaker in the fluctua- 
tional case, where the contributions of the different paths are 
very different from each other. 

How does this situation change in the presence of scat- 
terers with A <O? Figure 7 shows results for the cases 
A = - 1 (curves 6 and 10) and - 8 (curves 2, 5, 8, and 9 )  
for various values of x. In both cases we see a new effect: an 
effective increase in J in a magnetic field, corresponding to a 
negative magnetoresistance. At small values of x the nega- 
tive magnetoresistance is found only in weak fields, where it 
is linear in H a n d  thus greater than the positive magnetore- 
sistance. We believe that this negative magnetoresistance is 
of the same nature as the Aharonov-Bohm effect. In those 
rare realizations in which, with H = 0, cancellation at the 
point r of the contributions of paths coming in from the left is 
anomalously strong because of scatterers with A < 0, even a 
small phase difference p between these paths, caused by the 
magnetic field, will eliminate this cancellation. The logarith- 
mic averaging emphasizes the role of these events and gives 
rise to a result analogous to (28) .  To estimate the phase p, 
which plays the role of the phase set by the solenoid in the 
Aharonov-Bohm effect, we return to the case in Fig. 5, 
where in a continuous space there is a single scatterer with a 
negative amplitudep, on which a wave is incident from point 
source 1. Let us assume that at  observation point 2 the wave 
function is approximately zero because of the direct wave 
and that scattered by donor 3 cancel. In a magnetic field 
directed perpendicular to the plane of the paper, a phase 
difference p - S  /A ' arises between these waves, where 
S = : r ( I p l ~ ) " ~  is the area of the triangle with vertices at the 
points 1,2, and 3; and r = r,,. When the concentrations N of 
scatterers withp < 0 and the values o f p  are small, an average 
over realizations analogous to (27) leads to 

This estimate of the negative magnetoresistance appears to 
be good for all N in the homogeneous case, since in this case 
other scatterers only slightly distort the spherical wave com- 
ing from point 1, simply making a correction to the localiza- 
tion radius. We cannot evaluate the negative magnetoresis- 
tance in the fluctuational case, but in the numerical 
simulations a linear dependence of L on H and r a t  small H is 
observed in all cases. It should be kept in mind, however, 
that the accuracy of the negative magnetoresistance results, 
despite the averaging over 50 realizations, is low because of 
the very strong fluctuations in ln jJ (H)/J(O)  l 2  from one re- 

alization to another. From the standpoint of our explanation 
of the negative magnetoresistance, based on the role of rare 
realizations, this seems a natural result. At xgx ,  , wherex, is 
the critical concentration for the sign transition, the negative 
magnetoresistance in ( 33 ) should be summed with the posi- 
tive magnetoresistance in (32).  As a result, a minimum 
should appear in the function L ( H )  at some field. This be- 
havior is indeed observed at  xgx ,  . At x 5 x, (curves 5 and 6 
in Fig. 7 ) ,  the picture is qualitatively the same, but the posi- 
tive magnetoresistance is considerably weaker than at xgx,  , 
while the negative magnetoresistance has managed to grow 
to large values. For x k x, the positive magnetoresistance 
decreases sharply, remaining only in very strong fields 
(curve 8 in Fig. 7 ) .  This positive magnetoresistance can be 
attributed to the effect of the field on the wave functions in 
spatial regions between scatterers with A < 0. At sufficiently 
large values of x ,  the positive magnetoresistance completely 
gives way to the negative magnetoresistance over the entire 
region H <H (curves 9 and 10 in Fig. 7 ) .  In strong fields, a 
positive magnetoresistance should of course persist, but in 
order to find it in (30) we would have to take into account 
the dependence of / Vij / on H .  

Again, we wish to stress that the negative magnetoresis- 
tance arises from the averaging of the logarithm IJ(H)/  
J ( 0 )  12. If we average I J (H) / J (O)  1 ', there will be no magne- 
toresistance at x = 0.5, while at xZO.5 there will be a posi- 
tive magnetoresistance. Averaging IJ(H)/J(O) 1" leads to a 
positive magnetoresistance at  a > 2 or a negative magnetore- 
sistance at 0 <a < 2. I 

We believe that the negative magnetoresistance de- 
scribed above is related to the negative magnetoresistance 
observed by Lee and Fisher14 in a numerical calculation of 
the conductance of a square lattice in the Anderson model. 
Lee and Fisher did not restrict their study to oriented paths, 
so that they were able to study regions of both strong and 
weak localization. In  the strong localization region they ob- 
served a substantial increase in the average logarithm of the 
conductance of a 32 X 32 lattice with increasing magnetic 
field, but they did not explain this negative magnetoresis- 
tance. We believe that it is due primarily to the logarithmic 
averaging, not the paths with returns which were considered 
in Ref. 14. To  check this point, we carried out some calcula- 
tions analogous to those in Ref. 14, considering only orient- 
ed paths. We studied a square lattice rotated through 45" 
(Fig. 8) ,  with a side containing 32 sites. We calculated the 
transparency of the square: 

where k and I specify indices on respectively the left and 
right sides of the square, and the j,, are the overlap integrals 
between sites k and I. They can be found from ( 3  1 ) by treat- 
ing site k as a "source" and site I as an6'observer." Periodic 
boundary conditions are imposed on the upper and lower 
boundaries of the square. As in Ref. 14, we assumed that the 
energies E~ are distributed uniformly from - W to W. An 
average is taken over 200 realizations on the basis of 
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FIG. 8. Results of a calculation of the transparency of the square lattice 
shown in the inset. 0-Reference 16; A-Present study. 

Figure 8 shows our results along with Lee and Fisher's re- 
sults for the largest value of their parameter W, W = 8. We 
see that the results are similar, although the errors are very 
large. The implication is that logarithmic averaging plays a 
major role in the origin of the negative magnetoresistance. In 
weak fields, L ,  ( H )  is proportional to H 2 ,  not H, as in (33).  
The reason is that, because of the summation of a large num- 
ber of positive values in (34),  the probability for extremely 
small values of L ,  is low. 

5. CONCLUSION 

We have a few comments regarding the relationship 
between these calculations and experiments. 

1. In this paper we have been concerned primarily with 
the scatterer energy distribution ( l o ) ,  which is characteris- 
tic of a binary alloy, not of doped semiconductors, which 
would have a continuous energy spectrum. I t  is thus natural 
to ask whether a sign transition occurs when there is a con- 
tinuous energy spectrum. The answer to this question is that 
if the state density at the Fermi level, g ( ~ ,  ), is nonzero, and 
if condition (24) holds, then the sign o f 1  is not conserved in 
the limit r+tq at any value of N. The reason is the special 
role played by scatterers with energies E~ close to E. Let us 
consider an energy interval E~ such that 0 < E  - E~ < A. The 
concentration of scatterers in it is g ( ~ ~  )A, and a typical am- 
plitude is on the order o f p ( A )  - - IE/A/. Clearly, in the 
limit A+O condition (24) will hold for an arbitrarily small 
g ( ~ ~ ) .  The situation changes if we take into account the 
Coulomb gap at the Fermi level, in which we have 
g ( ~ )  = a(& - EF 1'. In this case the state density outside the 
Coulomb gap dominates. If this state density is low, there is a 
constant-sign situation; otherwise, an alternating-sign situa- 
tion arises. Consequently, the presence of a Coulomb gap 
raises the hope that it will be possible to observe a sign 
change when the position of the Fermi level changes, by 
compensation, for example. An important question is the 
stability of the results obtained above with respect to the 
incorporation of paths with returns. As long as returns have 
only a slight effect on the localization radius, we see no rea- 
son why they should annihilate the sign transition. I t  seems 
natural that when the Fermi level moves upward out of the 
deep tail in the state density there will be a transition from a 
constant-sign to an alternating-sign situation at  a certain en- 

ergy, and only after this transition will there be a transition 
from localized states to delocalized states. 

2. How would it be possible to observe Aharonov-Bohm 
oscillations in variable-range hopping? Let us first consider 
an experiment on a plane lattice constructed of narrow strips 
of the material of interest. A metal lattice of this sort was 
used in Ref. 15 to study Aharonov-Bohm oscillations with a 
charge of 2e. The lattice was immersed in a transverse mag- 
netic field, and oscillations of the resistance were observed 
when the flux penetrating a single cell of the "honeycomb" 
changed by @,/2. Imagine a lattice of a material in which the 
conductivity is of the nature of variable-range hopping, and 
the hopping length is comparable to or slightly greater than 
the lattice period. For each hop the value of I will then be the 
sum of two or several comparable contributions from sheafs 
of paths going around different sides of the apertures. The 
results derived above are thus applicable in a qualitative way 
to such an entity, and oscillations of significant amplitude 
should be observed. 

Another observtion method is analogous to that of Ref. 
10 and consists of a study of the resistance of a long-hollow 
cylinder as a function of the flux penetrating it along the axis 
when the hopping length is greater than the diameter of the 
cylinder. In this case, sheafs of paths going on different sides 
around the flux contribute to each hop along the cylinder. 
This circumstance is the reason for the oscillations. This 
method, however, has a distinctive feature because of the 
one-dimensional nature of the conductivity. In the one-di- 
mensional case, the hopping conductivity is determined by 
the sparsely distributed elements of a Miller-Abrahams 
equivalent chain with very large resistances. In a long sam- 
ple there are many such elements, and we need to take the 
average of the resistance of a Miller-Abrahams network. In 
shorter samples the resistance is determined by a single ele- 
ment with a maximum resistance. In this case, an averaging 
does not arise at  all, and the resistance fluctuates markedly 
from sample to sample. 

3. The magnetoresistance of n-type Ge in the variable- 
range hopping region was studied in Ref. 7. The field depen- 
dence of the resistance is qualitatively reminiscent of the 
curves found in our numerical simulations for x 5: x, , e. g., 
curve 6 .  In weak fields there is a negative magnetoresistance, 
in agreement with (33),  and it is linear in H and r. The 
magnetoresistance then goes through a minimum and be- 
comes positive and proportional to H 2 .  In stronger fields, the 
H dependence of the positive magnetoresistance weakens. 
These points of agreement suggest that a constant-sign situa- 
tion prevailed in the samples under study. On the other 
hand, we are talking about samples which are not very far 
from a metal-insulator transition, where it would appear 
that an alternating-sign situation should prevail. We do not 
rule out the possibility that many-electron effects, which we 
have not considered here, disrupt the sign transition. Since a 
tunneling electron has an energy near the Fermi level, do- 
nors with low energies are filled. Although it would appear 
at  first glance that this circumstance would not greatly 
change the ~ i t u a t i o n , ~  it may be that spin flip electrons are 
scattered by filled donors cause the scattering to be incoher- 
ent and sharply reduce the role played by scatterers with 
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A < O  (Ref. 16). 
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