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A quasiclassical perturbation theory in the interelectron interaction is developed for equivalent 
electrons (n, = n,, where ni is the quantum number of the ith electron) with zero total angular 
momentum. The application of this theory to other states of a heliumlike system is considered. 

1. INTRODUCTION 

The problem of quasiclassical quantization of noninte- 
grable systems is of great fundamental and applied signifi- 
cance. Study of this problem contributes to a more complete 
understanding of the relation between classical and quan- 
tum mechanics. Quasiclassical quantization methods can 
also compete with the laborious quantum calculations for 
highly excited states, where a large number of basis func- 
tions must be invoked. In most quasiclassical calculations 
performed so far of the energies of nonintegrable systems 
make use of the Einstein-Brillouin-Keller (EBK) quantiza- 
tion procedure (see, e.g., Percival's review1). It is assumed 
in this procedure that the system moves in phase space over 
s-dimensional tori (the dimensionality of the phase space is 
ZF), and this assumption limits primarily the range in which 
the procedure is valid. The existence of invariant tori was 
rigorously proven only for systems close enough to integra- 
ble (the Kolmogorov-Arnol'd-Moser theory2). The quasi- 
classical bound states are selected in the EBK quantization 
procedure by quantizing the simplified action over all the 
topologically independent contours on the invariant tori. 

From the standpoint of practical applications in the 
theory of atoms and molecules, great interest attaches to 
extension of the EBK procedure to calculations of the spec- 
tra of charged-particle systems. The simplest nontrivial ex- 
amples of such systems are the helium atom and heliumlike 
molecules, for which, however, no investigations were made 
even of a semiclassical perturbation theory in the electron- 
electron interaction. The quantum analog of such a pertur- 
bation is treated in many works (see, e.g., the review by Niki- 
tin and Ostrovskii3). Its use is more justified for heliumlike 
ions with large nuclear charge, but even for the helium atom 
this approach turns out to be most fruitful for the classifica- 
tion of states and for investigation of the spectrum structure. 
At present, however, there is no satisfactory theory that 
leads to a simple and well-founded picture. The reason is 
that even the perturbation matrix elements cannot be calcu- 
lated analytically and one cannot see from the very outset 
any substantial simplifications compared with the general 
scheme of perturbation theory in the degenerate case. To 
obtain simpler qualitative results, additional approxima- 
tions are introduced in perturbation, such as the dipole ap- 
proximation for electron-electron interaction. This is in fact 
the aim of the quasiclassical approach developed in the pres- 
ent paper. In addition, the results of quasiclassical perturba- 
tion theory are the starting point for the calculation of the 

spectra of heliumlike systems in quasiclassical approxima- 
tion outside the framework of perturbation theory, by the 
method of adiabatic turning-on of the electron-electron in- 
teraction4 

A distinguishing feature of classical perturbation the- 
ory for heliumlike systems is the presence of random degen- 
eracy in the unperturbed state (by random degeneracy is 
meant, as usual, commensurability of the oscillation periods 
for two or several coordinates; this commensurability is 
present not always, but only if intial conditions are given). 
The general scheme of developing a perturbation theory for 
random degeneracy is described in Born's book,5 where it is 
also shown that nonstandard quantization conditions arise 
in this situation. Modification of the quasiclassical approxi- 
mation in the presence of random degeneracy was consid- 
ered from the standpoint of modern theory by Kazantsev 
and Pokrovskiy) . 

The first attempts to develop a quasiclassical perturba- 
tion theory for helium were made even in the old Bohr the- 
ory.' According to the then employed heuristic concepts, 
only the simplest symmetric trajectories were considered. 
Those results are therefore not suitable for the development 
of a consistent quasiclassical approximation. Some aspects 
of the use of a quasiclassical approach to the helium atom 
were considered recently in Refs. 7-9. Leopold et al.' com- 
pared the diagonal matrix elements of the electron-electron 
interaction in a spherical hydrogenlike basis with mean val- 
ues of this interaction on the corresponding unperturbed 
classical trajectories. These averaged-interaction values 
were then incorrectly taken to be the first-order corrections 
to the energy. In fact, neither in quantum nor in classical 
mechanics are unperturbed states with fixed values of the 
angular momentum of each electron correct zeroth-approxi- 
mation states. In the degenerate case the first problem of 
perturbation theory is in fact to find a correct, and indepen- 
dent of the type of perturbation, combination of degenerate 
states in quantum mechanics, or a correct ensemble of un- 
perturbed classical trajectories in classical mechanics. This 
problem was not treated in Refs. 7-9. A quasiclassical ana- 
log of the Hileraas variational method was developed in Ref. 
8, while a singlet-triplet splitting of the energy levels was 
considered in Ref. 9 in the framework of a model quasiclassi- 
cal approach. 

In this paper we develop a quasiclassical perturbation 
theory for equivalent electrons (n, = n,, where n, is the 
principal quantum number of the ith electron) with zero 
total angular momentum, and discuss the application of this 

1148 Sov. Phys. JETP 62 (6), December 1985 0038-5646/85/121148-07$04.00 @ 1986 American Institute of Physics 1148 



theory to the remaining states of a heliumlike system. Ka- 
zantsev and Pokrovski? (who did not consider the helium 
atom) developed a quasiclassical perturbation theory for 
wave packets, with action and angles as the variables. We use 
below the language of classical trajectories and elliptic ele- 
ments of Kepler trajectories as the variables. In final analy- 
sis, the two approaches are equivalent, but we believe that in 
our specific problem the latter is more illustrative. It is closer 
to the EBK quantization procedure and permits an insight 
into the reasons why this procedure fails in the presence of 
random degeneracy from a somewhat diffierent standpoint. 

Before we proceed with the exposition of the perturba- 
tion, a few preliminary remarks are in order. Angular-mo- 
mentum quantization, which specifies the spatial orienta- 
tion of the system as whole, does not depend on the paired 
potentials. These variables are exactly separated because of 
the conservation of the total angular momentum 
L = 1, + 1,(1, is the angular momentum of the ith electron; 
the nucleus mass is assumed infinite). The procedure for 
quasiclassical quantization in the total angular momentum 
is the same as that developed for the angle variables in the 
problem of particle motion in a central field,'' whence we 
obtain for the total angular momentum L and its component 
L, along a preferred direction" 

In the unperturbed problem (heliumlike system without 
electron-electron interaction the two electrons move inde- 
pendently along Kepler trajectories, with energies 
E 7 = - Z ,/2nf and periods Tp = 2an?/Z ,(Z is the nu- 
clear charge) .5 The periods T  ? and T i  are commensurate, 
and this leads to a degeneracy that is random, since it vanish- 
es when the electron energies are changed slightly. Besides 
the random degeneracy, there is in the unperturbed system 
for each electron a Coulomb degeneracy called "proper," 
since it is independent of the initial conditions. 

2. CLASSICAL PERTURBATION THEORY 

To develop the perturbation theory we shall use the 
method of variation of elliptic elements. ' ' In this method the 
particle motion is represented as motion along elliptic trajec- 
tories with time-varying parameters. The complete system 
of exact equations of motion is given, e.g., in Ref. 11. These 
variables are convenient for the development of a perturba- 
tion theory, for when an infinitely small electron-electron 
interaction is turned on the parameters that determine the 
shape and orientation of the elliptic trajectories vary slowly 
and an averaging method (secular-perturbation method) 
can be used to solve the equations of motion in first-order 

appr~ximation.~ 
We confine ourselves hereafter to an investigation of the 

states of a heliumlike system with n, = n , r n  and L = 0. 
The shape of the ellipse along which the ith electron 

moves at a given instant is determined by its energy Ei and 
angular momentum li . When the total angular momentum L 
is zero, the trajectories of the two electrons are on the same 
plane regardless of the magnitude of the interelectron inter- 
action, and their proper angular momenta are equal but op- 
positely directed. We specify the mutual orientation of the 
ellipses in the plane by an angle 8 = 8, - 8,, with ei the 
angle betwen the major axis of the ith electron and the sym- 
metry axis z (see Fig. 1). The position of the ith electron on 
the ellipse is determined by the Kepler (eccentric) anomaly. 
l i ,  which is connected with the time by the relation" 

J. i t-t. = 7 

2n [E i - ( l+2Ei l i2 /ZZ) 'A  sin t i ] ,  
where ti is the instant of passage through the perihelion. 
When a perturbation theory is developed it is necessary to 
identify from the very outset the coordinates that corre- 
spond to the characteristic frequencies of the system. Owing 
to the random degeneracy T r T y = T i ,  the variables 6, 
and g2 are not independent, so that the pair l I ,g2  must be 
replaced by either of these variables 6 (we choose, for the 
sake of argument, 6 = g,, and a new variable, the time 
r = t ,  - t2 between the passage of the first and second elec- 
trons through the perihelion, is introduced (see Fig. 1 ). 
Only the coordinate 6 is then time-dependent, and the re- 
maining quantities I = I, = I,, e l ,  8,, E, = Ey = E i  and r 
are constant. 

In the planar case L = 0 the motion of both electrons is 
described by eight Hamilton equations of motion. It follows 
from four of them that the quantities (I, - I,) and (8, + 8,) 
are exactly conserved, while (El + E,) and (t ,  + t,) are 
conserved in first-order perturbation theory. A nontrivial 
role in the analysis that follows is played by the equations of 
motion 

where 

Here and elsewhere a semicolon in an argument separates 
the fast and slow variables. The product p of the electron 
charges is taken to be the small perturbation-theory param- 
eter. Under a gauge transformation that makes to nuclear 

FIG. 1. Electron trajectories for the case X,  = ?r/10. 
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charge equal to unity we havep = Z - ', therefore the condi- 
tion for validity of the perturbation theory is Z > 1. The pair 
of equations in (1) is standard in the elliptic-element-vari- 
ation method." Equations (2)  describe the change of the 
delay time T for a small exchange of energy hetween the elec- 
trons near random resonance: d ~ / d t  = (TI  - T2)/T. 

It is possible to eliminate the small parameter p from 
Eqs. ( 1 ) and (2)  by changing from A E  to E = p- '/'AE and 
introducing new variables s, = p t  ands, = pl/'t for the first 
and second pairs of equations, respectively. It follows hence 
that the rate of change of T and E is of the order ~ f p ' / ~ ,  and 
that of I and 8 of the order of p ,  i.e., I and 8 vary infinitely 
slowly compared with T and E asp-0. In addition, the ener- 
gy transfer hE is always small, on the order of 
p112(AE = ,u '12~).  The change of the parameters El and E, 
in the electron-electron interaction should therefore be ne- 
glected, and these arguments of V will hereafter be omitted. 

Since the characteristic frequencies are different, the 
variables are adiabatically separated in first-order perturba- 
tion theory and the problem reduces to a simultaneous solu- 
tion of two one-dimensional problems ( 1) and (2).  The 
most sensitive to the exclusion of the electron-electron inter- 
action are the parameters T and &. They change by finite 
amounts in a time on the order ofp- 'I2, during which land 8 
can be regarded as constant. On the other hand, the motion 
in terms of the variable 6 has a high frequency compared 
with T. Replacing, in accord with the method of secular 
equations, the interaction V in (2)  by the value 

averaged over 6, we obtain in the first-order approximation 
the equations of motion for T and E:  

d e  d l / ,  d~ 3 
- = -  -=-e. 
dsz d z '  ds,  E, 

Equations (4 )  describe one-dimensional motion with an ef- 
fective Hamiltonian 

in which T and E play the role of the coordinate and momen- 
tum, while I and 8 are for the time being fixed arguments. 
Since T and T + T are physically equivalent, the potential 
V, ( t )  can be formally continued periodically past the inter- 
val 8 ~ 7  < T. It takes in this interval the shape of a symmetric 
potential well (see Fig. 2) and diverges logarithmically at 
the end points of the interval 

vi (z) -{ const . In z, T+O 
const . In (T-z) , T+T ' 

The motion as a function of T constitutes oscillations 
between the turning points T, and 7,. The&(r)  dependence is 
obtained from the condition that the effective Hamiltonian 
( 5 )  is conserved over time intervals At-p-1/2: 

For time intervals of the order of p-' and longer account 
must be taken of the changes of I and 8. These will lead to 
changes of the separation constant q(l,8). Since the rate of 

FIG. 2. Effective potential as a function of 7. 

change of 1 and 8. These will lead to changes of the separa- 
tion constant q(1,8). Since the rate of change of I and 8 is 
small compared with the frequency of the oscillations in T, 
the quantity 

is an adiabatic invariant and is conserved for finite change of 
I and 8. Relation (7) determines the dependence of q on the 
variables I and 8 and on the integral of motion a. 

The equations of motion for I and a are obtained by 
averaging the electron-electron interaction in ( 1 ) both over 
the unperturbed motion and over the oscillations in T: 

dl dV2 d 0  d  Vz -=-- -=- 
ds ,  d 8  ' ds ,  d l  ' 

where 
Q 

and Qu-'/' is the period of the oscillations in T. The effective 
Hamiltonian for the Hamilton equations of motion (8)  is the 
averaged interaction (9), while 0 and I are the canonically 
conjugate coordinate and momentum of this one-dimension- 
a1 problem. The dependence of I on 8 is obtained from the 
condition for the conservation of V, on the trajectory: 

The motion as a function 8 constitutes oscillations in the 
interval 8, < 0 < 27~ - 8, (see Fig. 1 ). I(0)  vanishes at the 
turning points. The amplitudex, = (r - 8, )/2 of the os- 
cillations depends onp. The trajectory of the entire system is 
thus uniquely determined by the integrals of motion a andp 
and by the quantum numbers L = L, = 0 and n, = n, = n. 

3. QUANTIZATION CONDITIONS 

Turning-on the electron-electron interaction lifts the 
degeneracy partially on account of the motion with respect 
to the variable T. The trajectories in phase space are no long- 
er closed curves but coil themselves on a two-dimensional 
torus ST. The lifting of the degeneracy is partial, since the 
complete invariant tori are three-dimensional in this prob- 
lem and are obtained in the next order of the adiabatic ex- 
pansion of the motion in terms of 8. A condition for quanti- 
zation in the major radius of the torus ST was present also in 
the unperturbed problem, and was used in fact to determine 
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FIG. 3. Effective Hamiltonian in terms of B(x = (a - 6')/2).  The dashed 
curve shows the function I(x) forx, = 2 d 5 ,  q = 0.61. 

the quantum numbers n, and n,. In the EBK procedure, 
motion with respect to the variable T corresponds formally 
to the condition of quantization over a closed contour C 
around the minor radius of the torus S,: 

where the Morse index 1/2 takes into account the phase shift 
at the turning points T, and T,. This quantization method, 
however, cannot be used for the variable T (Refs. 5 and 6) .  
To demonstrate the violation of the standard EBK proce- 
dure, we express I, in terms of the adiabatic invariant a: 

This relation is obtained by using the explicit expressions for 
the coordinates and momenta of the Kepler problem1' with 
account taken of the changes of AE and T in accordance with 
Eqs. (4).  Expressing I, in terms of the adiabatic invariant a 
is legitimate, since it ensures preservation of the condition of 
quantization in T for finite changes of 1 and 8. A fundamental 
contradiction arises, however. It follows from ( 12) that I, 
becomes an infinitely small quantity of order pl" as p 4 .  
On the other hand, to satisfy the quantization condition 
( 11 ) the minimum value of I, should equal n. This contra- 
diction is the consequence of the random degeneracy and 
will set in for arbitrary states of a heliumlike system, since 
the electron periods are always commensurate in the unper- 
turbed state. In addition, as p-4 the penetrability of the 
barrier between the neighboring potential wells of the peri- 
odic potential V ,  (T )  also tends to zero, another violation of 
the applicability of Bohr-Sommerfeld condition ( 1 1 ) . 

The EBK procedure is thus not suitable for motion as a 
function of T and more complicated quantization methods 
are necessary here. According to the general scheme for de- 
veloping a quasiclassical perturbation theory, the Bohr- 
Sommerfeld condition must be replaced in the presence of 
random degeneracy by a Schrodinger equation in terms of 
the corresponding ~ a r i a b l e . ~  Motion as a function of T is 
replaced by an effective Hamiltonian of standard form (5);  
the momentum canonically conjugate to the variable T is AE 
[see Eqs. (2) 1, so that the Schrodinger equation takes the 
form 

3 d" 
[ -z-z + P V , ( T ;  1 , 0 ) ]  Y (T)=V,(L,  0) Y ( T ) .  (13) 

The boundary condition for the wave function Y (T)  is the 
periodicity condition Y (0) = Y ( TI. The analysis, in Ref. 6, 
of this perturbation-theory variant did not take into account 
two important circumstances. First, only the ground state 
has a physical meaning in ( 13 ) , inasmuch as A E  is finite at 
p = 0 for the remaining states, and they do not go over into 
the solutions of the unperturbed problem as p 4 .  Second, 
according to the initial formulation of the problem, it is 
meaningful to solve ( 13) only in first-order perturbation 
theory. Obviously p2 is zero for the ground state, and the 
corresponding wave function is constant and equal to 
Yo = T - ' I 2 .  The first-order correction 

v ~ ( L .  e ) = J  Y ~ ( T )  v , ( T ;  4 e ) d r  (14) 
0 

is a supplementary integral of motion and serves as an effec- 
tive Hamiltonian in the variable 8. Comparison of (9)  and 
( 14) shows that on going to the modified perturbation the- 
ory the classical averaging in the calculation of the effective 
Hamiltonian is replaced by quantum-mechanical averaging 
which, as can be easily verified, coincides again with the 
classical one but for the nondegenerate case: 

T T T 

This leads to the important conclusion that in classical me- 
chanics the quasiclassical approximation eliminates the dif- 
ference between the nondegenerate and random-degenerate 
motions, and both situations are described by the same EBK 
procedure for the nondegenerate case. This eliminates, in 
particular, the problem discussed in Ref. 6,  that of the irreg- 
ular behavior of the energy-level density near random reson- 
ances, a problem we now see to be the result of an incomplete 
analysis of the quasiclassical perturbation theory. 

The dependence of I on 8 is determined from the condi- 
tion that the integral of motion p2(1,8) be conserved on the 
trajectory. Using the explicit expressions for the Kepler tra- 
jectory '' we can show that p2 satisfies the scaling condition 

The numerically obtained universal function v (x ,y )  is 
shown in Fig. 3. Owing to the scaling property (16), the 
transcendental equation that yields the dependence of I on 8, 

does not contain the nuclear charge and depends on n only in 
the form of the ratio I /n. 

Quasiclassical quantization in the variable 
x = ( n  - 8)/2 is the same as considered in Ref. 13 for a hy- 
drogen atom in a magnetic field, when the component of the 
angular momentum in the magnetic-field direction is zero. 
As indicated in Ref. 13, it is necessary in this case to take into 
account the following circumstance. The total quasiclassical 
state is made up of an ensemble of trajectories having a com- 
mon symmetry axis z (see Fig. 1 ) and making different an- 
gles with this axis. Condensation of the trajectories (caus- 
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0, 0,J g 
FIG. 4. Reduced correction to the unperturbed-state energy: -first order 
of quantum perturbation theory, A-exact  values for He (Ref. 14), 0- 
exact values for B ++ + (Ref. 14). The parentheses contain the state quan- 
tum numbers (n,k). 

tic) on the z axis (X = 0) takes place in such an ensemble 
and is of purely geometric origin. Taking into account the 
caustic at (X = 0)  and the turning point a t x  = X ,  , the con- 
dition for quantization in x takes the form13 

Xm 

j ~ ( ~ ) d ~ = % ( k + + ) ,  k=O, 1, . .  . ,n-1. (18) 
0 

The values of k are bounded from above, since Ign and 
x < ~ / 2 ;  the number of states here is n, as it should be. The 
quantization condition ( 18) is made unique by the scaling 
property ( 16) in the following manner. Since ( 17) contains 
the combination v = 1 /n, we divide both sides of (18) by n: 

Irn 

Inverting the transcendental equation (17) we get v as a 
function of the angle ,y and the constant w; the maximum 
anglex, is determined from the equation V(X, ;w) = 0 and 
depends only on w. It follows that the quantized values of w 
depend only on the reduced quantum number q. In first- 
order perturbation theory, the correction E "' to the energy is 
equal to the averaged perturbation p2. Taking ( 16) and ( 17) 
into account, it reduces to the form (p  = 1 ) 

E(')= (Zlnz) w (q )  . (20) 

Figure 4 shows a plot of w (q)  and also the corrections, recal- 
culated in accordance with the scaling property (20), to the 
unperturbed energy in first-order perturbation theory for 
helium2' and obtained by exact calculation for He and 
B+++ . It can be seen from the figure that the agreement 
with calculation improves with increasing nuclear charge. 
The discrepancy between quasiclassical and quantum theory 
becomes noticeable only at q > 1/2. It is attributable to the 
fact that as 9-1 the turning pointx, approaches the singu- 
lar point x = n/2 (see Fig. 3).  In this case the quantization 
condition ( 18) must be replaced by the standard-equation 

method, in which simultaneous account is taken of the turn- 
ing point and the singular point at x = ~ / 2 .  

The quasiclassical approximation is valid, generally 
speaking, when the quantum numbers are large, i.e., n>l  
and k> 1. The second restriction is of no importance here. 
The motion as a function of 8, with which thequantum num- 
ber is connected, constitutes oscillations in a potential well 
replaceable at k4n by an oscillator well for which the exact 
and quasical level positions are the same. This explains the 
good agreement between the quasiclassical and the quantum 
corrections at small k (see Fig. 4) .  The general condition 
E'O') V for the validity of quasiclassical perturbation the- 
ory'' takes, when account is taken of (20), the form 
Z ) w  (q) z 1 .  To estimate the order of magnitude of the sec- 
ond-order correction E "' of the quasiclassical perturbation 
theory we use the expressions 

which, albeit obtained for the one-dimensional case, can be 
expected to describe correctly the dependence of E "' on the 
principal quantum number and on the charge. We get then in 
our case E " ' ~ n - ~ ,  which can be neglected under the condi- 
tion E"'/E'2'zZ> 1 which coincides with the obtained re- 
striction on the nuclear charge. 

4. CLASSIFICATION OF STATES 

One of the main purposes of various approximate ap- 
proaches used in atomic theory is to find simple approximate 
classification systems for the spectra and the states. In the 
approximation considered above, the states are specified by 
the quantum numers L, L,, n,, n,, and k, with n, = n2 and 
L = L, = 0. What is new in this set is the quantum number k 
connected with the integral of motion p2(1,8). A natural 
sequel to this approach would be a quantum-mechanical in- 
vestigation of p2 so as to obtain, using the symmetry group 
O(4) XO(4) of the unperturbed problem, the correct ze- 
roth-approximation wave functions, as was done in Ref. 13 
for the hydrogen atom in a magnetic field. This, however, is 
an unrealistic task for lack of an explicity expression for 
p2(1,8). This makes it necessary to obtain approximate ex- 
pressions A(1,B) that would be, on the one hand conserved 
to the utmost in first-order perturbation theory, and on the 
other simple enough for a group-theoretical approach. 

For the case n, -n, and L-  1, the following approxi- 
mate two operators that commute with each other were cho- 
sen in Refs. 15 and 16 from heuristic considerations as the 
approximate integrals of motion: 

where 

is the Runge-Lenz operator of ith electron. 
At L = 0 the operator Q is an exact integral of the mo- 

tion and vanishes. For this case we can track directly in our 
approach the variation of A as the elliptic electron trajector- 
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FIG. 5. Plot of x versusx for certain values of q: 1-X, = d40, q = 0.003; 
2-X, = 12/8m q = 0.065; 3-xm = r/4, q = 0.25; +x,, = 3q/8, 
q = 0.53; 5-X, = 9tr/20, q = 0.8. 

ies evolve under the influence of the perturbation and esti- 
mate the extent to which the choice of a simplified integral of 
motion in this form is justified. In classical mechanics, the 
Ai are connected with 1(x) by the relation A :  
= A  ; = n2 - 12(x) ,  and the angle between A, and A, is 
equal to a - 2 ~ .  Let us consider an equation of more general 
form 

- 
,2,=,2,(l+x cos 2 ~ , ) - ' ,  A,=AlZ+Az2-2xAiAz. (23) 

To verify that the quadratic form (23) is a suitable simpli- 
fied integral of motion we can track either the variation, on 
the trajectory, of A, at a fixed x or, conversely, ofx at a fixed 
A,. We use the second variant. The quadratic form x, to 
the value at the point xrn , we get 

r. (x)  = l Z ( x )  [ (nZ-L2 (x )  ) cos 2 ~ - n z  cos 2xm] -'. (24) 

Figure 5 shows the numerically calculated x for several val- 
ues of q. It shows that K is conserved at small q and that 
x+1/2 as 9 4 .  At q z  1 we have I z n  at all x except in a 
small vicinity  of^, , and cos 2x, z - 1 (this situation is 
illustrated by curve 3 of Fig. 3).  It follows therefore from 
(24) that x z  1 in this region. On the other, we have the 
nonnormalized expression A, z (n2 - 1 2, z 0  everywhere 
except in a small vicinity ofx, . At the turning point itself 
I = 0 and to ensure smallness of A, at this point we must put 
also x z 1. Thus, the integral of motion (23) can be used for 
the lower (q ~ 0 )  and upper ( q z  1 ) energy levels ofthe given 
multiplet {n, = n 2 r n ,  L = 01, i.e., the correct zeroth-ap- 

proximation functions in the quantum per tu~bat io~  theory 
are t i e  ~igenfunctions of the operator A, = A  : + A  ; 
- 2xA, .A2 with x z 1/2 for the lower energy levels and x z 1 

for the upper. In a basis of two-electron wave functions with 
zero total angular momentum 

I 

the nonzero matrix elements of the operator A, are 

h 

and the equation for the eigenfunctions Yk (A, Yk = Rk Yk ) 
reduces to three-term recurrence relations for the coefficients 
g, = (Yk (Y,), in the form 

The problem can be solved exactly for x = 1 (Refs. 15 and 
16); in this case A, = 4(n - k)  (n - k - 1) and the coeffi- 
cients g, are expressed in terms of the Wigner 6j symbol 

For other values of x the solution (25) can be obtained only 
numerically. The next and first-order perturbation-theory 
values ofg, obtained from the recurrence relations (25) are 
listed in Table I. The value x = 0.65 for the lower level was 
taken from the numerical calculation for q = 1/6; the classi- 
cal value in this case is A, = 1.2 1 n2 and is conserved and the 
trajectory accurate to 1 %. It can be seen from the table that a 
good result is obtained for the upper level at x = 1 and for the 
lower at x = 0.65, while both variants overestimate go and 
under estimate g2 for the middle level. 

We have considered above a quasiclassical perturbation 
theory for equivalent electrons (n, = n2) with zero total an- 
gular momentum. This case is simplest from the standpoint of 
calculations and is at the same time of great physical interest, 

TABLE I. Compariso~ of the correct zeroth-approximation functions (Ref. 3 )  with the eigenfunc- 
tions of the operator A, at n, = n, = 3 and L = 0. 
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being the fullest manifestation of the electron correlation. A 
change to the case n, #n,, L = 0 changes nothing, generally 
speaking in the foregoing analysis, except that in the calcula- 
tion of the averaged perturbation ( 15) the integration with 
respect to t ,  and t ,  is over different periods. It is doubtful, 
however, whether a direct application of this approach at 
n, # n,, is useful. First, it is natural to take into account here in 
the perturbation theory, from the very outset, the screening of 
the nuclear charge for the outer electron. The screening can be 
included in trivial fashion in the foregoing perturbation-the- 
ory scheme, but the difference between the quantum 
numbers, together with the screening, can lead to a significant 
difference between the electron periods. It is physically more 
justified in this case to use the adiabatic separation of the 
variables, associated with the small parameter (at n, < n,) 

and not Z -' (for example, y < 1/32 for all singly excited 
states of helium). The most important circumstance that 
makes this approach inadequate for a classification of states 
with n,#n, is the lack of a method for calculating the ex- 
change singlet-triplet level splitting that is comparable with 
the first-order correction. Thus, for helium states with n, = 1 
and n, = 2 there we have one singlet state and one triplet state 
with respective energies E, = - 2.146 and E, = - 2.175 
(Ref. 17), whereas their common unperturbed energy is 
Eo = - 2.125. for equivalent electrons (n, = n,) all the 
states with L = 0 are singlet and there is no need to take ex- 
change interaction into account. 

The case L # O  differs fundamentally from L = 0. At 
L #O the problem can be reduced, after separating the angle 
variables connected with the angular momentum, to a four- 
rather than to a three-dimensional one as at L = 0 (Ref. 1 1 ). 
after averaging over 6, and 6, we get therefore a two-dimen- 
sional effective Hamiltonian and there is no complete separa- 
tion the variables in first order of perturbation theory. The 
non-integrability leads to an important qualitative result, viz., 
the distribution of the distance between multiplet energy lev- 
els with given n,, n,, and L #O has in first-order perturbation 

theory a Landau-Wigner-Dyson distribution, whereas the 
same distibution with L = 0 has a Poisson distribution for 
integrable systems (see, e.g., Ref. 18). This points to the ab- 
sence of a sufficiently universal classification of the states with 
L $0. In some particular cases, for example, n ,  (n, or L) 1, 
approximate integration is possible and such cases have been 
investigatedS3 

The author is deeply grateful to P. A. Braun, Yu. N. 
Demkov, I. V. Komarov, S. I. Nikitin, and also to I. S. Sha- 
piro and the participants of his seminar, for helpful discus- 
sions. 

"The atomic system of units is used in this article. 
*'The calculated first-order perturbation-theory corrections were supplied 
to the author by S. I. Nikitin. 
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