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The distribution function is calculated for hot electrons in the ground state of a quantum well, in 
the energy region near or below the threshold for emission of optical phonons, under the assump- 
tion that below this threshold an electron temperature can be defined. The rate of energy loss 
(power) to optical phonons is also calculated. 

1. INTRODUCTION AND FORMULATION OF THE PROBLEM 

The idea of an electron temperature Te is a very popular 
one, providing as it does a convenient method of describing 
the behavior of nonequilibrium electron gases, including the 
two-dimensional electron gas.'-" It is meaningful to define 
an electron temperature Te which differs from the lattice 
temperature TL when the electron-electron scattering time 
re, is smaller than the energy relaxation time to the lattice 
F L .  The electron temperature Te is determined from the 
equation of energy balance P = Q, where P is the energy 
deposited in the electron gas by external fields or optical 
pumping and Q is the energy transferred to the lattice by 
phonon scattering. In the case where there is scattering by 
optical phonons of energy fin, and Te , TL (fin,, calculation 
of Q meets with special difficulties. This is true because in the 
energy region below threshold (E <fin,), where emission of 
phonons is impossible, a temperature Te can be defined even 
for low electron densities n)n;, when re, 4% and FA is the 
energy relaxation time due to acoustic phonons. Meanwhile, 
above threshold (E > fin,) the temperature Te can be de- 
fined only for high electron densities n)n,+, when re, ( r ,  
and T o ( & )  is the emission time for optical phonons of energy 
fin,. Therefore, in order to calculate Q when n; (n 5 n,f it 
is necessary to find the energy distribution function f (E)  

above threshold, where it deviates strongly from a Maxwel- 
lian distribution which would define T, .  This problem first 
received attention in Ref. 5 (see also Refs. 6 and 7 ) .  For the 
three-dimensional electron gas, Q was calculated in Ref. 8; in 
the present work, this problem is solved for a two-dimen- 
sional gas in a quantum well. In the two-dimensional case 
the problem appears to be more complicated, because, as we 
will show below, the integral for e-e scattering cannot be 
reduced to the Landau differential form, so that in place of a 
differential equation we must solve an integral equation. 

An additional complexity in the equation of energy ba- 
lance arises in the case when the electrons are heated optical- 
ly; absorption of a photon can project them into the conduc- 
tion band near a point E, close to threshold, 
I E ,  - final (fin,. In the three-dimensional case this problem 
was studied in Ref. 9. 

We study here a layer of narrow-gap semiconductor (of 
thickness d )  inserted between two semi-infinite wide-gap 
semiconductors. In the layer d the electrons reside in a so- 
called quantum well." Let us assume that the energy spac- 
ing between the two lowest levels of the well 
Ez - E,  = 37r2fi '/2md 2)fiC10. When Te (fin,, we can ne- 

glect all levels in the well except the lowest. 
Let us neglect any mismatch in the properties of the 

narrow- and wide-gap semiconductor lattices. This allows us 
to treat the phonon spectrum and electron-phonon interac- 
tion operator UeL in the same way as in the usual three- 
dimensional case. Neglecting also disparities in the dielectric 
permittivity x, we will use an e-e interaction operator of the 
form U,, = eZ/xR, where R is the three-dimensional dis- 
tance between electrons. The matrix elements UeL and Uee 
are calculated using the electronic wave functions 

+ ( r ,  Z) = I I L x  ( z )  e'", (1)  

where r, k are two-dimensional vectors in the plane of the 
layer; ~ ( z )  is a function describing the quantized motion of 
an electron transverse to the layer, localized in the well and 
normalized to 1; L is the area of the layer. 

We will assume that if there were no interactions with 
phonons all the electrons would be distributed according to a 
Maxwellian: 

)' ( E )  = ( 4 n N l p ~ ; )  e - " i T ' ~ f T l  (8)) 
(2) 

E = ~ k = t i 2 k 2 / 2 m ,  ti2pT.2=2mTe, 

where N is the number of electrons in 1 cm2 of the layer. 
When we take into account emission of phonons of en- 

ergy fin,, the distribution deviates from Maxwellian. If 
T, (fin,, then the deviation is weak in an "integrated" sense, 
because only the region near and above threshold-where 
there are few electrons-will be affected by the phonon emis- 
sion, although in this region the distribution may be strongly 
modified. Meanwhile, in the region above threshold, the 
f (E)  in question is determined by Q, which is connected to 
optical phonon emission. 

The goal of this paper is to find f ( E )  near and above 
threshold, while also calculating Q, which is related to opti- 
cal phonon scattering. 

2. ELECTRON-ELECTRON SCATTERING PROBABILITY 

If all the electrons are found in the lowest level of the 
quantum well, and have kinetic energy E = fi 'k '/2m much 
smaller than the spacing between consecutive well levels, 
i.e., k(d -', then the Coulomb interaction matrix element 
for the function ( 1 ) does not depend on x ( z )  : 

where q = k' - k = p - p' is the two-dimensional momen- 
tum transfer. 
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Let us find the scattering probability 

for a sample electron in a Maxwellian distribution of back- 
ground electrons fTc (2).  

The probability W,,,, is conveniently calculated for 
E~ > E ~ ,  ; to calculate W,,,, forek < ,ck, , we use the principle 
of detailed balance.' As a result, we obtain 

p3Te 
Wr+r = ~c'lsW~ - exp 

q3 

where 

N EB me' 
W o  = 8n2-- E a = - .  

L'pTeL ti ' 21cZti2 

For isotropic or nearly isotropic electron distributions, 
the average of (5) over directions, k, k' enters into the calcu- 
lation: 

7 

where x is the angle between k and k'. So as to perform the 
integration over X, let us transform (for E > E') to the vari- 
able u = q/(k - k '') ' I 2  and introduce the static and dy- 
namic quasi-elasticity parameters7 w and y according to 

e-e' a=- 
T. 

Again, using the principle of detailed balance, we obtain for 
all w 

W ( e + e f )  =W0Im I-Re'ha'Y (7 ,  0 )  , (9)  

where 

Let us consider in detail the scattering probability for 
superthermal electrons E) T, . We note that in this case 

We first examine the case of small y. It can be verified that 
the conditions y% 1 and y2/Iw 1 %  1 allow us to set y = 0 in the 
integral ( lo),  which gives 

where K, is the modified Bessel function of the second kind. 
From this it follows that in the region of dynamic quasi- 
elasticity the scattering of superthermal electrons is 

where 
K ( o )  =n-"e""lol -'K, ( l 0 1 / 2 ) .  (14) 

For static quasi-elastic scattering, the probability is symmet- 
ric relative to energy transfer 

while for static inelastic scattering it is strongly asymmetric 

We now turn to the case of large JoJ . When Iw 1 > 1, most 
of the integral (10) comes from a small region around the 
saddle point u = 1. If Jw 1 -'%l - y, the exponent can be ex- 
panded around u = 1. Then we obtain 

From this it follows that 

These expressions for Y allow us to find the probability for 
dynamic inelastic scattering of superthermal electrons. For 
the transitions downward we have 

The probability expression given in the top line of ( 19) does 
not depend on T, , and, as is easy to verify, coincides with the 
scattering probability for T, = 0. The upward scattering 
probability is obtained from the principle of detailed balance 

The dependence of Won E' for fixed EST, is shown in Fig. 1. 
As regards the scattering probability for thermal elec- 

trons E - T, , a relatively simple formula can be obtained 
only when Iw ( < 1. Noting that in this case y = ( Te / 
4.5) 1 0  141, we can see that the integral ( 10) is concentrated 
around u - y. Neglecting u compared to l/y or l/u, we ob- 
tain 

'Y (1 ,  =2 1 o 1 -"e-8/T* Xerfi [ (e/T.)  I h ] ,  

From this, it is clear that the probability W(E-+E') for ther- 
mal electrons as w-0 has the same Coulomb singularity 

FIG. 1 .  The probability W(E+E') for an electronic transition from energy 
E to energy E' due to interelectron scattering in a 2 0  gas with a Maxwellian 
distribution with temperature T,, E> T, . 
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I W  I -2 as does the superthermal electron W. 
The first two moments of the transition probability are 

determined by integrating: 
m 

where g ( ~ )  is the density of states. In the two-dimensional 
case, g ( ~ )  = (m/277% 2)L '. The convergence of these inte- 
grals in the two-dimensional gas is determined by the con- 
vergence of the integrals 

0 d o  oz Jao7=f,, J a@----;-=! d o ,  
I @ I  10 1 

where the first is understood in the sense of a principal value 
(this becomes clear if we introduce a small cutoff around the 
I W  I -* singularity). The integrals for Qee and Dee are conver- 
gent. When we calculate them, it is clear that a characteristic 
energy transfer is Iw 1 -E for a downward transition, (w < 0 
and Iw 1 - Te for an upward (o > 0).  From these arguments, 
it is clear that a Fokker-Planck approximation for the e-e 
scattering integral in the two-dimensional gas, analogous to 
the one obtained by Landau" for the three-dimensional 
case, cannot be derived here. We remind the reader that in 
the three-dimensional case the singularity of W(E-+E') is 

I W  I -3, the moments Qee and Dee diverge, and even after cut- 
off there still remain singularities proportional to a large 
Coulomb logarithm, whereas the higher moments are finite 
and do not contain this logarithm. 

The coefficient of dynamic viscosity is 

A,, ( E )  =Qee ( 8 )  I T,=o=nZfiEBN/m. (24) 

If it is cast in the form 
E I n%EBN EB N --= 2n2--- A,, ( E )  = ---- - - 

A k 2 '  
(25) 

' G e e ( & )  ' Tee ( E )  mE 

then re, will be the e-e scattering time, determining the rate 
of energy exchange between electrons. In order to estimate 
this time, we can allow E to equal Te. Then re, is the time it 
takes to establish an electron temperature. 

Further on we will need the probability for scattering 
near the threshold E = fin,, when I E  - fifl,l, 
I E '  - fin, 1 (fin0. From ( 13 ) we have 

3. KINETIC EQUATION 

Electron-electron scattering is described by a collision 
integral 

where Wis the e-e scattering probability and J,, the current 
which arises from it along the energy axis 

Emission of optical phonons corresponds to collision terms 

+ B ( e )  B ( e )  = S ( e ) =  -- 
f (e+AQo) (29) 

TO ( E )  . to(e f f iQo)  ' 
where rO(&) is the emission time; absorption proportional to 
- fin,/Te e is neglected. 

The probability W is a functional of the distribution 
f (E); however, since f (6) differs (in an "integrated" sense) 
only slightly from a Maxwellian (2),  for W near threshold 
we can use expression (26). Let us put the distribution in the 
form 

f[eJ==A[e-I-cp ( t ) ]  , A=fT,(e) I .=K,~, t= (e-fiQo) IT,. 
(30) 

For physical reasons, above threshold ( t  > 0)  

O<q ( t )  <e-'. (31) 

As regards corrections below threshold ( t  < 0), we assume 
(and this is confirmed by solving the kinetic equation) that 
for t-+ - cc the function p ( t )  decreases to zero on a charac- 
teristic scale It I - 1, i.e., 

. Iim cp ( t )  = 0, (32) 
i+-m 

Substituting (30) into (27) with W from (26), we obtain 

where the integral operator is of the form 
m 

Using the properties of p and K, namely (3  1 ), (33) and 
(14), we can verify that in the integral (35) the significant 
times satisfy It ' I < 1. Therefore we can replace the lower lim- 
it - fino/T, by - cc . 

We turn now to S. Near threshold we have B = 0; as 
regards T,(E), near and above threshold rO(t) does not de- 
pend on E (since the density of final states does not depend 
on E - fin,). For deformation DO scattering with 
fiR,(E, - El ,  we have near threshold that 

7;-'=a(n/p,d) ;1 (36) 
where a is a numerical factor depending on the well shape. If 
we use the dimensionless quantities 

x (d=d- 'q (6 ) ,  t=z/d, d t l p ( t )  l z =  I ,  (37) 

then 
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For a square well with infinitely high walls, a = 3/2. For 
polarization PO-scattering there is no dependence on the 
shape of the well1*: and perform a Fourier transform 

m 

x ( t ) -  ~ ( k ) =  j d t e - i k ' ~ ( t ) .  
- m 

In (36) and (39), 7,, and 7, are nominal scattering 
times.' 

Thus, near threshold, 
Then 

m 

R ( x ) =  j a t ~ ( t )  ( e i k t - ~ ) .  (51) 
- m 

For the function K ( t )  in expression (14) we find 

where 0 is the Heaviside step-function. 
As a result, the equation for q, is 

Ln-'"Xq ( t )  =€I ( t )  [e-'-cp ( t )  1, (41 

where the parameter which describes the competition 
between ee scattering and optical phonon emission near 
threshold is 

From the fact that K ( t )  > 0  it follows that the correct sign of 
the branch in (52) is determined from the condition 

Re I ( k )  <O, Im k=O. (53) 

From (31 ) and (32) it follows that q, + has no singularities 
for Im k < 1, while e, - has none for Im k > 0 .  After Fourier 
transforming Eq. (41 ) we obtain the form 

This relation determines the critical density N,+ above 
which, as we will show, the distribution in the region E > fill, 
differs only slightly from a Maxwellian. Now, to determine 
N ;  , we must know the energy relaxation time for acoustic 
phonons ;i, ( E ) .  In order to find P A ,  it is sufficient to calcu- 
late the power loss QA for TL = 0  and cast it in the form7 

-ha-"X(k)  [9+ ( k )  + q - ( k ) ]  = ( ik+1)  --+ ( k )  . (54) 
It is more convenient to go to a more symmetrical repre- 

sentation: let z = x + iy where z is defined by k = i( 1 - z)/ 
2. Then $+ (z) = 4) + (k) has no singularities for x > - 1 
while $- ( z )  = - (k) has none for x < 1. Equation (54) 
takes the form 

By direct calculation we show that for &<E2 - E l ,  
Ip' ( z ) H i  ( z )  -h-'G ( 2 )  =-9- ( z ) ,  (55) 

where 

The functions HA and G are determined in the plane with 
cuts R * as shown in Fig. 2. The following choice of argu- 
ments corresponds to condition (53) : 

wheres is the mean sound velocity, and 7, are nominal 
times for deformation and piezoelectric scattering by acous- 
tic p h ~ n o n s , ~  the coefficient a is given by (38), and 

larg (1*z) I<n, 

signarg ( I f  Z) =* sign y. 
For the square well, b = 2.rr2. 

The power loss to optical phonons fill,, which is needed 
for the detailed balance equation, is calculated for a single 
electron to be 

Following the Wiener-Hopf method, we write in the 
analyticity strip 1x1 < 1 

Hi ( z )  ==HI+ ( z )  /Hi- ( z )  , (58) 

where 

where 
m 

The integral depends only on A because this is the only pa- 
rameter which enters into the dimensionless kinetic equa- 
tion (41). 

4. SOLUTION OF THE KINETIC EQUATION 

We solve equation (41) by the Wiener-Hopf tech- 
nique.13 To begin with, we set FIG. 2. Contour in the complex c-plane. 
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Here C: is a contour in the strip 1x1 < 1, going from - ico 
to + i~ and passing the point z on the right (left) (see Fig. 
2). Equation (55) now becomes 

It solution is 

where 
1  

F&*(z)=T- - dc G (11 HL- (0. 
2nch 5 6 - 1  

(62) 

cz* 

The functions $ * (z) are determined from Eq. (55) up to an 
arbitrary polynomial P(z);  however, as will be seen, the 
choice of solution is dictated by the requirement that p ( t )  
satisfy the physical conditions (3  1 ) and (32). 

Since in H z  (z) -0 for z-+ co , the contour for H  2 in 
(59) can be deformed arbitrarily as long as it does not cross 
the point z or the cuts. Deforming the contour for H T  into 
contour C+, which surrounds the cut R ' (Fig. 2) ,  we define 
a function H z  (z) which is analytic in the entire z-plane 
with a cut R +. Analogously, we determine a function 
H ,  (z) analytic in the z-plane with cut R -. After this con- 
tinuation of the functions H? from the strip Ix 1 < 1, we can 
also deform the contours for F,' in (62) to the edges of the 
strip. 

By carrying out a change in the variable of integration 
c-+ - 5 and <-+ - c * in the integral representation (59) 
with the contours C, , and noting that by doing this we 
interchange the contours C,, C-, it is easy to verify that 

from which it follows that 

Hi* ( z * )  =Hi* ( z )  *. 

Because of property (63), we now have enough infor- 
mation to determine the function H T  . To do this, it is con- 
venient to study the function 

In (59), we pick the integration contour C+ for H,f ; taking 
into account condition (57), we find that 

m 

1-74 as 
1 n 1 8 ~ ( z ) = - J  arctg I . (66) 

n , ( s+z)  (s+l) h (s2-1) 'la 

It is easy to calculate 

where the argument is determined according to (57). Now it 
is natural to represent 

HA+ ( z )  =HA+ ( I )  ho ( z )  eQL('),  (68 

hn ( 2 )  ds Q b ( ~ ) = l n - = -  
h , ( z )  ! (s+z) ( s+1)  

arctg h  ( s2-I )  Ib. 

(69) 
Substituting into (62) the explicit form for G in (56), 

expressing H ,  (z) as H , f  ( - z)  with the help of (63) and 
representing H  ,f in the form (68), we obtain 

Here, C ~ S  an arbitrary contour running from - i~ to 
+ i~ and passing the point z on the right (left). Then the 

solution is explicit in terms of H  2 ( 1 ) and QA (5).  
The loss power function (48 ) is 

@ ( a ) = i - ~ + ( l ) .  (71) 

In order to calculate $+ (z), it is convenient to use the 
following procedure. We note that 

because this integral reduces to the residue at the point f = z. 
Subtracting the integral (72) from the integral (70) for F,+ , 
we obtain 

Now we can deform C: into C,, since the nonintegrable 
singularity ( 1 + f )  - 312  at f = - 1 is eliminated by the van- 
ishing of the quantity inside the square brackets. After trans- 
forming to the contour C+, where f = - { + iO, 

m 

Using this representation for F: ( 1 ), we find $+ ( 1 ) and the 
power loss function 

m 

5. EVALUATION OF HT (1) 

In order to evaluate H  2 ( 1 ), we choose in (59) to inte- 
grate along the imaginary axis, which then gives us 

OD 

where By differentiating J(/Z ) with respect toil, we can perform the 
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7-integral. Re-integrating this result with respect to A and 
using the fact that J (0 )  = 0, we find 

I r t 
Jlh)-a 7 d t  lnctg ?, h<l  

0 

Arch ). 

where G is Catalan's constant. It is now easy to find the 
behavior of H ,+ ( 1 ) for small and large A: 

6. THE FUNCTION Q,(z) 

The integral (69) determines the function QA (z) in the 
z-plane with the cut ( - co , - 1 ), across which the jump is 

From this determination it is clear that 

00 (z)=O, QA (1) 4. 

Furthermore, the function Q, (z) will be needed only for 
small A, where it has the following representation, correct 
for all z: 

Here, the function 
m 

is determined in the z-plane with the cut ( - UJ , - 1 ), so 
that for z = x > - 1 it is positive. The behavior of this func- 
tion is clear from the following asymptotic expansions 

n n 
A - +  ( -  I ) ,  1z1<1, 

2 2 

A(1) =2. 
The function 

ca 

is defined in the z-plane with a cut ( - co , 0), and is positive 
for z = x > 0. Computing q' (z) from (83), we can do the t- 
integral, and then integrate the result with respect toz, using 
q(0 )  = 0. This gives 

From this it is easily seen that 
Z 

q(z)=-(1 - lnz) ,  l z l< i ,  
n 

Using the properties of q as a function of A, we can verify 
that 

Qa(z)=q(hz), lzl>1, 

The representation (80) is obtained in the following 
way: differentiating (69), we find 

where 

To improve convergence, we write 

I=Ii-Iz, (89) 

where 
m 

The integral I,  is convergent for A = 0, because (neglecting 
corrections which are small for arbitrary z)  we have 

I ,  (A) =I ,  (0) =A(z) -In 2 (I+z) . (91) 

The integral Zi can be evaluated explicitly. For small A and 
any z, we find, keeping in mind (84), that 

Substituting (91 and (92) into (89) and then into (87), we 
integrate with respect to A, taking into account (69). This 
gives 

1 z+l 
{q(hz)- namtg(Az)ln- QL(z)=- 

Z Z 

Comparing the separate terms for various z, we can verify 
that the term with the arctangent is important only when 
A 121 41. Therefore, arctan Az can be replaced by Az, after 
which (80) is obtained. 
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7. ENERGY DISTRIBUTION FOR SMALL h 

We first find $- (z) for Jzl (A - '. To do this, the expres- 
sion (70) for F, we deform C; into C-, while we derive 
H, in (61) f romH2 andmakeuseof (68) and (67). Then 
we obtain 

m 

1 1  J 1 
Ip-(Z)=--eQ,(-z) - 

nhi (1-z)'" g-z ( I+E)"  

As will be clear in the subsequent calculation of the integral 
over f ,  for lzI(R we can set f -  lzl if 1z1>1 and f -  1 if 
I z ~  6: 1. Using (86) and (85), it can be shown that for such 
choices of f and z, 

Let us expand the exponent in the integrand and then use 
(79), replacing the arctangent by its argument. We can re- 
place the exponent throughout the integral by unity; as a 
result, we obtain for (zl <A -' 

.li 

2 1 dE (E-I)"* 
Ip- ( z )  = - - - ---- - ------ 

x I - z )  z g+1 

The asymptotic expansion for $+ (z) for lzl(R can be 
found once we substitute (96) into equation (55), which 
gives 

Approximations (96) and (97) allow us to find the asymp- 
totic form of p ' ( t )  for It 1 >A. Performing the inverse Four- 
ier transform, we find that 

cp+ ( t )  =e-' (1--2hn-'"t-'"), t>L,  
(98) 

cp- ( t )  =e-I erfc (tl'", It1 Bh.  

Let us now study the functions q, * ( t )  in the immediate 
vicinity ofthreshold, i.e., for It 1 &. According to thegeneral 
properties of Fourier transforms, 

cp* (0) = lim z~p* ( z )  
:+CO 

From Eq. (55) and the behavior of H(z)  and G(z) at infin- 
ity, it is clear that for z-tw we have $ + ( z )  = - $-(2). 
Therefore, in (99) it follows that p ( t )  is continuous at the 
point t = 0. 

Let us now find the behavior of $+ (z) as z- w . Noting 
t ha tH ,+ (w)  = l ,wehave$+(z) =F ,+ (z )  forz+m.For 
F,+ (z) we use (74), replacing f + z by z under the integral 
sign and discarding the first term in the curly brackets. Fin- 
ally, substituting everything into (99), we obtain 

To lowest order, for R small the integral a, is concentrated 
around s-A -'> 1. Using (86), we obtain1' 

co 

Substituting (101) and (78) into (loo),  to lowest order inR 
we find q ( O )  = 1. In order to find the next order, we write 

CO 

X [I-exp{-[Q,(s)-  q ( h ( s - 1 ) )  1)  1. (102) 

This integral is concentrated around {- 1. Making use of 
(86), we find that 

which allows us to expand the exponent in the remainder. 
From (85), it is clear that we can replace the exponent in 
front of the square brackets by 1. In the integral obtained 
after this replacement, we make the change of variable 
s = ch f .  As a result, we find 

Substituting (104) and (78) in ( loo) ,  we obtain 

q ( 0 )  =I-(W)'".  (105) 

The calculation of p ( 0 )  we have just performed shows 
that the integral in (100) is concentrated at s-R -' and 
s- 1, corresponding to the two terms in ( 105). Threfore our 
assumption Izl >s, which we used to go from (74) to (loo),  
is fulfilled when lz1 >A - '. This implies that the expansion 
( 100) for $+(z) iscorrect for 121 %A -I, i.e.,p(t) = p ( 0 )  for 
It 14. As the final conclusion of this section, we have shown 
that from (97) we can obtain 

$ + ( I )  =1-2h. 

8. THE ENERGY DISTRIBUTION FOR LARGE h 

When A >  1, we can assume to lowest order in R -' that 
HA (z) = 1, which gives Hk (z) = 1 and the integral (62) 
for F? (z) can be evaluated by elementary means. Therefore 
it follows that the approximation we have made is correct for 
the functions $* (z) if z is not too close to the beginning of 
the respective cuts, i.e., when lz 5 11 >A -*. We do not write 
out the results obtained in following this procedure to find 
the functions $* (z), because they are easily transcribed to 
give for It I(A 

where K ,,, are modified Bessel functions of the second kind. 
We will later need the values 

In order to calculate q,* (z) for It I >A ', we turn to Eq. (55) 
andfindp* (z ) f romi tnearz=  f 1. When lz+ lI(1,we 
can, in view of ( 107), discard $- (z) z$- ( - 1 ) in com- 
parison to R -'G(z), while in HA (z) we discard terms of 
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FIG. 3. Electron distribution function near threshold, for the case 141. 
The strong depletion of the distribution is apparent; see formula ( 110). 

order unity. Turning to the function $+ (z) obtained in this 
way, we find that the asymptotic form of q, +( t )  for t)il 
coincides with (98). When lz - 11 ( 1, by again using ( 107) 
we can neglect $+ (z)HA (z) z$+ ( 1 )HA (z) compared to 
il -'G(z). Likewise, for $- (z) obtained in this way we ob- 
serve that q, - ( t )  coincides with the asymptotic form of 
q, - ( t )  for t) 1. In other words, ( 106) is a correct form for 
q, - ( t )  for all t. 

9. RESULTS AND DISCUSSION 

The lower critical density N c-, above which the distri- 
bution in the "passive" region E <fino is close to fTe (E) , is 
determined by comparing the time .?., (E)  from (44) and 
(45) with the time re, (E)  from (25) fore = Te . This density 
Nc- does not depend on T,; however, it does depend 
(through ?A ) on the dimensions and shape of the well. For 
the square well, we have 

1 nb 1 1 n u 1  1 
-=--- +--- 
? A  4 (pod)' f n n  2 pod ~ P A .  

From Section 8 it is clear that for 2) 1 corrections to the 
distribution fTe (e) are small for all E - fiflo(TeA 2. There- 
fore the condition il = 1 determines the upper critical den- 
sity of electrons 

above which the distribution is close to Maxwellian even in 
the activated region E > fifl,. 

For densities N; (NS N:, the distribution deviates 
strongly from fTe (E ) near and above threshold. From (98) 
and ( 105), we find for il(1 that 

2'hAh'h , I t l e k ;  
2n-"Aht-"e-', t>O, t B h ;  (110) 
Ae-'erf ( t I " ,  t<O, It 1 Bh.  

At threshold and in the immediate vicinity of threshold for 
( t  I ( A  the distribution is smaller than fTe by a factor ofil 'I2. 

Above threshold f (e) falls off within an energy interval Te , 
as is true with fTe (E), but it is smaller in amplitude. In the 
three-dimensional case f ( E )  above threshold is also smaller 
in amplitude than fTe (e), but, in addition to this, it falls off 
within an energy interval smaller than Te . The larger pene- 
tration depth of electrons into the active region in the two- 

dimensional case is connected with the fact that the deposi- 
tion of electrons in this region does not come about by 
diffusion over the threshold, but rather by "projection" out 
of the passive region by virtue of "large" energy transfers 
(E' - E )  - T. 

The error function in (1 10) differs from 1 only for 
It I 5 1. In this region, 

This means that f (e) is much smaller compared to fTe (E) 
below threshold down to a depth Te . For larger depths, cor- 
rections to fTe are small, but nonetheless they can be written 
down 

f(~)-f~.(~)=-An-%ltl-'~, I g l t l .  (1 12) 

Their physical meaning is very simple: by calculating the 
current (28) with this distribution and the probability (25), 
one can easily convince oneself that 

I,, ( e )  =const>O, (113) 

that is, this small correction to fTc (E) ensures a particle cur- 
rent from above along the energy axis, which compensates 
for the decrease in particle density in the active region be- 
cause of emission of optical phonons. 

The power loss function (75) has a simple asymptotic 
form, which can be obtained if we use the calculated value of 
$+( I )  in (97) and (107): 

As in the three-dimensional case,5 for il(1 we can get ro 
from Q, while for A)  1, if we include only the important term 
in ( 1 14), we determine re, . 

In the result derived above we used the probability 
W(E+E') near threshold calculated uqder the assumption 
that E, e1(E2 - El,  that is in practice that fiflo(E2 - El .  In 
reality, we can dispose of this criterion and replace it with a 
weaker one: E2 - (El + fin,) ST,; in this case we can ne- 
glect the level E2. As for the probability W(e+el), it then 
can be calculated by dispensing with the assumption E, 
et(E2 - El.  For arbitrary E and e' relative to the level El,  the 
matrix element (21 ) is multiplied by the integral 

Near threshold, as was clear from the solution of the kinetic 
equation, essentially we have la - E' I - Te , that is q - m T, / 
p,. If E2 - El -fino, then d - -p, and qd - Te /fino( 1. 
Therefore, in ( 115) the exponent can be replaced by 1 after 
which every integral turns out to equal 1. 

In conclusion, we present estimates for a quantum well 
in GaAs whose parameters were given in Ref. 7, for d = 150 
A where (E2 - E, )/fifloz2. Including the fact that in 
GaAs PO scattering dominates, for T, = 20 "K we find N ,+ 
to be 1.7X 10'' ~ m - ~ .  In fact, for N)N? and Te (fifl,, the 
electron gas is already degenerate, since e,/fifl, = 4 r N /  
p , ~  N /1012 cmP2. For PO scattering, N ,f does not depend 
on d. For the d given here we havep,,d = 3.8, ?, = 7 ps and 
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N ; / d  = 2X 10'' ~ r n - ~ ,  which is close to the critical den- 
sity for bulk G~As. ' .~  
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