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A microscopic theory is developed for current-biased tunnel junctions having a small 
capacitance and a low conductance. The theory gives a natural description of the discreteness 
of both the one-electron (quasiparticle) and pair (Josephson) components of the tunnel 
current. It is shown that even in the absence of the pair component (for example, in tunneling 
between normal metals) coherent oscillations of the electric charge and voltage can arise at the 
junction, with a frequency proportional to the average current. The characteristics of these 
"one-electron" oscillations is calculated, and the question of their coexistence with "Bloch" 
oscillations in Josephson junctions is considered. The feasibility of experimental observation of 
these effects is discussed briefly. 

1. INTRODUCTION 2. STATEMENT OF THE PROBLEM AND DERIVATION OF 

Tunnel junctions of very small area S (fractions of a THE FUNDAMENTAL EQUATION 

square micron) have recently become the subject of active Let us consider a tunnel junction between metals 1 and 
theoretical and experimental research. At low temperatures, 2 which is connected to a fixed external current source I ( t )  
such junctions can exhibit "secondary" macroscopic quan- and in the general case shunted by an external conductance 
tum effects (see, e.g., the review of Larkin et al.' ). The most G, of a nontunneling (metallic) nature. The Hamiltonian of 
qualitatively new of these effects is the predicted transition such a system is2,3 
from the ordinary Josephson oscillations with the frequency H=Ho+HT+ [I,-I(t) 10, 

a,= (2elf i )  V (1)  H,=H,+H,+H,-tQZ/2c, 
to "Bloch" oscillations with a f r e q ~ e n c y ~ . ~  where H ,,, and H, describe the internal degrees of freedom 

of the metals and shunt, respectively, I, is the operator for 
a,= ( n l e )  (I-G,V) , ( 2 )  the current through the shunt, Q '/2c is the electrostatic en- 

as the size of the Josephson junction is decreased (I and Vare ergy of the junction as a capacitor, @ is the operator for the 
the average values of the current and voltage, and G, is the variable which is canonically conjugate to the electric charge 
quasiparticle conductance shunting the Josephson supercur- Q, 
rent). 

The theory developed prev iou~ly~.~  for this effect was 
based on the extremely simple "adiabatic" description of the 
Josephson supercurrent and on the assumption of thermo- 
dynamic equilibrium of the quasiparticle ensemble responsi- 
ble for the conductance G,. The latter assumption is valid 
only in the case when the junction is strongly shunted by an 
external conductance of a nontunneling nature: G, )GT, 
where GT is the tunneling quasiparticle conductance (and at 
not too large a current). It is also of interest to consider the 
opposite case (G, 5 G, ), in which the discrete character not 
only of the superconducting component but also of the qua- 
siparticle component of the current can become important. 
This "secondary" quantization can4s5 give rise to oscillations 
at a frequency 

and which therefore satisfies the commutation relation6 

(for a superconducting junction @ = (fi/2e)p, where p is 
the Josephson phase difference). Unlike Refs. 2 and 3, we 
take the tunneling operator HT in the form of the standard 
tunneling Hamiltonian7 

HT-H++H-, H+ --x Tk,k,ck,+c,, H-=H++, ( 7 )  
krk. 

where c: and c, are the electron creation and annihilation 
operators, and the sum is over all the electronic states of 
metals 1 and 2. The charge on the capacitance is expressed in 
terms of the same operators as 

even in the absence of a Josephson coupling between elec- Q = - ( ck.+ck, - ~ c k , + c k z  ) + const, e= I e J , ( 8) 
trons, e.g., in purely one-electron tunneling between normal k, 4 

metals. so that Q and H ,  do not commute. Specifically, as is easily 
The goal of the present study was a consistent verified by substitution, the following relation holds for any 

microscopic theory of the "one-electron" oscillations ( 3 ) operator function F( : 
and to study their influence on the Bloch oscillations (2)  in 
Josephson junctions. H * F ( Q )  =F(Q*e)H*.  (9)  
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For any real tunnel junction the number of electronic states 
Nin the metals is very large, so that a charge of moderate size 
( 1 Q I (eN) will not affect their internal properties, and it can 
be assumed that 

In the most realistic case, when external current, tunneling 
current, and shunt current are small and do not disturb the 
equilibrium of the internal degrees of freedom of the metals 
and shunt, relations (6),  (9),  and ( 10) yield a simple equa- 
tion in closed form for the density matrix 

where the trace is taken over the internal states of the elec- 
trodes k and shunt s. In the interaction representation this 
equation is of the form 

where F I ,  F, , and FT are the terms describing the influence 
of the external current, shunt, and tunneling, respectively, as 
calculated independently of one another in the first nonvan- 
ishing order of standard perturbation theory. The terms F, 
and F, have actually been evaluated previ~usly,~ and Eqs. 
(68) and (71) of Ref. 3 can be written in our case as 

(Fa)  QQ* ( t )  J d~ exp {imQQ* ( t - T )  } {-iA ( T )  [ (z -z) 
o a Q V Q ' "  

where we have introduced the notation 

and the kernels A (7) and B(T) can be expressed in terms of 
the temperature T and the complex conductance Y, (w) of 
the shunt: 

+- 
i 

A ( T )  = - I d o  h o  RB Y .  ( a )  ei':, (16) 
n-rn 

1 Ao 
B ( T )  = - 1 d o  l o  cth { = ) ~ e  Y .  (o)er".  (17) 

- m  

Merely from the structure of relations ( 13) and ( 14) 
we see'' that the electric charge flowing through the nontun- 
neling conductance G, and the current source I ( t )  does not 
exhibit discreteness. This description is correct because in 
bulk metallic conductors and transported charge is a collec- 
tive variable, i.e., a function of a large number of coordinates 
of the current carriers, and is not quantized on the scale of e. 

In contrast, the tunneling current is naturally discrete, 
and this is reflected in the form of the FT term. In fact, taking 
the general formula of perturbation theory to second order 
in H ,  in the form 

we find that 

where 

( . . . )=Sp ,,,, { . . . f), 
and everywhere under the integral sign the density matrix p 
is taken at time t - T. The averages of the products of the 
operators H ,  in Eqs. (20) can be expressed7-" in terms of 
the functions I,, (w ), 

+ m 

l2 
( H + H F  ( T )  ) = ( H - H .  ( I )  )= - 5 d o  Im I . , , ( o ) E + ( w ,  T ) ,  

4 n e - _  
(21a) 

E,  (o ,  T )  = cth - cos o ~ * i  sin o r ,  I :,"I 
which determine the average value of the tunneling current 
under conditions of a fixed static voltage V across the junc- 
tion: 

Z ( t )  =Re I ,  ( e v l h )  sin cp+Im I ,  ( e V / h )  cos cpt-Im I,  ( e v l f i ) ,  

(22a 

rp= (2elh)  Vt+const. (2% 

The functions I,,, (w) have well-knownG8 expressions in 
terms of the normal conductance of the junction and the 
internal properties of metals 1 and 2, and they can be regard- 
ed as given. Therefore, expressions ( 12)-( 17), (20), and 
(21) form a closed system of equations for the density ma- 
trixp; this system of equations describes the dynamics of the 
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charge Q = cV on the junction at a fixed external current 
I ( t ) .  

3. ONE-ELECTRON OSCILLATIONS 

Let us consider the case in which Josephson tunneling is 
absent, I, (o)=O, i.e., either at least one of the metals is 
normal or the supercurrent is suppressed by a magnetic field. 
Then, as we see from expression (21), the FT term in Eq. 
( 18 ), like F,, couples only those elements of the density ma- 
trix pee. which are equidistant from the principal diagonal 
(Q - Q ' = const), and so cannot generate off-diagonal ele- 
ments. The shunt, in turn, leads to a damping of the off- 
diagonal elements, with a time constant T-T,, where 

provided that its conductance is not too large3.": 

G , R Q < l ,  RQ=nA/2eZ=6.7 kC! . (24) 

In this case the density matrix p rapidly becomes diagonal 
and remains so: 

Let us also suppose that the maximum frequency (o,,, ) for 
variations in a is much smaller than the characteristic fre- 
quencies in the integrand in expressions (20) : 

Ao, < mar {:mini ( Q t 2 e ) .  (Q*e) I .  T}. (26) 
C 

In this case a can be taken outside the integral with respect to 
T, and the equation for this quantity assumes the simple form 

(this kinetic equation can also be obtained directly from the 
quantum mechanical "golden rule"). It follows from this 
equation that the deviation of the behavior of this system 
from the "classical" behavior, i.e., from the behavior at a 
fixed voltage, is manifested most clearly at low temperatures 

T<EQ=e2/2c. (28) 

Then 

j* ( Q )  m e - % l ~ m  I ~ (  %) 1 e (*Q),  (29) 

i.e., if the charge Q is concentrated in the region 

then the tunneling is completely suppressed: Fo-+O. The 

physical reason for this is that when the voltage V on the 
contact is not fixed, the tunneling of a single electron 
changes the Coulomb energy Q '/2c by an amount 

AE= [ (Q*e) ' - Q Z ] / 2 c .  (31) 

If the charge is localized in region (30), then A E  > 0, and so 
this process is suppressed at low temperatures (28). An 
analogous phenomenon has been observed in tunnel junc- 
tions having a metal-impregnated oxide l a ~ e r ' ~ - ' ~  and has 
been treated theoretically in Ref. 16. 

Let us now consider the case of a constant external cur- 
rent I ( t )  = I. If 

1 < f t = e / 2 ~ 8 ,  (32) 

then Eq. (27) has a solution which describes a steady state 

The set of such states gives a linear region, in which there is 
no tunneling current, on the voltage-ampere characteristic 
of the junction: 

V=P/G,  for ( 7 l < I , .  (34) 

If I > I , ,  then Eq. (27) describes coherent oscillations 
at a frequency (3)  which is twice as large as the frequency of 
the Bloch oscillations. In the simplest case, that of a junction 
between normal metals under the additional conditions 

GaG=GT, (35) 

the solution describing these oscillations, i.e., the solution of 
Eq. (27) with the initial condition a(Q,O) = 6(Q),  has the 
following form for t<rS (for the sake of definiteness we take 
I>O) :  

+co 

Solution (38) describes a periodic process consisting of the 
motion of charge over region (30) at a rate 7 and the subse- 
quent rapid transfer of probability from the region Q=: + e/ 
2 to the region Q=; - e/2 (this transfer corresponds to the 
tunneling of a single electron). The physical cause of these 
"one-electron" oscillations is that the tunneling of a single 
electron decreases the voltage across the junction by an 
amount AV= e/c, i.e., alters the tunneling conditions for 
the remaining electrons, thereby correlating the tunneling 
current. 
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FIG. 1 .  One-electron oscillations in the absence of Josephson tunneling: 
a)  volt-ampere characteristic of the junction; b) shape of the oscillations; 
C) steady-state distribution of the charge probability density; d )  spectral 
density of the oscillations of the charge on the junction. The values of the 
spectral components of the one-electron oscillations would correspond to 
measurements on a spectrum analyzer with a passband Am = 1/47,, 

By finding the ensemble average of the voltage across 
the junction, 

we easily determine that the one-electron oscillations corre- 
spond to a region on the volt-ampere characteristic begin- 
ning at 

e n ITT\Y ft-- -- Izr 
c ( 2  e 

for - a, 4. 
e 

The spectrum of the junction voltage in this approxima- 
tion consists of monochromatic lines of the harmonics of 
these oscillations (of frequency 27~nl /e) and a low-frequen- 
cy noise pedestal characterized by a height 

and a cutoff frequency 

For 7-e/rT formula (38b) becomes invalid, and the 
junction characteristic can be calculated by substituting so- 
lution (38a) into kinetic equation (27). The results of such a 
calculation are shown in Fig. 1. It turns out that when the 
external current is increased to 72 0. le/r, the aforemen- 
tioned correlations in the motion of the individual electron 
gradually vanish, the amplitude of the one-electron oscilla- 
tions falls off rapidly (Fig. lb),  and the noise pedestal in- 
creases, going over to the usual shot noise: 

The volt-ampere characteristic of the junction then tends 
toward the linear asymptotic relation 

- e 
V=G,-~I  + - sign 7. 

2c (43) 

A nonvanishing shunt conductance will introduce a 
number of changes in the dynamics of the one-electron oscil- 
lations. First, a transition region with a nonzero current 
width arises between the linear region of the volt-ampere 
characteristic (34) and region (40). For G, (G, the shape 
of this region and the oscillation frequency in it are given by 
formulas analogous to the case of the Bloch oscillations2: 

At large currents (7>e/rT,1, ) the volt-ampere characteris- 
tic approaches the straight line 

In addition, because of the nonuniformity of the motion of 
the "packets" in different regions on the Q axis, the packets 
broaden, leading to a nonzero width 2 r  of the spectral com- 
ponents of the one-electron oscillations. For a small current 
(36), for which the probability density is given by expression 
(38), this width is of the order of 

1 IT, " r--&) Ta . 

Increasing G, to above GT completely smears out the lines of 
the one-electron oscillations. 

A nonzero but small [condition (28) 1 temperature T 
causes fluctuations of the shunt current, leading to an addi- 
tional broadening of the spectral lines of the one-electron 
oscillations. Using general rules'' to rewrite the correspond- 
ing part of Eq. (27) in the form of the equivalent Langevin 
equation 

Q o = l ( t )  -T.-'Q~+T ( t )  , < T ( t )  )=0, 
(47) 

<I ( t )  T  ( t i - T )  )=2G.T6 (z) 

and proceeding as in the case of the Bloch  oscillation^,^ we 
obtain for the temperature part of the linewidth 

where f is a function which goes rapidly to unity for I)I , .  
In addition, an increase in temperature leads to a smearing of 
the corners of the functions f , (Q) in (27c) and, as a re- 
sult, to a decrease in the amplitude of the one-electron oscil- 
lations. On a further increase in the temperature (to a value 
T-Ep  ), the one-electron oscillations are completely sup- 
pressed. 

4. COEXISTENCE OF THE ONE-ELECTRON AND BLOCH 
OSCILLATIONS 

In the presence of Josephson tunneling, I, (a) +O, Eq. 
( 12) for the density matrixp(Q,Q ' ) in the general case can- 
not be reduced to an equation like (27) for the diagonal part 
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FIG. 2. Coexistence of the one-electron and Bloch oscillations: a )  volt- 
ampere characteristic of the junction; b)  steady-state distribution of the 
charge probability density at various currents. 

u(Q).  However, in the case of the greatest practical impor- 
tance, when not only the frequencies (26) for variations inp 
are small but so is the scale of the voltage on the contact 
during the one-electron (and Bloch) oscillations: 

we can assume that8s9 

and, using Eq. (2 1 ) and the Kramers-Kronig relations, we 
can write expression (20b) as 

iE 
( F P ) Q Q ~  ( t )  = $ I ~ Q r z e ~ .  erp { i ~ ~ , ~ . ~ . t )  

* 

Equation (5 1 ) agrees with the expression obtained from the 
"adiabatic" form of the tunneling Hamiltonianl-3: 

and therefore, for describing the influence of the supercur- 
rent on the dynamics of the charge, we can use the results of 
Refs. 2 and 3. 

This influence is simplest in the case 

when the effect of the supercurrent is felt only in a small 
neighborhood AQ-e(EJ/EQ ) of the points Q = + e. Out- 
side these regions the q~as i cha rge~ .~  q is the same as the 
charge Q, and F, -0, so that the simplest kinetic equation 
(27) again holds. The influence of the supercurrent is mani- 
fested in the tunneling of Cooper pairs when the charge Q 
reaches one of the boundaries + e, resulting in the reflection 

of the system to the opposite point Q = e (strictly speak- 
ing, only if one can neglect the thermal and Zener excitation 
of the higher bands of the energy This effect 
can be described by imposing on Eq. (27) the cyclic bound- 
ary conditions 

so that outside the interval [ - e, + el we have u(Q)=O. 
Figures 2 and 3 show the solution of Eq. (27) with 

boundary conditions (54) in the limit T-0, G,+O. We see 
that when the current is increased to -0.07 e /~ , ,  the shape 
of the volt-ampere characteristic goes over from the typical 
shape for one-electron oscillations to the typical shape for 
Bloch oscillations. The presence of one-electron tunneling, 
however, introduces substantial changes in the dynamics of 
the process even at large currents &-e /~ , .  In fact, the solu- 
tion of Eqs. (27) and (54) with the initial condition 
u(Q,O) = 6(Q) would be of the form of a single probability 
"packet" 

moving over the interval [ - e,e] and would thus have a 

FIG. 3. Spectral density of the oscillations of the charge on the junction; 
the curves reflect the transition from one-electron oscillations to a super- 
position of one-electron and Bloch oscillations. The spectral components 
of the one-electron oscillations are represented as in Fig. 1. The values of 
the current in A,  B, C, and D correspond to Fig. 2. 
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period of 2e/l. However, even for a small one-electron tun- 
neling the steady-state solution of this equation will be a 
double "packet" 

to which solution (55) will go over with a time constant 
r-rT. At large currents the process can be treated as a kind 
of superposition of coherent Bloch and one-electron oscilla- 
tions, with the Bloch component acquiring a nonzero 
linewidth r -7, ' even for G, = 0, T = 0, whereas the one- 
electron component remains monochromatic [in the ab- 
sence of the broadening mechanisms of Eqs. (46) and (48),  
of course]; see Fig. 3. 

Interestingly, in the present case, unlike the case in 
which there is no Josephson tunneling (see Sec. 3), the pres- 
ence of a shunt with a large conductance G, > GT is still not a 
sufficient condition for the smearing out of the spectral com- 
ponents of the one-electron oscillations. The physical cause 
of the destruction of the one-electron oscillations is the non- 
uniform motion of the probability "packets" (56). At large 
currents there is a decrease in the relative nonuniformity of 
this motion, and, as a result, the spectral components are not 
completely smeared out, although they have a nonzero 
width. 

5. CONCLUSION 

We have seen that when a tunnel junction of small ca- 
pacitance and conductance is connected to an external cur- 
rent source, two types of oscillations, having frequencies in 
the simple relationship w, = 2o,, can arise at low tempera- 
tures. The one-electron oscillations o, can also occur in the 
absence of Josephson tunneling. In a Josephson junction the 
two effects form a single oscillatory effect with a gradual 
transition from the one-electron oscillations to a superposi- 
tion of the one-electron and Bloch oscillations as the exter- 
nal current is increased. 

The conditions for experimental observation of the one- 
electron oscillations [these conditions are expressed by in- 
equalities (24), (26), (28), (35), and (36)] are basically 
the same as those for the observation of the Bloch oscilla- 
tions (except that the metals can be normal). These condi- 
tions, and also the possibilities for practical applications of 
the Bloch (and, consequently, of the one-electron) oscilla- 
tions, were discussed in detail in Ref. 3. The necessary condi- 
tions are satisfied by the following set of parameters, for ex- 
ample: 

With these parameters the scale of the volt-ampere charac- 
teristic (Fig. la)  should be e/rT =: 1 nA along the current 
axis and e/c=: 50,uV along the voltage axis, and the typical 
frequency of the one-electron oscillations should be of the 
order of lo9 Hz. 

Importantly, the theory considered here remains valid 
for nonideal tunnel junctions in which the oxide layer is dis- 
rupted by metallic microshorts and, generally, for any weak 
junctions. The only fundamental condition here is that the 
dimensions of the connectors joining the metals be much 
smaller than the electron energy free path in them, because 
then the discreteness of the charge transfer through the con- 
nector will be preserved. 

We are grateful to V. K. Semenov for assistance in the 
numerical calculations and to V. B. Braginskii, I. A. Devya- 
tov, A. L. Ginzburg, A. I. Larkin, V. V. Migulin, Yu. N. 
Ovchinnikov, S. M. Chudinov, V. V. Shmidt (deceased), A. 
F. Volkov, and especially A. B. Zorin for helpful discussions 
of this study. 

"This conclusion can be reached merely from the form of Hamiltonian 
( 3 ) ,  which has a nonperiodic dependence on a. As we know, the mo- 
mentum of a quantum mechanical system assumes a discrete set of values 
only if a condition of spatial periodicity is imposed on its wave function. 
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