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In the theory of the nonergodicity of spin glasses a new approach, corresponding to a 
continuous spectrum of relaxation times, is proposed. It is shown how to introduce a 
generalized field conjugate to the order parameter. A phenomenological generalization of the 
results obtained is performed, and makes it possible to describe nonequilbrium phenomena in 
spin glasses. Several examples of nonequilibrium phenomena are considered. Qualitative 
agreement with the experimental data is obtained. 

1. INTRODUCTION 

At the present time it is clear that the physics of spin 
glasses is connected with the appearance of highly nontrivial 
nonergodicity below the phase-transition point (see, e.g., the 
review in Ref. 1 ). This nontriviality is due to the fact that in 
spin glasses there is an infinite number of valleys, forming a 
.hierarchical structure with so-called ultrametric topol- 
~ g y . ~ . ~  In the theory the transition times of transitions from 
some valleys to others are infinite quantities, and the hierar- 
chical structure of the valleys leads to an infinite hierarchy of 
infinite transition times.4 The fact that the transition times 
are infinite implies that the nonergodicity is absolute, i. e., if 
the systems falls into some particular state it will never 
emerge from that state. In this case the existence of the other 
valleys become unobservable and consequently unimpor- 
tant. 

In experiment, however, one observes an entirely differ- 
ent situation, which we shall call effective nonergodicity. It 
turns out that in spin glasses there is a continuous spectrum 
of relaxation times, which starts from paramagnetic times 
T- sec (Ref. 5) and stretches out to astronomical 
times t,,, - lo2' sec (Ref. 6) .  Here the logarithm of the re- 
laxation times is distributed almost uniformly over this en- 
tire interval of times.'.' When effective nonergodicity is 
compared with absolute nonergodicity, the impression is 
created that we are dealing, as before, with a hierarchical 
structure of valleys, but that there is a certain weak mecha- 
nism leading to transitions from one valley to another, and 
that it is this which leads to the appearance of effective non- 
ergodicity instead of absolute nonergodicity. 

At the same time, the nonergodicity should lead to the 
result that spin glasses should be nonequilibrium systems. 
However, in the case of absolute nonergodicity this nonequi- 
librium cannot be manifested in any way, and is fundamen- 
tally unobservable. In the real situation of effective nonergo- 
dicity, however, the nonequilibrium not only is manifested 
but also should be the principal phenomenon determining 
the entire physics of spin glasses. Spin glasses should be es- 
sentially nonequilibrium systems, since equilibrium can be 
reached only after a time of the order oft,,, . 

We shall discuss this question in more detail, since until 
now almost no attention has been paid to this aspect of the 

problem of nonergodicity. It has been tacitly assumed that 
we have an equilibrium system, characterizable by various 
external parameters (e.g., the temperature and external 
magnetic field), and different phenomena in this equilibri- 
um system have been studied. However, since the experi- 
ments show that the maximum relaxation times are very 
long, we cannot speak of any equilibrium state of the spin 
glass. The state of the spin glass should depend to a very 
large degree on the history of the system, the method of cool- 
ing, the application of a magnetic field, etc. Since a nonequi- 
librium state should tend to equilibrium, the most diverse 
physical quantities, e.g., the magnetic moment or suscepti- 
bility, should depend on the relaxation time. Precisely this 
dependence on the observation time and prior history is the 
clearest manifestation of the nonequilibrium character of 
spin Especially interesting are the results of Ref. 
6, in which the pattern of the establishment of the magnetic 
moment was observed to depend on the time for which the 
system was held at the given temperature before the magnet- 
ic field was switched on. Thus, the authors of Ref. 6 estab- 
lished not only the long-time dependence of the magnetic 
moment on the observation time, but also the dependence of 
this process on the history of the system. The results of Ref. 6 
tell us that in order to obtain reproducible experimental data 
pertaining to spin glasses it is necessary to monitor and de- 
scribe all stages of the manipulation with the external pa- 
rameters after the line of the phase transition to the spin glass 
has been crossed. All of this is a consequence of the nonequi- 
librium character of spin glasses. 

Although nonequilibrium phenomena are already be- 
ing studied experimentally, there are not yet any theoretical 
papers devoted to this question. 

In the present paper we shall discuss from a theoretical 
point of view certain questions associated with the nonequi- 
librium character of spin glasses. It would be ideal, of course, 
to learn how to solve completely the problem of describing 
such a strongly nonequilibrium state as a functional of the 
entire history of the system. However, in its general form this 
problem is too complicated. Therefore, we shall confine our- 
selves to solving a simpler problem, in which, however, all 
the principal features of the dependence of the state on the 
history and observation time will be reflected. 

We shall assume that we have an equilibrium system, 
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characterized by a certain temperature, in zero magnetic 
field. At a certain time to we switch on an external magnetic 
field or change the temperature of the system, and then study 

, how the susceptibility of the system changes or what hap- 
pens in the process of relaxation of the magnetic moment. If 
the field were switched on or the temperature were changed 
at the time to = - CO, the system would have come to equi- 
librium and we would have an equilibrium correction to the 
susceptibility or to the relaxation process. In our case of fin- 
ite to this correction will be a nonequilibrium quantity and, 
consequently, will depend on the observation time and his- 
tory, i.e., on the holding time in the new conditions. It is this 
nonequilibrium correction that we shall study, using pertur- 
bation theory. This simplification of the problem gives the 
possibility of solving it to completion. At the same time, it is 
perfectly clear that all the qualitative effects due to the non- 
equilibrium character will be obtained in this way. 

Since, as we have said, the nonequilibrium character is 
determined by effective nonergodicity, to describe the non- 
equilibrium phenomena it would be natural to use the exist- 
ing theory of nonergodicity. At present we have only a the- 
ory of absolute nonergodicity. It would be desirable, 
therefore, to try to apply this theory to the description of 
effective nonergodicity as well. It turns out, however, that it 
is not so simple to do this. In the attempt to adapt the existing 
theories of absolute nonergodicity to the description of effec- 
tive nonergodicity two problems arise. The first is associated 
with the absence in the theory of absolute nonergodicity of a 
continuous spectrum of relaxation times, while the second 
arises from the fact that in absolute nonergodicity the den- 
sity of relaxation times is not determined uniquely. Because 
of this there arises strong degeneracy, which is called gauge 
invariance. Therefore, first of all it is necessary to construct a 
theory of absolute nonergodicity with a continuous spec- 
trum of relaxation times and to fix the gauge in some way. 
After this the theory can then be extended to effective noner- 
godicty. 

In this extension, naturally, we shall have to forgo infi- 
nite transition times from one valley to another, i.e., we shall 
have to assume the existence of some mechanism leading to 
intervalley transitions. We note that such a mechanism 
should automatically determine the density of relaxation 
times, i.e., should determine the gauge uniquely. Of course, 
we shall not attempt to introduce any specific mechanism, 
but shall assume that its action reduces entirely to determin- 
ing t,,, and fixing the gauge. In this phenomenological ap- 
proach, however, the general structure of the theory of abso- 
lute nonergodicity is preserved. Since this structure reflects 
the ultrametric topology of the valleys, we hope that our 
phenomenological theory of effective nonergodicity will also 
reflect correctly the hierarchical arrangement of the valley, 
which is the most important element of the physis of spin 
glasses. 

The next two Sections will be devoted to the construc- 
tion of a theory of absolute nonergodicity with a continous 
spectrum of relaxation times and to the question of the fixing 
of the gauge in this theory by means of the introduction of a 
generalized field, but first we shall discuss briefly the exist- 
ing approaches in the theory of nonergodicity. 
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In the theory of absolute nonergodicity of spin glasses 
there are two approaches. First, there is Parisi's concept of 
broken symmetry ofreplicas (see, e.g., Refs. 9-12), and sec- 
ondly there is the dynamical approach of S ~ m ~ o l i n s k y . ~ . ' ~ . ' ~  
These two approaches are intimately related, but in the dis- 
cussion of nonequilibrium phenomena it is natural to at- 
tempt to use the dynamical approach. In Sompolinsky's ap- 
proach, however, there appear an infinite number of infinite 
relaxation times T~+CC,  and their ratio r i / r i  + +CC . For 
the description of absolute nonergodicity such an approach 
is entirely admissible. However, we must have a theory with 
a continuous specrum of relaxation times. 

It turns out that one can construct a theory of absolute 
nonergodicity by replacing the Sompolinsky condition by 
the condition r i  -+a, r i  / r i  + -+I. It is easy to see that this 
condition corresponds to a continuous spectrum of infinite 
relaxation times. This is the approach proposed in the pres- 
ent paper. It is interesting that the equations that are ob- 
tained with this assumption are, as before, the Sompolinsky 
equations, but the quantitites appearing in these equations 
have another meaning and turn out to be related directly to 
the physical time. 

Next, we show how to introduce a generalized field con-. 
jugate to the order parameter. We discuss questions associat- 
ed with the degeneracy due to the gauge invariance and ques- 
tions associated with the lifting of this degeneracy by the 
generalized field. 

Then, with the aid of a phenomenological hypothesis, 
the results obtained in the description of absolute nonergodi- 
city are used to describe effective nonergodicity and the con- 
sequent nonequilibrium character of spin glasses. 

2. BASIC EQUATIONS 

In this Section we shall show how one can modify the 
dynamical approach in order to use it to attempt to describe 
the experimental data. For this we shall consider the so- 
called soft model of a spin glass.'3.14 The Sompolinsky equa- 
tions for this model have been obtained in a paper by the 
author.15 In the following we shall adhere to the method of 
this paper. 

The Hamiltonian of the soft model has the form 

In ( 1 ) the mi are classical fields, and the Jik are random 
exchange integrals with a Gaussian distribution. In the mod- 
el adopted the dynamical equations have the form of Lange- 
vin equations with random forces: 

1 ami 1 d H  
- = - _ -  
I'T d t  T dm, 

+ E'(t)l 

L 
( ~ i  ( t )  E, ( t ' )  )= - 6i,S ( t - t ' )  . 

FT ( 2 )  

Here T is the temperature, and I?' is the bare relaxation 
time. In Ref. 15 an expression was derived for the complete 
stochastic functional in this model, together with equations 
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for the correlation function D( t )  of the fields and for the 
advanced Green function G+ ( t )  and retarded Green func- 
tion G- ( t )  . We shall write out these equations in the para- 
magnetic region, keeping the notation of Ref. 15: 

410 - 1 

G,-1-8, + - G,=o, D=-BG+G- 
TZ 

The self-energy parts Z, and u appearing in ( 3 )  are ex- 
panded in a series in the anharmonicity constant u. We shall 
write out explicit expressions for them in the t-representa- 
tion to terms of order u2: 

3u 9u2 z* ( t )  =- - D(t=O) 6 ( t )  + - G* ( t )  D2 (t) ,  
2T 2 TZ 

(4)  
a (t) = (3u2/2T" D3 ( t )  . 

The point of the phase transition to the spin glass is deter- 
mined from the condition that as w-0 the function D(w) 
becomes singular. This gives the following equation: 

We turn now to the spin-glass region. We shall assume 
that in this region 

Here Do and G,, are ordinary thermodynamic functions 
satisfying the fluctuation-dissipation theorem (FDT):  

D, (a) = 2 ~ - '  1m G-o (a).  (6a) 

The equations for these quantities were written out in Ref. 
15. They will be of no further interest to us. 

The functions D, ( t )  and G , , ( t  ) describe the nonergo- 
dic behavior of spin glasses that is of interest to us. A princi- 
pal feature in the theory of nonergodicity is the postulating 
of an explicit form for these functions. Sompolinsky's hy- 
potheses reduces to the f~l lowing.~ Let 

- 

j - i  j-0 

Next it is necessary to substitute (7)  into Eqs. (3 )  and (4) ;  
certain equations for A, and q, are then obtained. Next it is 
necessary to let k+w; then i/k becomes a continuous vari- 
able x, varying on the interval [0, 1 1 ,  and qi and A, go over 

into functions q (x )  and A(x), which are the order param- 
eters. For these functions for the soft model the following 
equations were obtained in Ref. 15: 

which are the Sompolinsky equations for our problem. As 
we have already said in the Introduction, this approach is 
fully satisfactory for the description of absolute nonergodi- 
city. However, one cannot attempt to apply it even phenom- 
enologically to the description of the effective nonergodicity 
observed in experiment or, consequently, to the description 
of nonequilibrium processes. This is connected with the fact 
that, as can be seen from ( 7  ) , D, (w ) and G , ( W  ) are de- 
scribed by a sum of singular functions, while in experiment 
one observes continuous functions of w. 

Therefore, in order that the theory somehow reflect the 
experimental situation, it is necessary to advance a hypothe- 
sis that is compatible with the continuity of the functions 
D, ( W  ) and G - , (w ) and preserves, as before, the condition 
Ti+O. It is clear that for this it is necessary that Ti/  
Ti + , -1; here Ti will be distributed so densely that in (7)  it 
will be possible to go over from a sum to an integral. We set, 
for example, 

where 1 is an integer and a is some parameter. We identify 
the time 7- with the paramagnetic relaxation time, i.e., 7 is a 
finite time. In (9) ,  and correspondingly in (7) ,  we now take 
the following limit: 

k+w, l+m,  a+O, k/ l -+m,  la+w, 
(10) 

We note that the theory of Sompolinsky corresponds to the 
case la-0, k = I. Whereas the difference between the condi- 
tions k = I and k>l  is unimportant, the difference between 
the Sompolinsky condition la-0 and our condition la-co 
is fundamental. Our condition ensures a sufficiently dense 
set of Ti ,  which gives us the possibility of going over to the 
continuum limit in (7).  As a result we obtain 

0 

1 i r (y) = - T e-y'a, '=d. 
In ( 11 ) there remains a single parameter - namely, a .  All 
the other parameters have already been used. 

Next, it is necessary that typical functions T(y)  be in- 
finitesimally small as a+O. For this we must assume that the 
main contribution to ( 1 1 ) is given by y- 1. This assumption 
is very important in our approach. 
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Now the integrals in( 11 ), and also the correlator D, ( t )  
and the Green function G - , ( t )  in the t-representation, are 
easily calculated. As a result we obtain 

De ( t )  =q ( z ) ,  G - ,  ( t )  = ( 'a l t )  A r b ) @  ( t ) ,  (12) 

Formula ( 12) is the basis of our whole theory. We note 
here one important circumstance. From ( 12) it can be seen 
that D, (a) a 1/0 for small w; this differs sharply from the 
usual behavior of the correlator, which is finite as 0-0. In 
exactly the same way, ImG, (a)-const in this limit, while, 
as usual, ImG(w ) a o .  All of this implies singular behavior 
of these quantities at low frequencies, and it is these singular- 
ities which distinguish G, and D, from correlators of ordi- 
nary thermodynamic fluctuations. In essence, the l/w sin- 
gularity and the condition a-+O determine a certain new 
class of generalized functions, which replaces the sum of S- 
functions in the Sompolinsky approach. 

Furthermore, the fact that all the quantities in ( 12) are 
continuous functions of w and t make possible a phenomeno- 
logical relation between theory and experiment, or, in other 
words, a relation between absolute and effective nonergodi- 
city. In experiment, as we have already said, although the 
maximum relaxation time t,,, is astronomical, it is never- 
theless finite. Real experiments give for the quantity 
In (t,,, /T), which we shall identify with l/a,  an estimate of 
the order of 50-100. It can be assumed that a is not an infini- 
tesimal quantity but simply a small parameter, and the pro- 
posed theory studies phenomena that arise in the lowest non- 
vanishing order in a. Having established this 
phenomenological point of view, we can relate the absolute 
and effective nonergodicities and attempt to describe specif- 
ic experiments; this we shall do in the last Section of this 
paper. This phenomenology implies that the transition from 
absolute to effective nonergodicity occurs by means of a 
smearing out of the above-mentioned generalized functions. 
However, it turns out that one such smearing out is not suffi- 
cient to relate the absolute and effective nonergodicities. It is 
necessary also to fix the gauge, and we shall discuss this in 
the next Section. 

We shall show now that q (y ) and A (y) satisfy the Som- 
polinsky equations. Since, as we have already said, D, (w) 
and G, (w) are singular functions, by substituting the ex- 
pressions ( 12) into ( 3 ) and separating the singular parts of 
the equations from the regular parts we can obtain equations 
for q(y) and A (y). Here it is necessary to take it into account 
that, in the region of times and frequencies of interest to us, 
G,, (0) = g and the exact Green function is equal to 
g + A(y). In this same region, D,(t) = 0. Taking all this 
into account, we obtain from ( 3 ), (41, and ( 12) the follow- 
ing expressions for the singular parts Z, ( t )  and o, ( t )  in the 
t- and @-representations: 

Substituting ( 13 ) into (3 and separating the singular 
parts from the regular parts in the equations for D and G, we 
obtain the following equations for q(y ) and A (y) : 

-- I +xj A' ( 2 )  q 2 ( x )  d x + a  ( g )  =0, 
bT 2 P ,  

The first two equations coincide with the corresponding 
Sompolinsky equations (8).  The third equation is not inde- 
pendent. If we differentiate it with respect toy, we obtain the 
first equation. Thus, we see that the equations for q(y) and 
A(y) coincide with the Sompolinsky equations for our mod- 
el. 

3. GAUGE INVARIANCE. THE FIELD CONJUGATE TO THE 
ORDER PARAMETER 

It is well known that the Sompolinsky equations possess 
degeneracy connected with the presence of gauge invariance 
in these eq~a t ions .~  We shall show this for our example. First 
of all we note that to Eqs. ( 14) in our model it is necessary to 
add two more equations.I5 The essence of these is that they 
give the possibility of determining the boundary values of A 
and q: 

4 (0) =q ,  A  (0) =o, 
(15) 

q(m)=qo ,  A  ( - ) = A ,  
and the parameters q, go, and A are determined uniquely. At 
the same time, it can be seen from the first two equations 
( 14) that if we assume that q' #O and A'#O in the spin-glass 
region, then Eqs. (14) determine in the entire interval of 
variation ofy only a relation 

between the two monotonic functions q(y ) and A (y ) satisfy- 
ing the boundary conditions ( 15). Naturally, Eq. ( 16) and 
the monotonicity requirement do not determine q(y) and 
A (y) uniquely. Enormous arbitrariness remains. Thus, the 
theory is found to be invariant under a large group of func- 
tional transformations that leave the conditions (15) and 
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( 16) invariant and satisfy the monotonicity condition 

It is this invariance that we call gauge invariance. The exis- 
tence of this group leads to strong degeneracy. A degeneracy 
of this kind can be lifted only with the aid of a field conjugate 
to the order parameter. At the present time the form of such 
a field for spin glasses is unknown. 

In this paper we shall show how one can introduce such 
a field. As is well known, the field conjugate to the order 
parameter is introduced in the likeness of the order param- 
eter itself. In our case the order parameters are the singular 
parts of the correlator and Green function. In the same way, 
we introduce a generalized field. For this we make two 
changes in Eq. ( 2 ) .  First, we add to ei  ( t )  a term with a 
random field hi ( t )  with a long-time correlator for hi ( t ) ,  
and, secondly, we add to the left-hand side of Eq. ( 2 )  a long- 
time response function. 

In place of ( 2 )  we set 

The two quantities 6 ( y )  and p ( y )  are completely equi- 
valent in their properties to the order parameters A ( y )  and 
q ( y ) ,  and are the generalized fields conjugate to the order 
parameters. It is not difficult to show that the first two equa- 
tions ( 14) take the form 

The equations ( 19) determine A  ( y  ) and q  ( y  ) uniquely, and 
this is not surprising, since the presence of an external field 
of finite magnitude always leads to a unique definition of the 
order parameter. However, it is known that, in the ordered 
phase, for a unique definition of the order parameter an in- 
finitesimal field that fixes only the direction of the order 
parameter is sufficient. What plays the role of the direction 
in our case? To answer this question, we introduce the func- 
tion 

and assume that it is monotonic function satisfying the 
boundary conditions 

From ( 1 9 )  and ( 2 0 )  it can be seen that 

Now we can set 6 ' = p' = 0 in ( 19 ) , and we obtain Eqs. ( 14) 
and ( 2 2 ) ,  which determine A ( y )  and q ( y )  uniquely. Thus, 
Eq. ( 2 2 )  completes the determination of the order param- 
eter, giving it a "direction" in the functional space. All that 
we needed from the generalized field was the ratio of 6 ' and 
p' in ( 2 0 ) ,  and 6 andp themselves can be infinitesimal quan- 
tities. This is completely equivalent to, e.g., the ordinary 
Heisenberg ferromagnet, in which an infinitesimal field fixes 
the direction of the magnetic moment. 

We return now to Eqs. ( 14) and ( 2 2 ) .  Since w ( y )  is a 
monotonic function, it is easy to see that we can choose w  as 
the independent variable. With this change of variables the 
structure of the equations does not change. We then obtain 

It is easy to show that Eqs. ( 2 3 )  are simply the Parisi equa- 
tions for our model. Thus, the introduction of an infinitesi- 
mal field conjugate to the order parameter fixes the gauge in 
the Sompolinsky equations and leads in a natural way to the 
Parisi equations. From the point of view of the external field 
the Parisi equations are entirely natural. But from the point 
of view of the equations themselves another choice of gauge 
would be much more natural. It is very convenient, e.g., to 
choose as the independent variable the function q ( y ) .  Then 
all physical quantities would be functions only of the vari- 
able q; e.g., A  = A  ( 9 ) .  

We now note that Eq. ( 2 2 )  with the boundary condi- 
tions for ( 2 1 )  contradicts the FDT, which, as is easily 
shown, has in our case the form 

Therefore, for the singular correlators D, ( t )  and G, ( t )  the 
FDT is not fulfilled. It is this property, together with the 
singular character of the correlators (which, as we have al- 
ready said, are generalized functions), that leads to the re- 
sult that these quantities describe the nonergodicity in spin 
glasses. Unlike the singular correlators, the regular quanti- 
ties D , ( t )  and G , ( t )  satisfy the FDT and describe intraval- 
ley transitions, while D, ( t )  and G, ( t )  describe intervalley 
transitions. 

We shall discuss the question of the gauge invariance in 
more detail. Since, as can be seen from ( 1 1 ), A' ( y )  and q l ( y )  
determine the density of relaxation times in the Green func- 
tion and in the correlator, the gauge invariance implies that 
only the ratio of these two quantities is determined, and not 
the two quantitites separately. Fixing the gauge leads to a 
unique determination of both quantities. The presence of the 
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gauge invariance in the theory of absolute nonergodicity is 
evidently connected with the absence in this theory of any 
concrete mechanism leading to transitions from one valley 
to another. 

In the case of effective nonergodicity, some entirely spe- 
cific mechanism giving rise to intervalley transitions is 
bound to exist. This mechanism, first, should determine the 
maximum relaxation time t,,, , i.e., should fix a ,  and, sec- 
ondly, should determine completely the densities of relaxa- 
tion times, i.e., should fix the gauge. Since the introduction 
of w ( y )  into ( 2 0 )  and ( 2 2 )  leads to the same result, this 
implies that w (y  ) should be determined by a specific relaxa- 
tion mechanism in the system. Since the generalized field 
also fixes the gauge in the theory of absolute nonergodicity, 
this means that, in essence, it also determines a certain mech- 
anism of intravalley transitions in the case of infinite relaxa- 
tion times. In the case of effective nonergodicity, however, 
the introduction of a finite a and a specific gauge is a way of 
introducing a specific mechanism of intervalley transitions 
phenomenologically. It is in this way that we go from abso- 
lute to effective nonergodicity. 

Here it is desirable to note that the most important ele- 
ment of the physics - namely, the hierarchical arrangement 
of the valleys, i.e., their ultrametric topology, passes over 
from the absolute to the effective nonergodicity. Thus, the 
phenomenological approach that we have proposed pre- 
serves this most important property inherent to the theory of 
absolute nonergodicity. 

4. NONEQUlLlBRlUM PHENOMENA IN SPIN GLASSES 

In this Section the theory developed in the preceding 
Sections will be applied to the description of nonequilibrium 
phenomena in spin glasses. For this we shall need, first, to 
assume that the gauge is fixed by some external field, and, 
secondly, to assume that a is not infinitesimal but is simply a 
small quantity. We have already discussed these questions in 
detail in the preceding Sections. 

As already mentioned in the Introduction, we shall con- 
sider the nonequilibrium correction introduced into the sus- 
ceptibility by switching on an external magnetic field or 
changing the temperature. But first we consider the non- 
equilibrium magnetic moment associated with the switching 
on of a magnetic field. Suppose that we switched on a mag- 
netic field h ,  at time t , ;  then from ( 6 )  and ( 1 2 )  we obtain 

rn 

M ( t )  = M ( t - t i )  =hi j dt' G- ( t - t r )  =h,  [g+A ( 2 , )  1, 
1, ( 2 5 )  

In ( 2 5 )  g has arisen from the regular part G o ( t ) ,  and we have 
also taken into account that A  ( 0 )  = 0 .  Formula ( 2 5 )  de- 
scribes the well known long-time relaxation of the magnetic 
moment. Comparison of ( 2 5 )  with the expression for G, in 
( 1 1 ) shows that the logarithmic derivative of the magnetic 
moment with respect to the time is proportional to the den- 
sity of relaxation times. This relationship was indicated em- 
pirically in Refs. 6 and 8. We note that the magnetization 
associated with h,g is established in a paramagnetic time, 

whereas the equilibrium magnetization is equal to 
h ,  (g  + A )  and is established in the time t,,, . 

An analogous situation will also arise for all the other 
cases, which we now consider. Each expression will consist 
of two parts-a part relaxing in a paramagnetic time, and a 
nonequilibrium correction that changes over times of the 
order oft , , ,  . 

We now consider the correction introduced into the 
susceptibility by switching on a constant magnetic field ho at 
time to. Obviously, the correction of first order in the anhar- 
monicity constant is equal to 

AG- ( t ,  t ' )  = j dtiG- ( + - t i )  G- ( t i - t r )  z ( t , - to ) ,  

We note first of all that AG depends not on the difference 
t  - t  ', but on t  and t  ' separately, as is entirely natural in a 
nonequilibrium situation. 

We now consider the case when It - t  ' 1  4 It - tol . In this 
case, since G -  ( t )  a e ( t ) ,  we have ( t  - t ,  ( - It, - t  '1 
g l t  - tol . Then, obviously, from ( 2 6 )  we obtain 

The second formula in ( 2 7 )  expresses the Fourier transform 
of AG- ( t , t  ') with respect to the difference t  - t  '. It can be 
seen from this formula that when an external constant mag- 
netic field is switched on the ac susceptibility begins to de- 
pend on the observation time. This simple effect is very clo- 
sely related to the relaxation of the magnetic moment in 
( 2 5 ) .  However, for some reason, there has not yet been a 
single experiment to study it. 

We now consider the general case. We shall study the 
quantity 

s 

AM ( t )  =hi j AG- ( t ,  t') d t r ,  ( 2 8 )  
t : 

i.e., at time t ,  we switch on the measurement magnetic field 
h ,  and consider the term M ( t )  cc h  i h ,  as a function of the 
time t  in relation to the times to and t , .  This implies that we 
are studying the dc susceptibility with respect to the mea- 
surement field h  ,. This kind of problem is, in essence, equiva- 
lent to the experiment of Ref. 6. Here we shall consider only 
the case t ,  > to;  i.e., the measurement field is switched on 
after the external action on the susceptibility. Using the ex- 
plicit form of the Green function in ( 12) and the condition 
a( 1 ,  in this case we can easily obtain from ( 2 6 )  and ( 2 8 )  

Here we have introduced the notation of Ref. 6 .  In the latter 
.paper two times were introduced-the time t, = t  - t ,  of ac- 
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tion of the measurement field, and the total time t ,,, = t - to 
of the external action. The waiting time, i.e., the time for 
which the external action is held before the switching on of 
the measurement field, is expressed in terms of these two 
times: t, = t,,, - t, = t, - to. We note now that for a( 1 

Then from (29) we have 

AM(t )=h iZ(zw)  [ g + A  ( 2 s )  12, zw>z,, 
(31) . , 

A M ( t ) = h l Z ( z , )  [g+A ( 2 , )  l', z.>zw. 

From this it can be seen that AM(t) has a discontinuity at 
z, = z, . We note that the first formula (3  1 ) corresponds to 
the ac susceptibility (27). It is interesting to note the follow- 
ing fact. Even in the case when the observation time is much 
shorter than the waiting time (z, > z, in (3  1 ) , and formula 
(27) applies), the susceptibility is by no means equal to its 
equilibrium value. The equilibrium value is obtained only at 
z, = GO. This fact is simply a consequence of the nonequilib- 
rium character of spin glasses, discussed in the Introduction. 

In Ref. 6 the logarithmic derivative of M ( t )  with re- 
spect to time was studied as a function ofz,,, and zs . We too 
shall calculate it. From (29) we have 

aAM/dz,=hi{2A' ( 2 . )  [ g + A  ( 2 , )  lC(ztoO 

Formula (32) is quite remarkable. Since a g l ,  for 
z,,, - z, )a the second term can be discarded and we have a 
smooth curve. Then, at z,,, - z, -a, the second term begins 
to operate and the whole expression grows rapidly by an 
amount of the order of itself, while for z,,, <z, the whole 
quantity vanishes by purely kinematic considerations, since 
the total time cannot be shorter than the observation time. 
Thus, on the graph of the dependence on z, we obtain a kind 
of wave, moving forward with increase of z,,,. It was this 
wave that was observed by the authors of Ref. 6. Thus, for- 
mula (32) gives a qualitatively correct description of the 
experimental situation. 

We now consider the case of change of the temperature. 
Unlike the switching on of a magnetic field, a change in tem- 
perature cannot be introduced directly into the Hamilto- 
nian. Therefore, we shall proceed in a manner analogous to 
the way in which a change of temperature is treated in the 
theory of phase transitions. Near the transition temperature 
T, the temperature appears in the effective Hamiltonian in 
the form ( T - T, )m2, and a change of temperature at the 
time to can be described by including in the Hamiltonian the 
term 

It can be shown, however, that the effect of a change in tem- 
perature is not confined to the term of the type (33), which 
determines only the main effect of this change. We shall 
study the effect on a spin glass of a term of the type (33 ) and 
we shall speak of a change of temperature, but in doing this 
we must always keep in mind the formal character of this 
identification. 

It is easy to show that in zeroth order in the anharmoni- 
city constant the term (33) does not give a nonequilibrium 
correction to the Green function, although in the correlator 
such a correction does arise: 

Because of the nonequilibrium character, Aq depends on t 
and t ' separately, rather than on t - t '. Using ( 12) and the 
condition a(1 we can easily calculate (34); we obtain 

Aql ( t ,  t ' )  =a { k + ~  ( 2 )  1s ( z )  + .I dx ~ ' ( x )  d x ) }  , 

zo=z ( t - to ) ,  z = z ( t - t ' ) ,  q=q(O) .  

It is easy to show that a nonequilibrium correction to the 
Green function arises in the next order in u. This correction 
coincides exactly with the expression (26), if in the latter we 
set 

C ( t - t o )  =- ( 3 ~ 1 2 T )  Ag ( t ,  t ) ,  (36) 

where Aq(t,t) is given in (35) and depends on the difference 
t - to. After this, the entire analysis performed for formula 
(26) can be extended also to the case of a change of tempera- 
ture. 

We shall consider one last example of nonequilibrium 
phenomena. We shall suppose that the field h ,  in (28) was 
switched on infinitely long ago. Then in the spin glass we 
have the equilibrium magnetic moment, which is deter- 
mined by formula (25) withz, = co . At time to we switch on 
the external action, e.g., of the form (36). Then the magnetic 
moment acquires a nonequilibrium correction associated 
with this action. To obtain this correction it is necessary to 
calculate (28) with t, < to  and z(t, - t,) > z ( t  - to). We 
then obtain 

A M ( t )  =h1[g+A ( 2 0 )  lZ ( zo )  [ g + A  ( 2 1 )  I ,  (37) 
zo=z ( t - to) ,  zs=z (t-t1) . 

Forz, = z, = CZJ (37) gives the equilibrium correction to the 
magnetic moment. The nonequilibrium correction of inter- 
est to us is obtained if z, = co and zo is finite. 

Thus, we have shown, in the framework of perturbation 
theory, that any change in the external conditions leads to a 
nonequilibrium state of the spin glass. Relaxation of this 
nonequilibrium state occurs over times of the order of the 
maximum relaxation time. In our examples this corresponds 
to the fact that only for t>t,,, can we replace 2 ( t )  by Z ( oc, ) 
in formulas (25), (26) and the expressions obtained from 
them. Since C ( cc ) corresponds to the equilibrium correc- 
tion, this implies that equilibrium is established over precise- 
ly such times. 

It is perfectly clear that this situation also obtained out- 
side the framework of perturbation theory. This implies that 
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the process by which the equilibrium state of a spin glass is 
reached from some particular initial state occurs over times 
of the order of the maximum relaxation time, which is an 
astronomical quantity. Therefore, an equilibrium spin glass 
is an unobservable object, and the main problem of the phys- 
ics of spin glasses is the problem of studying the nonequilib- 
rium situation. One of the consequences of this nonequilibri- 
um character is the dependence of all physical quantities on 
the oberservation times. 

In conclusion the author thanks S. V. Maleev and B. P. 
Toperverg for discussions about this work. 
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