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A number of realistic SU(3) X SU(2) X U ( l )  models of low-energy spontaneously broken 
N = 1 supergravity (SUGRA) with different Kahler potentials, including superstring SUGRA 
with the Witten potential, are considered. As a rule, the models suffer from two defects; (a)  
their Lagrangians depend on a number of unknown parameters (gravitino mass m3/,, gaugino 
mass M,~,,  etc.) and (b)  they give rise to a cosmological constant A = Urnin which is greater 
than the astrophysically admissible limit by tens of orders of magnitude. This paper presents a 
solution of the renormalization-group equations which determine the mass of the Higgs scalars 
and their superpartners, i.e., the quarkino, leptino (s = O), and Higgs guagino (s = 1/2), in 
terms of unknown parameters of the theory. A class of no-scale SUGRA models is considered 
in which the parameter m312 = m R  is determined by minimizing the potential Umin (m312). 
The only reasonable one among them is the superstring variant of the theory, which leads to a 
unique set of parameters for which A = Urnin (mi/, ) = 0. Numerical results are reported for a 
similar but more approximate model in which A = Umin (m&2 ) = 0. 

1. INTRODUCTION 

In recent years, models based on supersymmetry 
(SUSY) have occupied a dominant position in the theory of 
elementary particles (see the review given in Ref. 1). They 
provide a natural solution of the problem of quadratic diver- 
gences in the Weinberg-Salam theory, and of the problem of 
"hierarchy" and "fine tuning" in grand unification theories 
(GUT). Supergravity models (SUGRA) , in which SUSY is 
spontaneously broken2 (as is, indeed, the case in the real 
world), are aesthetically particularly attractive because of 
the appearance of the vacuum average zo = (z(x) ) of a sca- 
lar field z(x) that is not observable physically because of its 
interaction with the graviton and gravitino fields. This is the 
so-called super-Higgs effect2 in the "hidden" sector of the 
t h e ~ r y , ~  which appears on an energy scale of the order of 
Planck's mass M, - lOI9 GeV. 

The supersymmetric Lagrangian of chiral, s' = (zi, 
xi ), and vector (gauge), Vo = ( V, , 2 ,  ), superfields have 
the following general form': 

P = J B ( s i  erp  (gave). 

where @(zi, z+ ), f (z' ), x(z i  ) are unknown functions 
[ f (zi ) is called the superpotential] and Wa are the chiral 
intensities' of the vector superfields. The chiral superfields 
so = (z,xO), wherez = zO(x) for i = 0, constitutes the "hid- 
den" sector of the theory, whereas the other si = ( yi, X' ), 
i = 1, 2, ... correspond to two physically observable fields 
[quark, lepton, or Higgs fields; for them, zi +y' (z) 1. 

The Lagrangian 2 expressed in terms of the superfield 
components turns out' to depend, apart fromx(si ), on the 
single function 

Lagrangian corresponding to the sector of scalar fields 
zi = (z, yi ) has the form 

&7g=MpZGijc911~idC~j+-U (zi) , 

where 

U(z') =Mp4 (exp G) [Gi (GO -'G'-31 +D-terms ( 1) 

is the potential of the scalar fields zi , where Gi = aG /azi , 
G j = aG /dzjt , G { = a 'G /dzidzj+ , and the D-terms [of 
the form ( gz/4) D 2 ] are due to gauge extensions of the de- 
rivatives. The function G(z, z+ ) also determines the interac- 
tion between the fieldz(x) and the gravitino field (s = 3/2), 
as well as the mass of the latter in the form 

= MP [ ~ X P  (G/2)Jzp, = MP 1 f ( 5 )  )/@"/' (20, ZO). 
I/ =o 

We shall now list certain variants of the theory that corre- 
spond to different choices of G(zi , z+ ). 

(a )  The "minimal" choice is - 3 In Q> = ziz;/M $, 
which corresponds to G{ = e / M  $, i.e., the canonical form 

n 

of the kinetic term in 2. We then have 
G (zi, zi+) =z'z,+lMp2+ln I f  (zi) 1 ', 

where M i  f (z) = h(z) + w( y i  ), where h ( z ) ~ i i . ' ( ~ ' ) ,  
since h(z) -moM$ and @( y i )  - ( yi)3-m2; here and in 
what follows, mo is a quantity on the scale of the mass of the 
W (or Z )  boson of electroweak theory (mo-100 GeV, 
Mp - 1019 GeV). When h) ii.', we see from (1)  that 
U(zl )_N Vo(z) + V(yi ), where 

and 
v= Vs,,,, ( yi) 

which is called the Kahler potential. Thus, the part of the = z !E+ ma12y,+l ' +(A-3)mx(W+W').. (2)  
ayi  
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In these expressions, A = Gz,,/M, - 1, @(yi ) = (m,/,/ 
m,) %'(f ) is the superpotential of the fields y', 
m312 = [exp(A/2)]mo, and z, is the value of the field 
z = z(x) for which the potential V,(z) is a minimum. The 
value of V,(z) at the minimum determines (in the classical 
approximation) the size" of the cosmological constant: 
A = U(zb)~Vo(zo) .  

(b) "No-scale'' SU ( 1, 1 ) supergravity corresponds to 
the Kahler function 

G=-3 1n (z+z+) /Mp+yiyi+lMp2+ln I [hO+W (yi) 1lMp3I ', 
(3  

where h,, = m,M; = const ( mo(Mp ), for which V,(z) SO, 
i.e., U(zl ) r V ( y i  ) has exactly the form given by (2)  with 
A = 3 ,  and m 3 L , ~ ( ~ p / 2 z o ) 3 / 2 m o  [and, as in (2),  
w = (m,12/mo) W(yi ) 1. In this form, the function 
G(zi, z; ) given by (3) is not very different from the usual 

in which the first two terms in (3)  are replaced 
with the SU(N, 1) symmetric term 3 ln (z+z f  
- yiy' /3Mp )/Mp, which leads to the potential (2), from 

which the terms proportional to m,/, are absent (although 
m312#O), i.e., 

We shall not, in the ensuing analysis, use the potential in the 
form V = V,,,, because the absence of the parameter m,/, 
substantially reduces the possibilities of the theory. 

With the Kahler function given by (3  ), the depth of the 
minimum of the potential V = V,,,,, (yb ) corresponding 
to the Higgs fields is shown by (2) to depend on the quantity 
m,/, = ( ~ ~ / 3 z , ) ~ ' ~ m , ,  i.e., on the vacuum expectation val- 
ue zo = (z(x)) of the hidden-sector field. This, in fact, de- 
fines zo ,  through the condition that 
Vmi, = V( y& ) = f (m3/*) should be a minimum as a func- 
tion of rn,/,, i.e., as a function ofz, (see Section 5 below and 
Fig. 1). 

(c) In the low-energy SU(3) XSU(2) x U ( 1 )  theory, 
which arises6 without the intermediate SU(5) during the 
compactification of the 10-dimensional SUGRA "matched" 

to the superstring theory,' there is, as noted by Witten,' a 
Kahler function similar to ( 3 ) and containing not only z(x)  
but also the further hidden-sector field s(x) :  

G=-3 In (z+z+) IMP+ yiyi+/Mp2-ln (s+s+) IMP . 

where h, = m,M; = const [as in (3 ) ]  and 
wO (s) = 1 + Po exp (ys/MP ) ; Po, y are numbers of the order 
of unity. In the usual form of the theory, the first two terms 
are replaced with - 3 In [ (z + z+ - )/3Mp )/Mp 1, 
but this SU (N, 1 ) symmetric variant in which V,,,,, -+V- 
,,,, will not be considered here. The essential point is that 
the superpotential W(yi ) was obtained for this case in Ref. 8 
in the form of a purely cubic function of physical fields yi : 
k( yi ) = Ai jkyiy'yk. If we substitute (4)  in ( 1 ), we obtain 
U(zi ) = V,(s) + V(yi ), where V(yi ) = V,,,,, which is 
the same potential as (2)  with A = 3, W =  (m,/,/ 
mo) k(y' ), and V, (s) = 1 2sdwo/ds - wo(s) 1 2 .  At the mini- 
mum, the potential V,(s) is equal to zero for 
s = so = (s(x) ), where 2s,(dwJds) = wo(so). Hence, 
here again, U(zi )= V(yi ) and everything subsequently re- 
duces to (3)  with the only difference that, now, 
m,/, = ( ~ , / 2 z , ) ~ / ~ m ; ,  and m;, = (~ , /2s )"~m, .  

We now proceed as follows. Assuming that the unifica- 
tion of all the interactions takes place in a unified SUGRA 
theory (GUT) on the scale Q 2  = M:,, (where 
a,  = a, = a, = a,, MGuT - 1OP3Mp ), we set the composi- 
tion of the SU( 3) X SU(2) XU( 1 ) and, having solved the 
renormalization-group equations, we obtain the masses of 
the Higgs scalars and the superpartners of ordinary particles 
(i.e., leptino-quarkino and Higgs-gaugino) as functions of 
the "input" parameters, i.e., m,/, and [in version (a )  of the 
theory] the constants A = fizo/Mp and B. The latter con- 
stant is a factor in the part of the potential (2) that is qua- 
dratic in the field, where B = 2 ifA = 3 and f$'(yi ) is almost 
quadratic [or B = 3 if W(yi ) is cubic]. Moreover, because 
of the term x(si  ) W, W, in the Lagrangian - 9, the theory 
has one further parameter, namely, Mil,  = -jm,/,, 7- 1, 
which determines the masses M,, M,, and M3 of the gau- 

FIG. 1. 
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ginos, i.e., spinor partners of gauge fields. When 
Q 2 4 4 & U T ,  all the Ma coincide and are equal to M,/,. We 
also recall that a SUSY theory must have at l e a ~ t ~ * ' ~  two 
doublets of Higgs scalars, y1 = HI and y2 = Hz, in order to 
break the SU(2) symmetry of electroweak theory. If the part 
of the superpotential that contains them is bilinear, 
W(yi )+ W2 = po(Hl,  H ', ), a further unknown parameter 
will appear, namely, po = m3/,, x -  1. If Win (3)  or (4)  is 
trilinear in the fields (evidently, this is required8 for match- 
ing to superstring theory), then 

W ( yi),+ W,=IN (x) (Hi (3 )  Hzc (x) ) , 
where N(x) is a new scalar field and, instead ofp,, we have 
p = ANo, where No = (N(x)  ) is determined by the vacuum 
expectation values of the Higgs fields HI and 
(H;  )' =&'iff{. 

In addition to the mass parameters m,,,, MI/,, and po 
(or p ) ,  one of which is determined by the mass of the Z 
boson, M, = 94 GeV, and the parameters A, B [which ap- 
pear in the early form of the theory (a)  1, the Yukawa cou- 
pling constant of the t-quark h, = h, ( M  &, ) plays an im- 
portant part here and determines the evolution of all the 
quantities with Q ', i.e., the square of the virtual momenta of 
the particles. We shall choose it so that the mass of the t- 
quark has the value obtained by the UA1 group at CERN: 
m, = (40 + 10) GeV. 

In models ( 3 ) and (4),  the scale m312 is generated dyna- 
mically by the minimal condition applied to Vmin = f (m3/2) 
in the form4s5 m3/, = M,,, exp( - l /h 20), and A = 3, 
B = A  - 1 (orB =A for W-+W,).Forgivenm, andM,,we 
can therefore determine all the parameters theoretically, ex- 
cept forp,. In the superstring form of SUGRA, this quantity 
is determined because, instead ofpo, we have the constant A 
(orp = il (N ) ), which is uniquely determined by the condi- 
tion that the cosmological constant is A = Vmi, (m,/,) = 0. 

2. SU(5) MODEL OF SUGRA GUT AND THE PARAMETER 8 

Let us now consider an example of the grand unification 
theory (GUT), which is "immersed" in supergravity (SU- 
GRA) with a hidden sector and leads (as a result of super- 
symmetry breaking by the super-Higgs effect) to the low- 
energy effective Lagrangian used below at energies less than 
the unification scale. Thus, first, we shall construct a simple 
realistic SUGRA GUT and, second, demonstrate the origin 
of the parameter B in the case of the "minimal" Kahler po- 
tential.'' 

We confine our attention to the sector of Higgs scalars 
because matter multiplets (quarkinos-quarks) and gauge 
fields are introduced in a standard manner. For tke simpkst 
SU(5) theory, this sector consists of the 24-plet @ = t, @, , 
the 5-plet H(x ) ,  and the anti-5-plet H ' (x)  (the lowest com- 
ponents of these 5-plets form the doublets H', and 
(EH:) = E,, H i ,  i, j = 1, 2). The superpotential made up 
of these fields has the following form in the most general case 
of renormalizable theory: 

where M and M ' are mass operators of the order of MGuT, 

and co and A are numerical coupling constants that are small 
in comparison with unity. 

The interaction between the scalar components yi of 
these fields (in the case of the minimal kinetic term in the 
Lagrangian) is determined in the standard form (2), where 
the parameterA = flzO/Mp is given by the vacuum expecta- 
tion value of the hidden-sector field z(x) .  Using (2) ,  we 
obtain 

V= T c0[ (G2) 0, - hBa tr QZ] + ( M f  ma/Z) 

+Ih(@H),+ mwH,'12+lh(H'@),+maH,"IZ 
f (A-3) mzjZ ( W+ W') + D-terms, (5) 

where the first line takes into a:count the fact that the deri- 
vative d W/dQaO, @, = @, ( f a  ) ,0 must have zero trace. 

If we consider the vacuum expectation values of fields 
of the form 

which correspond to the SU(S)+SU(3) x SU(2) x U ( l )  
breaking, and minimize the potential with respect to 
Vo = c; '(M + m312)~ ,  we obtain 

x= 1 (A-3)  ma/:/MV-O (m#3/M3). 
It is clear that the correction proportional to A - 3 is highly 
suppressed by the factor m:,, /M (it is absent altogether in 
unbroken SUSY, i.e., for m,/, = 0). Because of this, the 
high-energy scale MUM,", does not penetrate into the 
low-energy potential of the doublets H,, H,. 

If we choose M '  so thatp, = M ' - 3il Vo is of the order 
of M, (i.e., negligible in comparison with M '), we obtain 
from (5)  the following potential for the Higgs doublets: 

V ( H , ,  H z )  = (poZ+mK") ( I H i  l ' + I H z  1') 

0 1 
where E = I I, r a r e  the Pauli matrices, and 

- 1  0 

is the coefficient in front of the term representing the interac- 
tion of the doublets HI ,  Hz. As can be seen, when A # 3, the 
numerical value of B depends significantly on the param- 
eters A, co of the grand unification theory. The potential 
V(Hl, Hz) in the second line in (6) includes standard D 
terms. The right-hand side of (5)  also includes the quartic 
interactionil '(HI, Hz)' of the Higgs fields, but this is exact- 
ly canceled by the Born contribution of thz pole graph corre- 
sponding to the exchange of the 24-plet @. 

The result given by (7)  is related to the SU (5 )  model of 
grand unification, and a different model would give a differ- 
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ent value of B. For example, direct SUGRA generalization 
of the SU(3) XSU(2) x U ( 1 )  model without SU(5) unifi- 
cation would yield B = A  - 1 instead of (7).  

As can be seen, the entire effect of the grand unification 
scheme on the low-energy SU( 3) x SU(2) x U ( 1 ) Lagran- 
gian reduces to the addition of the parameters B andp, to the 
parameters m3/,, a,/, = $m3,,, and A, determined by the 
form of the theory on the scale M,. A general proof of this is 
given in Ref. 1 1. 

We conclude this section by determining the numerical 
values of MGuT and the gauge coupling constants 
ai = g f/k, where, in the usual notation, a, = g :/4n, 
a, = g '/4n-, and a, = (3/5 )gI2/47r [the last of these is valid 
for the SU(5) unification model]. According to the renor- 
malization-group equations, these constants depend on the 
virtuality of the momenta, P 2, as follows: 

where E, =a,/4n- and Mo is arbitrary. If we take 
Mo = M,,, , we obtaini?, (M; ) = ad4n-. For"the minimal 
choice of the SUSY multiplets (3  lepton-quark generations 
and 2 Higgs doublets), we have 6, = 11, 6, = 1, 6, = - 3. 
The grand unification condition 

yields 

Substituting a ( M  k )  = 1/128 and a 3 ( M  k ) ~ 1 / 1 0 ,  we 
obtain ln(M &;,, / M  2,) ~ 6 4 ,  MouT = 6X 1015 GeV, and 
a. = a,(M buT ) = 1/24. 

3. LOW-ENERGY LAGRANGIAN AND SU(2) SYMMETRY 
BREAKING. THE MASSES OF HlGGS BOSONS 

The Lagrangian of the low-energy theory contains both 
the field of chiral supermultiplets and the vector (gauge) 
supermultiplets. The chiral multiplets are the fields of 
quarks and quarkinos (scalar quarks) of all three genera- 
tions, and also the field of Higgs scalars and their spinor 
partners, the higgsinos. Vector multiplets include the 
SU (3)  X SU (2) XU( 1 ) gauge bosons and their partners of 
spin 1/2, the gauginos. 

Let us now introduce the superpotential of the low-en- 
ergy theory, confining our attention to the lepton-quark (su- 
per) family of the third generation, which has the highest 
masses. The contribution of particles in the first two genera- 
tions is unimportant for the ensuing analysis because the 
corresponding Yukawa coupling constants are small. By an- 
alogy with (5),  the superpotential in the old SUGRA 
form3-' contains the cubic ( W,) and quadratic ( W,) 
terms": 

W=Ws+Wz=ht (QLHz) TR++~,  (QLHI)B,+ 

where, in the modern "superstring" form (4) of the theory, 

W2+ W; = AN(x) (H, H ) and N is a new scalar field. The 
upper-case symbols In these expressions represent chiral su- 
perfields, for example, the superfield T,+ = (& , i ) in- 
cludes the field of the t-quark t, and the scalar field of the 
quarkino i R .  It is convenient to work with fields of a given, 
for example, left-hand, chirality. Instead of T R ,  we shall 
therefore use the left-hand field T ,$ = ( TR )+. The weak 
SU(2) doublet 

contains superfields in each component. For example, 
NL = ( v L ,  CL ), where CL is the scalar neutrino (neutra- 
lino) field. The Higgs-higgsino fields are doublets of this 
kind: 

Their scalar component will be indicated below by the same 
symbol as the entire superfield (and the spinor-doublet 
fields of the higgsino will be denoted by k,, k,). 

The interaction between the spinor components of 
chiral multiplets is the same as in global supersymmetry. It is 
specified, first, by the (super) gauge extension of the kinetic 
energies of chiral multiplets and, second, by the superpoten- 
tial ( 10). 

For the scalar components of chiral multiplets, the in- 
teraction consists of terms corresponding to the extension of 
the kinetic energies and including the gauge fields, and terms 
that follow from the superpotential ( 10) when it is substitut- 
ed in (2). The part of the latter terms that is proportional to 
m3/2  and m:/2 

I 

explicitly breaks global SUSY, where yi represents [as in 
(2)  1 the scalar components of the fields. 

The potential energy of the Higgs scalars that corre- 
sponds to the superpotential W2 = p,(H,&H,) has the form 
given by (6). The vacuum expectation values of the doublets 
Hl, H2 

must correspond to the minimum of this potential V( (HI),, 
(H,),) = V(vl, v,). The second term in (6) must then be 
negative, i.e., for u, > 0 we must have v, > 0 if the constant B 
is positive. Substituting (12) in ( 6 ) ,  we obtain 

V(vt, US) = ~ i 2 ~ t 2 + ~ ~ ~ z " - 2 ~ s z ~ t ~ 2 +  ($18) ( v ~ ~ - v ~ ~ )  ', ( 13) 

where Z 2 = g 2 + g t 2 ,  p~=pF1:=p~+rn: , , ,  and 
p: = Bm3/, p,. The values v, and v2 must be found from the 
condition for the minimum of the potential: aV/dv, = 0, 
dV/dv, = 0. We note that, if 

ti,lla2v/a~,a~,ll=p:p~-ps4>~, 

the minimum of V(v,, v,) occurs at v ,  = v, = 0 and corre- 
sponds to the state with unbroken SU(2)-symmetry. If, on 
the other hand, p: + p: < &:, this minimum is reached for 
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v1 = - v,-+ co , in which case V-t - a,. The minimum of 
V(v,, u,) is thus seen to be reached for finite nonzero v,, v, if 

p1"pI2<pJ', but pJ'<I ( ~ t ~ + ~ 2 1 ) 1 2 1 ~ .  (14) 

Whenp, #p,, these conditions are readily satisfied because 
(p: + p: )/2 > p I  p, but, forp: = p: [which occurs in ( 13) 
when all the coefficients are determined on the scale 
Q = M LuT I, these conditions are contradictory. 

An elegant way of resolving this dilemma in the case of 
broken SUSY (which, in fact, occurs for m3,,# 0)  was 
found in Refs. 12 and 13 a few years ago. The point is that the 
parameterspf and pi are equal for Q = M LuT but, in the 
broken-supersymmetry theory, they are renormalized by ra- 
diative corrections (even in the single-loop approximation) 

,and begin to depend (as dog  and pi ) on the quantity Q ,, 
i.e., on 

l = l n [ ~ & T ! ( ~ ~ + m ; )  1, 
where the second term in the denominator is important only 
for mi,, )MZ. Since the t-quark is the heaviest (i.e., 
h,)h,>h,) and, with the superpotential ( lo ) ,  its mass 
arises from the doublet Hz, the quantity pi is renormalized 
more strongly than p: (and becomes relatively smaller) 
during the transition to Q 'zM &. It is then precisely in the 
required region Q 'EM & that we have the possibility of sa- 
tisfying (14) in a range of values of the parameters m,,,, 
k,,,, A, B. The renormalization-group equations for the pa- 
rameters of the low-energy Lagrangian were first obtained 
by the Japanese group in Ref. 12 and are given and solved in 
the Appendix (see also Ref. 14). 

Ifwe now assume that these equations have been solved, 
and the inequalities ( 14) are satisfied, we can find v,  and v, 
from the conditions for minimum V(u,, v,). Differentiating 
the potential ( 13), we obtain 

g?U? p12-I*2' 

-=-- 
cos 20 

(pt"p2"), 
2 

where v2 = U: + and we have introduced the convenient 
variables 19 through the substitutions 

v1/v=sin 0, V ~ / U = C O S  0 ,  v=  ( v 1 2 + v ~ ) ' " ,  
where 

cos 20=R/(p i2+pz2) ,  R=[  (p1'-p?)'-4(ps(-p1~~~)]'. 

(15) 
Equation ( 15) determines the vacuum expectation values of 
v, and v, in terms of the parameterspl,p2,p3 of the potential 
whose minimum value is 

where 
gZv2 ktZ-p2"-R pi2-p? MZ2 = - = = -- - 

2 cos 20 cos 20 ( P ~ ~ + F ~ ~ )  ( 17) 

is the mass of the Z boson. As can be seen, at the minimum, 
the potential V(v,, v2) is negative and of the order of M:. 

In the above minimal SUSY variant of the theory, we 

have one charged and three neutral Higgs bosons. Their 
masses are determined1' by the potential ( 6 ) ,  in which 
pi + mi,, is replaced with pf (for IH,12) or with v: (for 
IH,IZ), and we have introduced the deviations 
H ; = HI - (H,),, Hi  = H, - (H,), of the fields from 
their vacuum expectation values (12). This yields the 
charged-boson mass 

& f ~ * 2 = ~ i 2 + ~ z Z + M w 2 ,  (18) 

which is greater than M 2, = g ,v2/2 = (g ,v2/2) C O S ~ I ~ ~ ,  
sincep: +pi > 0. The neutral-particle masses are then giv- 
en by 

As can be seen, when cos 2841, which is readily satisfied (by 
having Iv,/v,l - 11, the theory predicts the existence of a 
light neutral Higgs boson. 

4. MASSES OF SUPERSYMMETRIC PARTNERS 

We shall now write down the scalar-particle potential 
that follows3'from (2)  and ( 101, confining our attention, for 
simplicity, to the scalar partners of quarks and leptons (Q, , 
U, , DR , L, , ER ) of a particular generation: 

v= V'+ v,+ v,, 
where the quartic V,, cubic V3, and quadratic V, terms are 
respectively given by 

Vk=hu2 I Hz?, I '+hd I HtQL I '+he2 I HtEL 1 
+ 1 h,HzoR'+hdHtD~' 1' 

+h.2 / IiiER. I '+hUZ ( QLBIR. I '+ I hd?LDRm+heELER* I 

and the single-loop corrections ensure that all the quartic 
and Yukawa interaction constants h 2, haAa, a = u, d, e are 
the "running" constants like the masses p ,  p , ,  p,, p,, i.e., 
they depend on I = In [ M  &,,/(Q + m:,, ) 1. As Q is re- 
duced from M :,, to M 2, (by 28 orders of magnitude!), the 
quantity 1 changes from 0 to 1 , ~ 6 4 .  All the quarkino and 
leptino masses in the potential V, also become I-dependent 
(m;, 4 ,  m i ,  m i ,  m i ) .  

When Q = M L,, , i.e., when I = 0, we have 
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Since the Yukawa constants are proportional to the masses 
of the quarks (and leptons), m, > mb > m,, and so on, we 
can confine our attention to the contribution (to V4 and V,) 
of third-generation terms that are proportional to h,. Be- 
cause of the difference between the Yukawa constants, the 
quantities A. +A,,  A, +A,, A.+A. are found to vary with 
increasing I in different ways, and are not equal for 
Q 2  M L .  

As Q varies, the mass parameters ofthe spinor-gaugino 
superpartners of gauge fields are also found to be the "run- 
ning" parameters: the mass M3 = M3(1) of the gluino g and 
the parameters M2, MI  defining the masses of the W* and Z 
bosons and the photino. When I = 0, i.e., Q * = Mi,, , they 
are all equal: M3(0) = M2(0) = MI (0) = k l 1 2 ,  where the 
parameter MI/,  is determined by the hidden sector of the 
theory. The renormalization-group equations obtained by 
the Japanese12 and Madrid1' groups are written down and 
solved for h :, h : (h : in the Appendix. The solution corre- 
sponds to the boundary conditions (23). 

A. Quarkino and leptino. If we substitute 
H, = (H,), + H i ,  Hz = (Hz), + H ;  in (20)-(22), we 
find that the quarkino and leptino masses consist of the fol- 
lowing parts: ( 1 ) mass terms determined by the potential V2 
and (2) terms proportional to g and g',' representing the 
gauge interaction in the potential V4. Moreover, for the part- 
ners of heavy quarks (t-quarks), there are contributions due 
to: (3)  off-diagonal mass terms in the potential V,, which 
mix the fields due to the superpartners of right-hand quarks 
(right-hand quarkinos) with left-hand quarks, and are pro- 
portional to the quark masses, and (4) terms in V, that are 
proportional to the squares of the quark masses. 

If we take into account the first two types of term, we 
obtain1' the following values for the masses of the quarkinos 
and leptinos, i.e., the superpartners of light quarks (iiL,R, 
CL,R or , i,, and leptons ( ZL,, , i L , R  or Ge, GF, G, : 

m?- "L = mQ2 + Mz2 (-'I2 + 2/s sin2 Ow) cos 20, 

--'IS sin2 Ow) cos 20, 

m? = mL2 - Mz2 - sin2 Ow) cos 20, 
eL 

where m;, mk, m:, m i ,  m i  are the coefficients in (23), 
given by Eqs. (A22) and (A23) in the Appendix. 

If we take into account the mixing of the left-hand and 
right-hand t-quarkinos [due to the off-diagonal term 
(A, m312 + vl/v2)m, in V,], we obtain the following matrix 
for their masses 

whose diagonalization determines the masses m,h and m,, of 
the heavy and light t-quarkinos: 

where miL, miR are defined in (24) and m, e 4 0  GeV is the 
mass of the t-quark. 

We note that the minimum (H,),, (Hz) ,#  0, 
(& ), = (LL )' = ... = 0 of the total scalar-field potential 
V, found in Section 3, is stable under small field perturba- 
tions. However, the presence of the cubic terms in the poten- 
tial V may give rise to additional (and deeper) minima at 
nonzero quarkino and (or) leptino fields. The condition for 
the absence of these minima leads to the upper bound for the 
parameters A,. 

Let us now consider the behavior of the potential V in 
the region (HI),  = (5, ), = (5, ), = v when all the other 
fields are zero: 

V=3hd2v'-21AdI m512hdv3+ (ptz+mQ2+mD" v2. 

When the inequality 

IAa1< [ 3  (p12+m~2+mD2) ]"/ma 

is satisfied at the minimum v ~ m , ~ , / h , ,  the potential be- 
comes VZ - m:,, h :, which is much deeper than the above 
minimum ( 17) corresponding to V- m'&, /g (Ref. 9).  A 
similar examination of the region (H,), = (2, ), = (2, ), 
and (Hz), = (UR ), = ( UL ), leads to the inequalities 

The initial value A, ( 0 ) d  must be chosen so that all these 
inequalities are satisfied. When po(m312, they lead to the 
condition IA 1<3 at the point Q = M iUT. 

B. Gluino and higgsino-wino. When 1, = 64, we have 
A3(10) = 0.33. Hence, the mass of the gluino is given by 

It is determined by the choice of the parameter kIl2. In 
principle, this parameter can be taken to be very small 
(kl12(m312), - - but the most natural choice corresponds to 
y e l ,  i.e, Ml12~m312-Mz.  

The spinor partners of the Higgs-higgsino scalars have 
the same quantum numbers as the spinor partners of the 
vector fields (wino for W* ). The SUGRA Lagrangian con- 
tains four left-hand Weyl spinors k &, k ,+, , e ~ ,  @'>. Its 
terms that are quadratic in these fields have the form 

A9*=MZW-W+-pHiL-R2L++g (v~W-R~L++U~R~L-WL+). 

The mixing of these fields produces two Dirac particle 
fields. The mass matrix 

corresponding to A 2  * is non-Hermitian (it is the product 
of a unitary matrix and a Hermitian matrix). Instead of this 
matrix, it is convenient to diagonalize the Hermitian matrix 
kk +, where 
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5. CHOICE OF PARAMETERS, NO-SCALE SOLUTION 
CORRESPONDING TO A = Urn,, = 0 

which gives 
1 

M2 (a$) = - {gZv2+MZ2+p2f [ (g2v2+ M22+~Z) 
2 

-4(gzvlvz-pM2)2]";}, (27) 

where v2 = v: + U: . The first term on the right is the mass of 
the W boson M $  = g 'v2/2, g 2 ~ 1 , ~ 2  = M &  sin 28, and 
M2 =Mt12/A2(10). 

For small p < Mz and small sin 28, one of the two 
charged particles is light, M &b 4 M  gb - M $. The fact that 
this particle has not been seen means that the parameter p, 
cannot be very small. 

In the neutral-particle sector, the Lagrangian again 
contains four left-hand Weyl fields, R3, %,8 7 ,  B: : 

The matrix describing their mixing is 

and determines the four Majorana masses of the neutral fer- 
mions. In this matrix, M, = &l12/A, (I,) and M2 =fill,/ 
A2(10). Its eigenvalues a, are the solutions of the equation 

a = Mz2 (9%H - p sin 20) (t%H - My) 
- 

- (aH - M ~ )  (aH - M%)('%H~-- p2)= 0, 

where e2(1) is the square of the electric charge: 
(e2) - ' = ( g ') -' + ( gr2)  - l .  One of these four particles 
has the smallest mass. When p,, a,/, < Mz , this particle is 
the photino and its mass is given by the first term in (28) in 
the form 

- 
mH10 = M y  = [e2  (lo)/e2 (0)] Ma,, NY 0.5M~/.. 

If, on the other hand, p,, Ml12 > Mz, none of the roots in 
(28) is close to M;. 

As they decay, all the superpartners form a lighter par- 
ticle, namely, f o r  H '. This particle is stable and its existence 
may have important cosmological consequences. 

1. For given m312, p, = xm312, A, B, and given masses 
m, and Mz (defining, respectively, h and MI/,  = rn,/,), 
the formulas given by (18)-(19) and (24)-(28), together 
with the solutions of the renormalization-group equations 
[see Ref. 14 and Eqs. (A12)-(A16) in the Appendix], en- 
able us to calculate the masses of the Higgs bosons and all the 
superpartners. The question is: What governs the choice of 
the four basic parameters of the theory? We recall that, if 
m3i2 is given together with one of the quantitiesx = po/m312 
or y = &l12/m312, the other is determined by the condition 
Mz = 94 GeV in ( 17), i.e., by the equation mi, y$ = M i ,  
where [see (A19)-(A21)l 

yz2= ( y12 -yz2 ) /~~~  20- (ylz+yZ"), 

yiZ=piZlm~,2Z=~2q2 (I) +ai (1) +p2bi (1) +$ii (1), i= l ,  2. (29) 

As m3/, and &,/, (or m3/, andp,) increase, the masses 
of all the superpartners are also found to increase. This is 
illustrated in Table I in which the columns correspond to 
m, = h, ( M i  ) v  cos 8 ~ 4 0  GeV (h :~0 .085)  and small4' 
cos 284 1 (i.e., sin 8 e c o s  8 ) .  Only the photino and neutral 
Higgs masses remain small, i.e., of the order of some tens of 
GeV. 

2. We shall now consider no-scale SUGRA with the 
planar Kahler potential (3) (for which A = 3, B = 2) and 
the superpotential ( l o ) ,  so that, - for - given m, and H z ,  the 
only unknowns are m312 and y = M, 12/m312 (or in3/, and 
x =p0/m3/,). We now fix f and, for each m3/,, take 
p, = xm3/,, so that Mz = yZm3/, = 94 GeV [with yz tak- 
en from (29) 1, and for the resultingp, we use ( 10) and ( 15) 
to construct the quantity 

as a function of m3/, = mo(Mp/2zo)3/2. 
The result is shown in the form of the three curves in the 

lower part of the figure for the three values y = 1, 0.5, and 
0.1 (of the two solutions of & = M$/m:,, forp, and each 
m3/,, we choose one, namely, that corresponding to small 
po = xm,/,, i.e., xe0.2-0.3). The curves in the figure have 
minima at m3/, = m:,, in the region m:,, e 2 W 2 6 0  GeV. 
The masses of all the new particles of these three minima are 
listed in the three columns of Table 11, in accordance with 
(18)-(19) and (24)-(28). They are all ofthe order ofa few 
hundred GeV, except for the lighter photinos and the Higgs 
boson H t ,  and are not too sensitive to the choice of the pa- - - 
rameter y = M312/m312. 

This early form of the theory suffers from one major 
defect: according to the figure, it leads to a negative cosmolo- 
gical constant A = V,,, of the order of M $, which exceeds 
the admissible astrophysical value A 5 (0.01 eV14 by 50 or- 
ders of magnitude(!). We also note that it is sufficient for the 
condition MZ = yZ m,/, = 94 GeV to be satisfied only at the 
minima of the curves in the figure, i.e., for m3/, = m&, (and 
not along the entire curves, as demanded above). 

3. A totally different situation arises in the modern "su- 
perstring" variant of SUGRA with the Kahler potential giv- 
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TABLE I. Increase in t_he mass of superpartners 
with increasing rn,~,, M,!,, andp,. 

63.5 146,4 173.6 
parameters Of ii 157.2 1 135.2 1 156,i 
u(H, ,  Hz)  60.4 140.8 164.7 

cos 2 8 0.047 0.065 0,091 

Input 
parameters 1 

PO 
I 

Scalars 

Note. All the masses in Tables I and 11 are in 

39 

en by (4) (for which A = 3) and cubic superpotential ( lo), 
in which 

Wz+ W,l=hN (x) (HI (x) Hzc (2) ), HzC=&Hz (z). (30) 

80 
20 
88 

In the potential V(H,, H2) [see ( 6 )  I, the quantityp, is then 
replaced with AN(x), B is replaced with 3, and (this is very 
important) V(Hl, H2) acquires the additional positive 
terms 

A V N = ~ N ~ N ~  (X) +Az I (HtHzC) 1') (31) 
where mNSm312 is a mass close to m312 (as 
Q 2jM&UT, mN-fm3/2). 

When v,, v,#O, the field N(x) acquires a vacuum ex- 
pectation value that can be found by minimizing the sum 
U = V + AVN with respect to No, where AV, 

SO 
60 
107 

= m$Ni + A  2v:v$ and V= V(u,, v,) is the potential (13) 
withp: = 3m, p =ANo. This gives 

No=3mch~I~zl  (mN2+hZvZ), (32) 

I 

where the minimization of U = V + A VN with respect to v,, 
v2 leaves (17) still valid except that, now, 

sin 20=6mPl,p/(p+Z+hZ~2), p+Z=plz+ p Z Z = 2 ~ z + ~ p + z  

[Ap: =p: - 2p2 is given by Eqs. (A19) and (A20) in 
the Appendix]. Bearing this in mind, and adding ANN to the 
potential ( 13), we find that 

where x i  = (U /g 2, (9a2 - 1) and a = m:,,/ 
X (m:,, + A  2v2). The constant A can be chosen so as to 
ensure that (33) is zero at the minima of the curves in the 
figure: A = Urnin (m3/,) = 0. This requires that 
x i  = cot228. For example, when y = 0.5, so that (see Table 
11) (COS 28) i,, = 0.08, a e l ,  we must have x i  
~ 1 6 A  '/g 2 ~ 0 . 0 8 ,  i.e., A ' e g  2/200 must be very small 
(g 2 ~ 0 . 6 5 ) .  The shape of the function (33), Urnin 
= Urnin (m3/,), is then as shown by the solid curve in the 

upper part of the figure (for y = 0.5), which differs from the 
lower curve only through the shift by the constant amount 
--xi. If the parameter po is fixed by the condition 
m,/,yZ = M, = 94 GeV only at the point 
m3/, = m:,, = 230 GeV at the minimum of the curve, with- 
out demanding that it be satisfied for all the m312, the shape 
of the curve becomes different and can be approximately 
represented by the dotted curve in the figure, which leads to 
Urnin (0)  = 0 and a rapid rise in Urnin (m312) as m 3 / , - - + ~ .  

6. CONCLUSION 

The above approach is interesting because it leads to a 
theory with zero cosmological constant 
A = Urnin (m:,, ) = 0. It would be correct (i.e., self-consis- 
tent) if the quantity p = po q(I) were to be close t o p  = AN,, 
where q(1) is the renormalization factor (A14), determined 
as in the early theory by the condition rn,/,y, = Mz = 94 
GeV. 

However, for y = 0.5, Table I1 shows thatp = 77 GeV, 
whereas (32) predicts a value lower by a factor of more than 
one hundred because 11 is small: 

ANo= (3hzvZ/2m.,,)a sin 20=0,6 GeV 

(a-l,A2v2 = W 2/g2M$-10-2M:). Thequantity m R  
decreases with increasing y = M,12/m312 (see the figure), 
whereas 11 increases, and the discrepancy is rapidly re- 
duced. If the theory can be made self-consistent by increas- 
ing the parameter y = ~ , ~ , / m ~ ~ , ,  this will determine it un- 
ambiguously and the shape of the potential 
Urnin = Urnin (m3,,) will be similar to that shown by the 
broken curve in the figure (with m:,, smaller than indicated 
in the figure). As a result, the parameters m3/, = m:,, , M,/, 
will be determined dynamically by the theory, but the cos- 
mological constant A will not vanish au t~mat ica l l~ '~ :  this 
will require a choice of the constant 11 in (30). This variant of 
the theory will be examined later. 
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Ti- rn,"; = m y  

TABLE 11. Masses of superpartners at the 
minima for m,,, = m!,, (see figure). 

We note that, when the above SU(3) XSU(2) XU(  1 ) 
model is generalized to a unified theory, we encounter a diffi- 
culty due to the fact that the proton decays too rapidly, 
which can be traced to the operators of dimensionality 5. 
However, in the superstring variant (4) of the theory, which 
arises during the compactification of the 10-dimensional 
SUGRA, this difficulty can evidently be a ~ o i d e d . ~  

The authors are indebted to I. A. Klumov for numerical 
calculations and to M. V. Burova and A. S. Losev for useful 
discussions in the course of the solution of the renormaliza- 
tion-group equations. 

- 
m:/l 

&%,,/rnt,, 

po =z m!,s 

APPENDIX 

(a)  Renormalization-group  equation^.'^^'^ The cou- 
pling constants and masses of scalars and fermions vary with 
Q because of (a)  interactions due to the exchange of gauge 
fields and (b) the Yukawa interactions. The Yukawa cou- 

I 

-. 

260 

0.1 
110.2 

pling constants do not contribute to the derivatives of the 
gauge constants (8)  

Hence, the gaugino masses 

-.-. 

230 

0.5 
77.2 

vary in proportion to a, (I) = n;. (0)/Aj (I) and are equal to 
MI,, for I=O, i.e., Q2=M&,,. We recall that 
I =  ln[M&,,/(Q2 Wealsorecall that 

190 

1.0 
61,l 

The remaining quantities, i.e., the Yukawa constants 
Y, (I) = (ha ( Q 2 ) / 4 ~ ) 2 ,  theconstantstl, ( / ) , a  = t ,  b,r ,  the 
parameters p ( ~ ,  p: (11, p: (11, pi (1) = Z( l> ,~ ( l )m , ,~  of 
the Higgs potential, and the masses m: of the scalar particles, 
are found to vary, because of both factors, in accordance 
with the following renormalization-group  equation^'^.'^ 

where, ifp: = m ,,y (l)B(I), the 

dB(L)/dl=- (3~,M2+aiM1)/m,+ (3YfAt+3YbAh+Y,A,). 
(A51 

Moreover, 

d(pi2-p2)  / d l = 3 ~ z M 2 ~ + ~ i M i ~  ( 1 )  -3 (Dh2+Ab2my:) Y b  
+ (R,1+A,Zmd) Yrr 

d(pz2-p2)  l d l = 3 ~ ~ M ~ ~ + d , M ~ ~ - 3  (imtZ+At2my,Z) Y t  ( l ) ,  (A6) 

where 

IDlrz=mQ2+mv2+ (paZ-pa) ,  !14~=mQz+mD2+ (p:-pz),  
D,2=mL2+ mE2+ (pi2-pz)  (A71 

and the masses mi on the right-hand sides of the last two 
equations satisfy the equations 

The coupled equations (A2)-(A9) must be solved subject 
to the boundary conditions (23) for I = 0: 
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The Yukawa constants are determined for small Q = M b ,  
i.e., near the mass surface of the corresponding quarks. For 
e~arnple,~'  m, r ~ h ,  (M & )U sin 8, since M, = g(M ~)v /v ' 2 ,  
so that 

ht (Mw2) = ( ~ J M ~ )  g (Mw2) /Y2 sin 0, 

for m , ~ 4 0  GeV and ZE2(10) =g2(Mk)/(4~r)2,(19.2)-2 
for 2 sin2 8 = 1 - cos 2 8 ~ 1 ,  i.e., for cos 2841, where 
sin 8 5 ~ 0 s  8. Similarly, Yb (I,) and Y, (I,) are proportional 
to m: and m:, respectively, i.e., they are much less than 
Y, (I,). Here and below, I, = ln(ML,,/M 2,) ~ 6 4 .  

(b) Solution of the renormalization-group equations 
for Y,, Yb(Y,. Equations (A2)-(A10) can readily be 
solved analytically in the realistic case6' Y, , Yb ( Y, , neglect- 
ing Y, and Y, on the right-hand sides as compared with Y, 
(in principle, they can readily be taken into account to first 
order in the small quantities). 

Thus, substituting p, (I) = ( 16/3 )Z, (I) + 3E2 + ( 13/ 
9)Z1, we obtain from the first equation in (A2) the equation 
dY,/dl = p, (I) - 6Y :(I), whose solution 

where 
I 

~ ( z ) = J ~ , ( z ~ a z ,  F ( z ) =  J E ( L , ) ~ Z ~  
0 0 

enables us to express the "bare" value Y: = Y, (0) in terms 
of the "physical" constant (A 1 1 ) : 

since E(1,) ~ 1 3 ,  F(1,) = 290, and 6Y ?F(I,) -1.18, accord- 
ingto ( A l l ) .  

In the same approximation, Eq. (A4) (without the last 
two terms on the right) and Eq. (A3) (without the last term 
on the right) have a trivial solution and yield 

where P(O) =Po, A, (0) =A, 7 = M112/m312, and 4 (I) 
and D(1) are introducedI0 in (A1 ) and (A12), where 

Moreover, 

H, ( I )  = j H ,  (1,) dl,=&[la/ahs (0+3h2 ( 1 )  +"/i6h1 ( 1 )  I. 

Here and below, we use the notation introduced by Ibaiiez 
and Lopez1': 

where j = 1, 2, 3 and the quantities (I) will be required 
below. Thus,14 

Equations (A6) and (A5) can be solved (for Y,, Yb (Y, ) 
by evaluating the single integrals and, subject to condition 
(AlO), they yield 

p12=~02q2(I) + ~ Y , ~ + M ~ I ~ Z ( ~ / ~ ~ ~ ( Z )  +'15fl ( 1 )  1, 

where14 H,(I) =Eo[3h2(l) + (3/5)h,(l)]. 
The other renormalization-group equations can be 

solved using the above values of Y, (I) and A, (1). To calcu- 
l a t e ~ :  - p2, m i ,  m:, we combine the corresponding equa- 
tions [the second in (A6) and (A8) l .  This gives 

&Vteldl= [28 i  ( 1 )  ii?!/;-6Yt ( 1 )  A t Z ( l )  md] -6Yt (l)Br2, 

where 

is a function analogous to H, (I) in (A14) and Dl: is given by 
(A7), where Dl:(O) = 3m:,, . The solution of this equation 
has the same form as the equation for A, (I) in (A14): 

%,2 ( I )  =3m2/D ( I )  +2D-l ( 1 )  
I 

[~,(z.)ii?~~-3~~(l,)~~(l,)m~l~(~~)~~l. (-417) 
0 

From (A8) and the equation for ,u; - P ~ ,  given by 
(A6), it also follows that 

dD-21dl=8[41~2~ (1)M: ( 1 )  +'/,EI ( I )  Mi2(1) 1, 
fm-2=m,2+mvZ- (p,2-p2) , 2JL2(0) =my:, 

Evaluating the integrals on the right in (A17), and taking 
p: - p2 = (Dl: - Dl? )/2, we obtain 

where 
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in which the last integral in b,(l) can be transformed by 
integrating by parts,I4 or can be determined numerically. 
Obviously, the value of p: (I)  given by (A16) can also be 
written in the same form as (A1 9) : 
p12(1) =pO2qZ ( 1 )  f meal ( 1 )  +Wl/:bs ( I )  + ma1J?~,6, ( l ) ,  (A21 

with a , r l ,  S,=O, b,(l) = Eo(+ f,(l) + 4 f , ( l ) ) .  
Subtracting (A6) from (A9), and multiplying by 1/3 

or 2/3, we readily see that the quantities 

for Y,,  Y, ( Y, are given by an expression similar to the 
right-hand sides of (A9), which does not contain B f ( I ) .  
Consequently, they can all be integrated directly and give 

mp"2/3mn'+i/3 (p zZ-p2 )  + ( 8 / 3 f 3 + f ~ - 1 / i 5 f l  ( 1 )  ) r Z O ~ v ? ,  

rn , '= i /3m~+2/3  (pZ2-pZ)  + ( 8 / 3 f 3 - f 2 + 1 / 3 f l )  fi0l(;lgZ; 
( A22 

The quantities m i ,  m:, m i ,  and so on determine the masses 
of the scalar superpartners of quarks and leptons (the quar- 
kinos and leptinos), as indicated in the text. 

''As noted by J. Polonyi (Budapest, 1977), even in the simplest, i.e., lin- 
ear, superpotential h(z) = ( P + <)m,Mi, (= z/Mp, a potential 
V,(z) of the above form has a sharp minimum equal to zero: A = V,(z,) 
=Ofor/3=\PZ(2-\/5) at the point < = ~ , = z , / M P = ~ ( f l - l ) .  

Hence, the scalar z = z(x) is sometimes referred to as the Polonyi field. 

 or the "planar" potential, A = 3, B = 2. 
"we have in mind here a superpotential of the form ( lo), written as a sum 
over the generations. Similarly, V4, V3, and V, include, whenever neces- 
sary, the sum over the contributions of all three generations, or the con- 
tribution of one of them. As in ( lo ) ,  we must substitute 
h,-+h,, h,-+ h,, h,-th, in V,, V,, and V, for the third generation. 

4'cos 29e1,  i.e., sin 2941, is obtained merely by introducing smallp,- 1 
GeV for IB I - 1, or by taking IB 141. According to (29), we then have 
M ;-- - 2p:, i.e., physically reasonable solutions correspond to nega- 
tive p i ,  which arise for h k 1, i.e., for heavy t-quarks (m, k 100 GeV). 

5'Similarly, m,?h, (M:,)VCOS 8, m,eh.  (M&)vcos 8. 
6 ' ~ h e  authors are indebted to M. V. Burova and A. V. Losev for assistance 
in construcitng the solution in this approximation. The idea of using this 
approximation was also introduced in the CERN preprint14 by Ibaiiez, 
Lopez, and Muiioz. This preprint was received as this paper was being 
completed, and the two communications partially overlap. To facilitate 
comparison between them, we used the notation of Ref. 14 whenever pos- 
sible (see also Ref. 10). 
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