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A surface-wave echo of a hydrodynamic nature can arise in a semi-infinite cold plasma with an 
inhomogeneous transition layer. Information on external perturbations applied to the plasma 
at the times t = 0 and t = .r is retained by undamped plasma waves excited in the transition 
layer. The echo response to the external perturbations arises at the time t = 27. Expressions are 
derived for the shape of the echo signal in the limiting cases of short and long waves. 

INTRODUCTION shape of the echo signal is found in the limiting cases of 

A surface wave in a plasma with a diffuse boundary and weak the waves. 

(with an inhomogeneous transition layer) undergoes colli- 
sionless damping as a result of transferring its energy to lon- 
gitudinal plasma waves.'.' These waves are excited near the 
plasma resonance point, where the frequency of a surface 
wave is equal to the local plasma frequency. The initial-value 
problem of natural waves in a bounded plasma with an inho- 
mogeneous transition layer was analyzed in Ref. 3 for the 
case in which the width of this layer is small in comparison 
with the wavelength. It was found that the energy of a sur- 
face wave, which is initially distributed over a broad region 
of k-space with a width onthe order of the reciprocal of the 
wavelength, is eventually pumped entirely into plasma oscil- 
lations of the electric field component parallel to the density 
gradient. In a cold, collisionless plasma, these oscillations 
are undamped and are localized in the vicinity of the plasma- 
resonance point. The width of the localization region is 
much smaller than the width of the transition layer. In a 
plasma with a diffuse boundary, the resonant damping of a 
surface wave is thus not a consequence of an irreversible 
dissipation of the wave energy. Undamped oscillations of the 
electric field in the plasma-resonance region may be thought 
of as a hydrodynamic analog of Van Kampen waves4 in such 
a system. 

Undamped oscillations of the field in the plasma-reso- 
nance region give rise to plasma-echo effeck5 A short pulse 
of an external perturbation, applied to the plasma at the time 
t = 0 in the form of a surface wave with a wavenumber k,, in 
the direction in which the plasma is homogeneous, decays 
exponentially over time, leaving undamped oscillations in 
the electric field component parallel to the density gradient 
in the plasma-resonance region. These oscillations are mod- 
ulated by a second external perturbation which is applied to 
the plasma at t = 7 and which has a wavenumber k,. The 
phase evolution of a nonlinear microscopic perturbation 
gives rise to the excitation, at the time t = 27, of a macro- 
scopic surface charge with sum and difference wavenum- 
bers, k,  + k,. 

In the present paper we offer a theory for echoes in a 
plasma with a diffuse boundary. This theory incorporates 
retardation of the surface waves, in contrast with Ref. 5. The 

LINEAR DISPERSION OF A HIGHLY NONUNIFORM PLASMA 

Let us assume that the plasma occupies the region x > 0 
and is homogeneous along y and z. We assume that the equi- 
librium plasma density, n,(x), increases monotonically in 
the transition region 0 < x  < a  from zero to a constant value 
no(#) and that it remains at the value n,(a) at x > a .  Re- 
stricting the discussion to a cold plasma with immobile ions, 
we begin with the hydrodynamic equations for electrons and 
Maxwell's equations for the electromagnetic field: 

1 a E  4ne 
rot B = -- - - nv, div B=O, 

c d t  c 

1 dB 
rot E = - --, div E=-4ne[n-no ( x )  1. 

c at  

Here e and m are the charge and mass of the electron, n is the 
density, v is the hydrodynamic velocity of the electron fluid, 
and c is the velocity of light. 

We solve system ( 1 ) by a method of successive approxi- 
mations, writing the variables in the form 

where A, is the equilibrium value, and A "' and A are 
linear and quadratic perturbations, respectively. If the elec- 
tromagnetic field does not depend on the spatial coordinate 
z,  the system ( 1 ) can be broken up into two independent 
systems for the field components (E, ,  Bx , B, ) and ( E x ,  E,, 
B, ). Here we will analyze only the system of equations for 
( E x ,  E, , B, ) , which describes a TM wave, for which there 
may be solutions in the form of surface oscillations. In dis- 
cussing the results of the linear theory of the dispersion prop- 
erties of surface waves in a plasma with a diffuse boundary, 
we follow Ref. 3. Using Laplace time transforms and Fourier 
transforms in the coordinate y, we find the following equa- 
tions for the components of the electromagnetic field from 
system ( 1 ) in first-order perturbation theory: 
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c e d  
~ ( l ) =  Z R P  

p N+e d x  E;:', +Gs, 

where 

N= (kclp)  ', E ( x ,  p) =1+aL.2(x) lpZ, 

aL.2 ( x )  =4ne2n0 ( x )  Im, 

( 1 )  1  8  C, ( x )  = - i k [ d i ( E . .  + -- E:) ) 
p dx  N - t e  P d t  
k 1  a 

+ ~ - ( E ~ ~ ) + - - - E ~ ~ ) ) ]  N  , 
P at  1-0 

Expressions (5) describe initial perturbations of the electro- 
magnetic fields, which we will treat below as external pertur- 
bations. The linear perturbations of the directed velocity and 
density of the electrons are expressed in terms of the electro- 
magnetic field in the following way: 

A solution of Eq. (2)  in the region 0 < x  < a  is 

1  d +-- ( I  1 J &rl N+e (2 ' )  

I+N ar E"p I-0 o E ( X O  

In the region x < 0, where n,(x) = 0, we have E(X, p )  = 1. 
Assuming that there are no initial perturbations of the elec- 
tromagnetic fields in this region, and imposing the require- 
ment that the field component Ey vanish in the limit 
x+ - W ,  we find from (2)  

E:;: ( ~ ( 0 )  =E$; (0) exp ( x o x ) .  

where 

At x > a, the dielectric constant of the plasma does not 
depend on x, since here we have n,(x) = n,(a) = const. In 
the absence of initial perturbations of the fields in the region 

x > a, we find from (2 )  the following solution, which vanish- 
es in the limit x+ + w : 

( 1 )  
EV(2 (r>a) =Eykp ( a )  exp[-x  (r-a)  1, (9 )  

where 

x2=k2+ (p2/cZ) E ( a ) ,  a ( a )  =I+ oL; ( a )  / p 2 ,  Re x>O. 

Assuming that the plasma at 0 < x  < a  is highly nonuni- 
form, 

i.e., assuming ka( 1, we can omit from (7 ) the terms which 
contain a double integral over x. Joining solutions (7  )-(91, 
and requiring that the field component Ey and its derivative 
be continuous at the points x = 0 and a, we find 

N+E ( a )  x 

xD ( P ,  k )  

N f  ) J G1 ( x )  dr.  
E ( x ' )  " 

Here D( p,k) is the dispersion function, which describes sur- 
face oscillations of this semi-infinite plasma with a very non- 
uniform layer: 

n 

+ N+e (a )  (-+< J e ( r ) d r ) .  
x  l+N c 

Equating ( 11 ) to zero, and setting p = - iw, + Y,  we find 
the following expressions for the natural frequency w, and 
the damping rate v: 

where 

It can be seen from ( 10) that the time evolution of the 
field component E j l )  is determined by the poles of the dis- 
persion function D( p,k) in the complex p plane. According 
to ( 12) these poles describe exponential damping of E  i') at a 
rate Y. 

Substituting ( 10) into (3) ,  we find an expression for the 
electric field component E  :'I: 

EL;' ( x )  

i N [ N + e ( a ) ]  x ,  
=- - + B J e ( x l ) d x / )  j ~ ~ ( x ) d x  

k x D  (p ,  k )  e ( x )  ( f+N c o 
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Expression ( 13), along with the poles of D( p,k), which de- 
scribes oscillations which are damped over time, contains 
poles of ~ ( x ,  p ) .  These poles give rise in the transition layer 
O<x<a  to oscillations at the local plasma frequency 
a,, (X ); in the cold collisionless plasma, these are undamped 
oscillations. 

Since the function E(X, p )  appears in the numerator in 
expression (4) for the magnetic field B I", the oscillations of 
B jl) are determined by the poles of D( p,k); i.e., they are 
damped in time. 

ECHO RESULTING FROM UNDAMPED OSCILLATIONS IN 
THE TRANSITION LAYER 

Let us examine the nonlinear response of a plasma to 
the initial perturbations in (5) ,  produced in the transition 
layer 0 < x  <a.  In second-order perturbation theory, system 
(1)  takes the following form after Laplace transforms in 
time and Fourier transforms in y: 

From system ( 14) we easily find equations for the compo- 
( 13) nents of the electromagnetic field. 

4ne dk' dp' ( t )  -, J J G n k k ~ . p - p , v ~ ! p * ,  

4ne dk' dp' ,,, 
(1) +, J ~ ~ A - ~ * , P - P ~ U U ~ ~ , P * ,  

where 

- - 2nek dk' 2 ~  ( I ,  (1) - i -  J -- J*{ik - n k - k ~ , p - p ~ u f i ~ , p ~  
p2 2n 2ni N  

4ne dk' dp' a ( I )  --j- J-[TL- ( I )  

N+E 231 2ni 2pZ dx  U ~ k - t “ , ~ - ~ r  v a r , ~ l  

As in the integration of Eq. (2),  we find the solution of Eq. 
( 15) in the spatial regions x < 0,0  < x <a ,  and x > a. We find 
the integration constants from the conditions that EF) and 
aEF)/ax are continuous at the pointsx = 0 and a. Since the 
resulting expression is extremely lengthy, we will retain in it 
only a single term, which is the term which dominates the 
echo oscillations: 

X 

2ne3k e ( a , p )  
E;:; ( x )  = i  -- (I+L J d z t  N + e ( x f , p )  \ 

m2p2 D ( P ,  k )  I+No e  (x' ,  p) i 

The nonlinear electric field in ( 18) is the result of the inter- 
action of undamped linear electric fields E ;". The macro- 
scopic response to initial perturbations should be manifested 
in this system as a nonlinear surface charge 

dk' dp' ( I )  
0 

(1) ( i )  (IL 
~ 2 n i ( v * * ' ~ p - p v ~ ~ ' o p r ~  v.*'.p-p'vu*'7~'), Expressing the nonlinear density perturbation n"' in terms 

of the electric fields with the help of the first equation in 

1 a ( 2 ,  kno (2, 
system (14), we find 

( 2 )  nkVP = --- ( n o ~ x k , p  -i - V V ~ , P  
P ax 

0 

P 1 ik 
02;' = - ( ~ 2 ;  ( a )  -E:: (0) ) + --J d x ~ : : :  ( x )  . (20) 

4n *n 0 

It is not difficult to see that the first term on the right side of 
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(20) does not contain a pole of e(x, p )  and does not describe 
an echo. 

Let us examine the situation in which the nonlinear sur- 
face charge is the result of the application to the plasma of 
two external perturbations, with wave numbers k, and k,, in 
the direction perpendicular to the density gradient, at the 
times t = 0 and t = r ,  respectively: 

E (y, t) =El exp (~ikiy)6(oot) 

+E, exp (ik,y)6[oo(t-T)]. (21 

The constant w, has the dimensionality of a frequency. To 
simplify the equations, we replace expression ( 13) for the 
field E y' by the expression 

ioo 
E:; (x) = E Gt. 

PE (5, P ) D ( P ,  k) 

We now substitute (21) and (22) into (18) and take the 
inverse Fourier and Laplace transforms. We carry out the 
integration over p' and p by closing the integration contour 
in the left-hand half-plane, taking into account the contribu- 
tions to the integrals only from the poles of &(x,pf)  and 
E (x, p ) ,  which describe undamped oscillations. Substituting 
the result into (20), and integrating by parts in the integral 
overx (k, =k,+k,) ,wefind 

do  [wLe2(a) -oz]expl-io (t-27) I + C.C. (23) ! 7 ~ ( - i w ,  k,) D (-Ziw, k , )  D (iw. Ch.i) 

The integration variable w = w,, (x)  has been introduced in 
(23), and only the single term describing the echo surface 
charge has been retained. The integrand in (23) contains the 
rapidly oscillating function exp [ - iw ( t  - 2r)  1, so that the 
value of the integral tends toward zero at all times except 
near the point t = 27. At this time, a macroscopic surface 
charge arises in the transition layer at 0 < X  < a  and leads to 
the excitation of an echo surface wave with wavenumbers 
k , .  

Expression ( 11) for the dielectric function D( - iw, k)  
is quite complicated in the general case. It is therefore con- 
venient to evaluate the integral in (23) in the limits of long 
and short oscillations, in which expression ( 1 1 ) simplifies 
substantially. 

ECHOES IN THE LIMITS OF LONG AND SHORT WAVES 

We can formally take the short-wave limit, 
(k~)~,w:, (a) ,  by letting C-CO. In this case, the surface 

oscillations are quasistatic, and the dielectric function ( 1 1 ) 
becomes 

where [cf. ( 12) 1 

We can now carry out the integration in (23) by switching to 
the complex w plane and closing the integration contour in 
the upper ( t  < 27) or lower ( t  > 2r)  half-plane. The contri- 
bution to the integral which comes from the corresponding 
line segments Rew = 0, w,, (a) ,  is small in comparison with 
the contribution from the poles of dielectric functions (24). 
As a result we find from (23) 

where vi =v(ki ). We see from (25) that the echo signal 
reaches a maximum at the time t = 2r  and decays exponen- 
tially on both sides of the maximum. The shape of the signal 
is asymmetric in time. The surface charge in (25) excites an 
echo quasistatic surface wave with the following potential at 
the boundary: 

0:' (0) (a) m4no:' /kk2a. (26) 

In the opposite limit, (kc)'<w;, (a ) ,  the long surface 
waves are quasitransverse, and dielectric functions ( 1 1 ) can 
be written 

where 

As in the quasistatic limit, we carry out the integration in 
(23) in the complex w plane. In this case, the contribution 
from the integrals along the line segments Reu = 0, a,, (a )  
is small in comparison with the contribution from the poles 
of the integrand under the conditions It - 2r1wLe (a), 1. 
The result given below thus describes the behavior of the 
tails of the echo signal far from its maximum value: 
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Substituting (16) and (18) into (17), we find the following expression for the echo magnetic field at the point x = 0: 

( 2 )  e 32nEiEz k , ( t -7 )  t<2t, 
Bz (0, Y, t )  =- m 3 c 5 u L ; y a )  ) { ( k , ~ ) ~ ~ c u ~ .  ( a )  (k,'-'/,k,2) -' cos [ k t y - k t c  ( t - 2 t )  lexp[-.* (t-?TI 1. 129) 

The reason for the difference in the time evolutions of echo 
signals (28) and (29) is that in the case of nonelectrostatic 
oscillations the surface charge is a forced perturbation which 
accompanies resonant oscillations of the electromagnetic 
field of the surface wave. 

CONCLUSION 

It has been assumed in this theory that the surface wave 
is damped in a collisionless fashion over a time shorter than 
the time interval T between the external perturbations, as it 
excites three-dimensional plasmons at the plasma-resonance 
point x = xo. On the other hand, the time interval T should 
be too short for damping of plasmons, which retain informa- 
tion on the external perturbation. This damping could result 
only from binary collisions or a thermal removal of plas- 
mons from the plasma-resonance r e g i ~ n . ~  The condition for 
the applicability of these results is therefore 

where vei is the electron-ion collision rate, and Y is the damp- 
ing rate of the surface wave, given in ( 12), 

This analysis has shown that an echo in a plasma is not 
necessarily the result of a modulation of the charged-particle 
distribution function by external perturbations; i.e., it is not 
necessarily of a kinetic nature. For an echo to appear there 
must be undamped microscopic oscillations of some quanti- 

ty; the phase focusing of these oscillations gives rise to the 
excitation of a macroscopic signal. In the case at hand, these 
oscillations are oscillations of the electric field component 
parallel to the density gradient near the plasma-resonance 
point. These oscillations are plasma oscillations at the local 
plasma frequency. An echo in a highly inhomogeneous plas- 
ma may therefore be of a hydrodynamic nature; i.e., it may 
be determined by oscillations of a charged fluid, rather than 
by oscillations of resonant particles of an ionized gas. 

The echo in a bounded plasma with an inhomogeneous 
transition layer is analogous to an oscillatory echo in a sys- 
tem with a continuous s p e c t r ~ m . ~  
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