
Theory of nonadiabatic transitions in a system of three charged particles 
S. Yu. Ovchinnikov and E. A. Solov'ev 

A. A. Zhdanov State University, Leningrad 
(Submitted 18 August 1985) 
Zh. Eksp. Teor. Fiz. 90,921-932 (March 1986) 

The singular points in the terms in the problem of two Coulomb centers are studied in the 
complex plane of the internuclear distance R in a continuation of work begun previously by the 
second author { ~ h .  Eksp. Teor. Fiz. 81, 1681 ( 1981) [Sov. Phys. JETP 54,893 ( 1981 ) 1) .  
New series of singular points, associated with "hidden" quasicrossings, are found. In general, 
these series partition the entire positive axis of internuclear distances into four intervals (A, B, 
C, and D ) ,  in each of which the region of the classically allowed motion of an electron has a 
specific topology. In the adiabatic approximation, inelastic transitions occur only at the 
boundaries between intervals A, B, C, and D or when an isolated quasicrossing is passed at 
large R in interval D. The ionization H +p--tp + p  + e is studied as an example. 

1. INTRODUCTION 

The analytic properties of the terms (the molecular po- 
tential curves) E ( R )  in the complex plane of the internu- 
clear distance R play a major role in the adiabatic approxi- 
mation. Nonadiabatic transitions between two terms El (R ) 
and E, (R ) are associated with a complex branch point R 
which these terms share and near which the difference 
AE(R ) = E l  (R ) - E,(R ) can be described by' 

AE ( R )  =const (R-R, )  '", 

Branch points occur in pairs R, ,R T (the asterisk means the 
complex conjugate) in the complex R plane. When a single 
loop is made around each such point, the terms are inter- 
changed [see ( 1 ) ] ; i.e., the two terms are different sheets of 
the same analytic function. The probability for a transition 
between terms E, and E2 which is associated with the branch 
point R, is determined by the Massey parameter 

Specifically, this probability is' 

where v is the initial velocity of the colliding atomic parti- 
cles. When IrnR, is small, the branch point is manifested as a 
quasicrossing of a pair of terms on the real axis. 

In calculations on specific processes in the adiabatic ap- 
proximation, the basic difficulties are in finding the terms, 
since the spectral problem does not have an asymptotic pa- 
rameter (in contrast with the dynamic problem, where v(l 
is such a parameter), and the only mathematically correct 
way to solve the problem is by numerical calculation. The 
situation is eased considerably when the transition occur at 
large internuclear distances. In such cases we can use R as a 
large parameter and analytically calculate the terms of a 
quasimolecule in terms of the characteristics of its constitu- 
ent atoms., Furthermore, quasicrossings at large distances 
are generally very narrow and clearly defined, so that condi- 

tion A( 1 holds for them, and the Massey parameter can be 
expressed, with the help of the Landau-Zener model, in 
terms of the characteristics of the terms on the real R axis. 
These quasicrossings play an important role in the physics of 
a low-temperature plasma, since the smallness of the Massey 
parameter causes the Landau-Zener transitions to reach a 
maximum at the low collision velocities, v z  A, which are 
characteristic of a low-temperature plasma. The combina- 
tion of a high transition probability with large impact pa- 
rameters p (p = ReR, ) l ) leads to cross sections which are 
comparable to or greater than the cross section from gas 
kinetics. 

Developments in the physics of fusion plasmas have re- 
cently attracted more interest to the velocity region v~ 1 a.u. 
At such velocities the narrow quasicrossings at large dis- 
tances are passed in a diabatic manner by the quasimolecule, 
and the corresponding cross sections are small. Here wide 
quasicrossings, with a Massey parameter A z  1 a.u. are more 
important. These quasicrossings are greatly distorted by 
nearby terms, to the extend that they become indistinguish- 
able in the overall pattern of terms. In this situation we can- 
not use a simple model parametrization of A in terms of the 
characteristics of the terms at real values of R even in calcu- 
lating the Massey parameter (2).  In some cases, a direct 
numerical calculation of the terms in the complex R plane is 
necessary even to find the quasicrossing itself. The most nat- 
ural system for a study of such "hidden" quasicrossings is 
the problem of two Coulomb centers. On the one hand, the 
variables can be separated in the prolate spheroidal coordi- 
nates c, 7, p in this problem, and there is a comparatively 
simple algorithm for calculating the terms in the complex R 
plane. On the other hand, this system contains the basic fea- 
tures of a diatomic quasimolecule system. The first such cal- 
culation was carried out in Ref. 3, where quasicrossings, of a 
new type, which give rise just to transitions between bound 
states but also to ionization, were discovered. In previous 
analyses (see, e.g., Ref. 4) of the terms on the real R axis 
these quasicrossings were not noticed because of their severe 
distortion. 

The problem of two Coulomb centers not only reveals 
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the various types of hidden quasicrossings and the mecha- 
nism for their appearance but also yields approximate ana- 
lytic expressions which relate the parameters of a quasi- 
crossing with the characteristics of the quasimolecule and its 
quantum  number^.^ These approximate expressions play the 
same role as a parametrization of A with the help of the 
Landau-Zener model for narrow quasicrossings. These ex- 
pressions can then be used in more complex situations for 
calculations on inelastic processes. 

In the present paper we continue the study begun in 
Ref. 3 of the branch points of the terms in the problem of two 
Coulomb centers in the complex plane of the internuclear 
(intercenter) distance R. To classify the terms E ( R )  we will 
use the spherical quantum numbers n, I, m of a combined 
hydrogenlike atom, whose energy levels are the limits of the 
terms E(R ) as R+O. These quantum numbers are related to 
the numbers of zeros (k, q, and m)  of the wave function in 
terms of the variables l , ~ ,  and q, by4 

For I and m we will also use spectroscopic notation: I = s, p, 
d, . . and m = u, T, 6,  . . . . We will be using the atomic 
system of units in this paper. 

2. BRANCH POINTS OF THE TERMS OF THE ZleZz SYSTEM 
IN THE SYMMETRIC CASE (Zl = 22) 

The problem of two Coulomb centers has two nontrivial 
parameters: the internuclear distance R and the ratio of the 
charges of the Coulomb centers, Z,/Z2. In the present sec- 
tion of the paper we examine the structure of the branch 
points in the complex R plane in the symmetric case, i.e., the 
case Z ,  = Z,. In the section which follows we analyze the 
evolution of the branch points as the ratio Z,/Z2 changes. 
We have numerically calyulated the terms En,, (R)  in the 
complex R plane on a BESM-6 computer by the program 
used in Ref. 3. Before we discuss the results, we will briefly 
review the results found in Ref. 3 so that we can later draw a 
complete picture of the analytic structure of the terms. 

Branch points R ",'lrn which relate pairs of terms 
En,, (R ), En + ,,, (R ) in succession for all n >I + 1 were 
found in Ref. 3. The branch points R :r+, ' I r n  with differtent 
values of n but a fixed set {lm} form an infinite series of 
points which are localized in a small region R of the R plane 
and which converge on a limit point 

n + l l m  Rim= lim Rnl ,  . 
n + m  

These branch points combine all the terms of this {lm) series 
into a common analytic function El, (R).  Near (but not in) 
the region R, the function El, (R)  is described accurately 
by3 

where Z = Z ,  + 2,. The expression in square brackets in 
(4)  serves as the principal quantum number in the hydro- 
gen-like spectrum. Near R, the energy surface Elm ( R )  has 
the shape of a corkscrew, and when a single loop is made 
around the logarithmic branch point R,, in (4)  there is a 

transition from the given term En,, (R ) to the neighboring 
term En. ,,, ( R )  ( + depending on the direction in which 
the loop is made). We denote the series of points {Im} as 
S, + ,,, . Since a!l the points of a given series lie close together 
in the Rplane, we assign the series S, + ,,, a definite position, 
specified by the limiting point R,, . The following approxi- 
mate expression was derived in Ref. 3 for the series with 
m =0: 

This expression gives the position of the series S, + ,, within 
- 10%. 

In addition to the series S, + ,,, studied in Ref. 3, there 
are other series ofbranch points in the R plane. We turn now 
to a description of these other branch points, beginning with 
the analytic structure of the terms in the H,f system. In this 
case, since the charges of the nuclei are equal, we have an 
additional symmetry-the parity-and all the states can be 
classified as either even (g-states) or odd (u-states) . I  Terms 
with different values of m or with different parities evidently 
do not have common branch points, since the symmetry of a 
state cannot be changed by a continuous change in R. Figure 

C 

- 
ReR 

FIG. 1. Branch points of the lsuand 2pu terms in the complex R plane for 
three values of the charge Z, ( Z ,  = 1 ) .  a-Z, = 1; b--1.001; c-1.08. 
The quantum numbers of the terms related by the given branch point are 
given in square brackets. The open circles in part b show the positions of 
the branch points for the difference in terms in ( 9 ) ,  with w(R)  and 6 from 
( 1 1  ) and ( 12). The regions A ,  B, C, and D for the 2pu term are shown. 
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la shows the branch points of the lsa, and 2pau terms for 
the molecular ion H: . In addition to theseriesS,,, andS,,, 
we see that there is a series of branch points at ReR z 5 a.u. 
The branch points of the terms lsa, and 2pau are combined 
into a single series because of their behavior in the limit 
R ~ c c .  In the limit R-+cc ,  the adiabatic states of the sym- 
metric system H: become either the sum (g-states) or the 
difference (u-states) of the two hydrogenlike states which 
are localized at different nuclei and which have an identical 
set of parabolic quantum numbers {n,n,m). The quantum 
numbers of the combined atom which were introduced 
above are related to these parabolic quantum numbers by4 

for the g-states or 

L,=2n2+ [(-1)"'+1] / 2 ,  

where p = ( - 2E) ",R /2, and A is a separation constant. 
We can estimate the value R, at which the energy level 
touches the top of the barrier from the asymptotic expres- 
sions forp and A in the limit R-+w (Ref. 4): 

p=R/2n,, h=2p (2nz+m+l)  -[ (2nz+m+1) 2+1-m2] /2 .  

(7 )  
In this approximation the two terms of the (g, u )  pair are 
coincident, and they reach the barrier simultaneously. Sub- 
stituting (7)  into the effective potential for Eq. (6),  and 
using the condition that the energy level touches the top of 
the barrier, we find 

Table I compares values calculated from (8)  with the real 
part of the branch point nearest the real axis for several series 
Tn,n2,. We see from this table that expression (8)  gives a 
correct description of the behavior of the position of the se- 
ries as a function of the quantum numbers. 

for the u-states. A pair ofg- and u-terms with an identical set 
3. BRANCH POINTS OF THE TERMS OF A ZleZ, SYSTEM 

of parabolic quantum numbers is exponentially degenerate 
ZZ2 

at large R. The numerical calculations reveal that each such 
pair of terms has a common series of branch points with In the case Z, #Z2 we lose the exact (g, u) symmetry, 

high-lying terms, which we denote as T,,,?, . In these series, and additional series of branch points arise. Figure lb shows 

we find the following approximate behavior (Fig. la)  : ~ 1 1  branch points of the 1 s ~  and 2pa potential curves for Z, = 1 
the branch points in a given series are distributed uniformly = l.OO1. In the seriesS ,so * S 2 p U  and 

on a straight line which runs nearly perpendicular to the real We See a new series of branch points, '0,. These points have 

R axis. The spacing between the branch points is I approximately the same real part, R p  z 10 a.u. In the limit 
Z2-+Z,, this series goes off to infinity along the positive real 

AR-n,ni R semiaxis. The series P,,,,, arises by virtue of the Rosen- 
Zener-Demkov interactioh15 

(n, = n, + n, + m + 1 is the principal quantum number The two-level Rosen-Zener-Demkov model is ordinari- 
of the limiting state as R+CC ) '  The branch points On the ly used in calculations on charge exchange with a small reso- 
even term (n, 'g ) and the odd term ( n u  'u m, the nance defect. In this model, the splitting of terms is de- 
jth branch point on the term n, 1, m relates this term to a g- 
term: 

scribed by 

n=n,+2j, 1=1,+2j. AE ( R )  = [ 6 2 + ~ 2 ( R )  (9)  

The jth point on the term nu 1, m relates it to a u-term: 

( j  = 1, 2, 3, . . . is the order of the branch point, counted 
from the real R axis. 

The series Tnln2,, arises because a pair of (g, u) terms 
reaches the top of a barrier separating effective potential 
wells of two Coulomb centers in the angular equation4 

where S is the splitting of terms in the limit R-cc (the reso- 
nance defect), and the function w (R ) = aexp ( - OR ) mod- 
els the exchange interaction of diabatic states. The regions in 
which the transitions are nonadiabatic is the region with 
S z  lw(R) 1. Here the splitting in (9)  has an infinite, equidis- 
tant sequence of branch points 

where Rp = (lna/S)/B. The two energy surfaces are uni- 
formly joined by these branch points along a line running 
perpendicular to the real R axis. Expression (10) gives a 

TABLE I. Exact values of the real part of that branch point R Afh, of the series T,,,>, which is 
closest to the real R axis; positions of the point R ,  at which the term reaches the top of the 
barrier, calculated from (8 )  for the H,i system. 
-- -- 
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qualitative description of the structure of the branch points 
Pnrn2,. More accurate values can be found for the branch 
points if we use for the exchange interaction w ( r )  its asymp- 
totic expression in the limit R-win the problem of two 
Coulomb centers with Z ,  = Z,  = 1 (Ref. 4):  

The resonance defect in our case is 

Usingw,(R) andSfrom (11) and (12) in (9),wecannu- 
merically solve the transcendental equation S = f iw, ( R )  
to find the positions of the branch points; in the case 
2, = 1.001 the results are essentially identical to the exact 
values (Fig. lb) .  There are series PnnnIrn for all pairs of states 
which are localized at different centers in the limit R-+ co 

and which have an identical set of parabolic quantum 
numbers {n,n,m). These series are related to a breaking of 
the approximate (g, u) symmetry. To the left of the Pnln2,,, 
series we can ignore the resonance defect in comparison with 
the exchange interaction, and the situation is qualitatively 
close to the symmetric case Z ,  = Z,. To the right of this 
series, the resonance defect dominates, and the approximate 
(g, U )  symmetry is lost. 

As the charge Z ,  is increased further, the positions of 
the branch points on the lsu and 2pu sheets change in the 
following way. The series S ,,, , S,,, , and Too, initially re- 
main essentially in place, while the series Po,, moves as a 
whole to the left. At Z , Z  1.07, the points of the Po,, series 
pass between the branch points of the Too, series. The struc- 
ture of the Riemann surface undergoes a qualitative change, 
and the series Po,, undergoes a continuous conversion into 
the series Q ,,, , and the series Too, does the same, into the 
series Q,,, . In each of the series Q,,, the branch points re- 
late the initial term ( lsu or 2pu) in succession with all terms 
having the same radial quantum number k (Fig. lc) .  The 
reason for this change in structure is that at Z ,  z 1.07 we lose 
the approximate (g, u)  symmetry on the large-R side, down 
to R = R,, and a quasicrossing of terms having different 
parities at Z, = Z,  is no longer approximately forbidden. 
With a further increase in Z,,  the lsu and 2pu terms reach a 
barrier at different values of R, so that the terms Q ,,, and 
Q,, , associated with the attainment of this barrier, diverge. 

At Z,=: 1.07, the series ofbranch points PnIn2, ,  charac- 
teristic of the Rosen-Zener-Demkov model, thus disappears, 
and this model no longer applies. Interestingly, the Rosen- 
Zener-Demkov interaction drops out of the picture at a very 
small value of the quantum defect 6, only 7% of the distance 
to the neighboring multiplet. 

After the series Q ,,, and Q ,,, , forms on the lsu energy 
surface, no other important changes occur. In order to de- 
scribe the subsequent evolution of the singular points on the 
2pu energy surface we need to simultaneously examine the 
3du energy surface. 

Figure 2a shows branch points of the 2pu and 3du terms 
for the charges Z ,  = 1 and Z ,  = 1.2. There are four series 

here: S,,, , S, ,  , Q,,, , and Q3d,.  The series Q forms as a 
result of a change in the structure of the series T,,, and PI,, 
at 2, =. 1.07, as discussed above in the case of the formation 
of the Q ,, and Q,,, series. As Z ,  is increased, the series 
Q ,, and Q 3do move toward each other, and they merge at 
Z ,  z 2, where there is a random degeneracy of the 2pu and 
3du terms in the limit R-+ WJ . At Z2 z 2.1, the sheets and 
branch points are renumbered in such a way that the rela- 
tionship between the 2pu and 3du terms dissappears in the 
series Q ,  (Fig. 2b). At the same time, an isolated branch 
point I is which relates the terms 2pu and 3d0, arises at 
R = + WJ . This branch point then approaches, at 2, z 3.5, 
the incomplete series o,,,, and complements it to form a 
standard series (Fig. 2c). The branch point I ;js is related to 
a quasicrossing of terms which correspond to states localized 
at the different nuclei. Quasicrossings of this type are quite 

they constitute the only case which has previous- 
ly been discussed in the literature, except in Ref. 3. 

For Z ,  > 3 the structure of the branch points on the 2pu 
energy surface does not change qualitatively. The series 
Q , ,  makes contact with the Q,,, series and then goes off 
toward large R where it collides with the series Q,f ,  at 
Z,= 3.7. Here there is another renumbering of the sheets as 
in the collision of the Q ,,, and Q ,,, series, and an isolated 

10 - I t [2p6 - J~G] 

Sp . s3ds 
I I 

20 VO Z R e R  

FIG. 2. Branch points o f  the 2poand 3do terms in the complex R plan: for 
three values o f  the charge Z,  (2, = 1 ) .  a-2, = 1.2; b-2.1; 0 3 . 5 .  Q,,, 
in Fig.  3b means an incomplete Q,,, series. 
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branch point I f:gLarises at infinity and then attaches to the 
incomplete series Q This evolution of the series of singu- 
lar points and isolated branch points I :;!,,'" is repeated in 
succession on all the high-lying terms. 

Figure 3 shows trajectories ofthe branch points in the R 
plane traced out as the charge Z, is gradually increased 
(Z, = 1 ). This figure illustrates the overall evolution of the 
branch points of the lsu and 2pu terms; this evolution is also 
characteristic of all the other terms of the system. 

We have one final comment to add to these results of the 
numerical calculations. When any branch point R :;gm lies 
to the left of, and further from the real axis than, the series 
S,. + ,,., in the R plane (the series S,, ,,, always lies to the 
left of such a branch point), then by starting at the term 
En,, (R ) on the real R axis, looping the branch point R :;Krn, 
and then returning to the real R axis, we end up not at the 
termE,., ,, (R ) but at some virtual or quasisteady term, indi- 
cated by ( %) in the figures. These terms will be discussed 
in detail in a separate paper. 

4. DISCUSSION 

These results suggest a reinterpretation of the change in 
the structure of adiabatic states as the internuclear distance 
is changed. As Z, z Z 1 ,  the series of singular points S, T, and 
P partition of the entire positive real R axis into the four 
intervals A, B, C, and D (Fig. lb)  . In each of these intervals, 
the region of classically allowed motion of an electron has a 
specific topology, as illustrated in Fig. 4. In interval A 
(0 < R < Rs ) both of the nuclei are screened by the centrifu- 
gal core of the combined atom, as was shown in Ref. 3, and 
the electron perceives these nuclei as constituting a single 
Coulomb center (Fig. 4a). In this interval, it is physically 
justifiable to replace the exact adiabatic wave function by the 
simpler wave function of the combined atom. Interval B 
(Rs < R < R, ) has a substantially quasimolecular nature 
(Fig. 4b). In this interval, even in the crudest approxima- 
tion, we need to take into account the difference between the 
positions of the nuclei (in contrast with the case in interval 
A ) ,  and we need to consider the interaction of the electron 

FIG. 3. Trajectories traced out by the branch points of the lsu, 
2pu, and 3du terms as the charge Z, is changed continuously 
( Z ,  = 1). The numbers labeling the trajectories ar the charge 
Z,. Dot-dashed line-trajectory of the isolated branch point 
I:;:; dashed line-trajectory of the Po,,:, series; solid line- 
trajectory of the$,, series; dotted line-trajectory of the in- 
complete series Q,,, . In the scale of this figure, the s,,,, and 
T,,,2, series remain essentially fixed, at the positions shown by 
the circles and squares, respectively. 

with the two nuclei simultaneously (in contrast with inter- 
val C )  . In interval C (R. < R < R, ) the regions of classical- 
ly allowed motion near the two nuclei are separated by a 
barrier (Fig. 4c), and here the wave function can be approxi- 
mated as a superposition (symmetric or antisymmetric) of 
the wave functions of two isolated atoms Z,e and Z,e. In 
interval D (R, < R < oo ), we do not have the approximate 
(g, U )  symmetry, and the wave function is approximately the 
wave function of an isolated atom, either Zle or Z,e (Fig. 
4d). When we go from one interval to another, we see a 
qualitative change in the structure of the adiabatic state, as 
reflected in the series of singular points. 

This partitioning into four intervals A, B, C, and D does 
not always occur. Fors-terms, series S lies in the left-hand R 
half-plane, so that there is no interval A in these cases. Fur- 
thermore, when, with increasing Z,, series T and P merge 
(Fig. lc),  the interval of approximate (g, u)  symmetry, Cis  
lost. In the symmetric case (Z, = Z, )  there is no interval D. 

One might get the impression that although the results 
found here do paint an elegant picture of how all the terms of 

FIG.4. Schematic drawing of the regions of classically allowed motion of 
an electron (the hatched region) in the intervals A ,  B, C, and D. 
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FIG. 5. Matrix elements of the nonadiabatic coupling of W g  and W:,' 
for the H,+ system. 

a given symmetry combine into a common analytic function 
of R, the behavior of the terms at real values of R is not 
noticeably affected by the presence of branch points, so that 
these points play no role in the theory of nonadiabatic transi- 
tions. This impression would be wrong. According to the 
general theory,' a transition probability (3)  is associated 
with any branch point, and this probability will of course 
decrease with increasing distance from the branch point to 
the real R axis. The region in which the adiabatic states inter- 
act strongly may not be strikingly obvious in the pattern of 
terms at real R (the terms of the Rosen-Zener-Demkov 
model might serve as an example here). More sensitive are 
the matrix elements of the nonadiabatic coupling between 
states which are coupled by the given branch point R $:m: 

Figure 5 shows the nonadiabatic-coupling matrix elements 
taken from Ref. 6. We see that the matrix elements W,";,',,'" 
between states having a common branch point R ;;Zm have a 
clearly defined maximum on the real R axis near this branch 
point. This result is not surprising since at the branch points 
R,  the corresponding matrix elements become infinite and 
have a first-order pole7: W z  (R - R ,  ) -'. The bell shape of 
the matrix elements on the real axis is a reflection of these 
poles in the complex plane; i.e., the presence of a branch 
point for the terms and the presence of a maximum for the 
matrix elements are interrelated phenomena. It is because of 
this fact that we can calculate the probabilities for inelastic 
transitions in the adiabatic approximation knowing nothing 
more than the terms [see (2)  and ( 3 )  ]-there is no need to 
calculate the nonadiabatic-coupling matrix elements. 

It follows that in the adiabatic approximation transi- 
tions between terms occur at the boundaries of intervals A ,  
B, C, and D and also when an isolated branch point I in 
interval D is passed. Knowing the positions of the branch 
points and the splitting of the terms on the real R axis, we can 
easily estimate the Massey parameters in (2)  for these hid- 
den quasicrossings. As an example we consider the ioniza- 
tion 

As the nuclei on each other, the ground state of the hydrogen 

FIG. 6 .  Cross section for the ionization H + p-+p + p  + e. Solid line- 
ionization cross section calculated from ( 1 5 ) ;  circles-experimental 
data." 

becomes a superposition of lsa  and 2pa states of the quasi- 
molecule. The ionization in this case occurs from the 2pa 
term as a result of nonadiabatic transitions through an infi- 
nite chain of hidden quasicrossings associated with the series 
S,,,. In the approximation of a rectilinear passage 
(R = P 2  + v2t the total Massey parameter for this process 
is3 

where IR,, 1.5, and A0z0.4 is the Masey parameter at 
p = 0. Substituting ( 14) into ( 3  1, and integrating over the 
impact parameters, we find the ionization cross section: 

Two other factors, which tend to cancel each other out, are 
incorporated in ( 15). First, there is the circumstance that 
the initial population of the 2pa term is 1/2; there is the 
circumstance that the region of nonadiabatic transitions is 
crossed twice, as the nuclei close on each other and as they 
move apart. Figure 6 shows the experimental ionization 
cross section8 and that calculated from expression ( 15). We 
see that despite the approximate nature of ( 15) there is a 
good agreement with experiment in the range of applicabi- 
lity of the adiabatic approximation. Convincing evidence of 
the existence of this ionization mechanism was recently 
found in Ref. 9 in an analysis of experimental data on the 
spectra of emitted electrons. 

The quasicrossings which we have been discussing here 
are broad, and the associated transitions become noticeable 
even at rather high collision velocities v .  We are thus led to 
inquire about the applicability of the adiabatic approxima- 
tion at these velocities. From the mathematical standpoint 
the adiabatic approximation is an asymptotic expansion of 
the solution of a dynamic problem (a time-varying Schro- 
dinger equation) in the small parameter v .  In general, there 
is no rigorous quantitative measure of the applicability of 
such an approximation. A physically plausible assumption is 
that for each specific transition this approach is applicable 
up the maximum of the cross section, i.e., at u ( A .  

The results of this study have applications going beyond 
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calculations on various inelastic processes in the adiabatic 
approximation. They can also be used to select systematical- 
ly the most important adiabatic states in the strong-coupling 
method for specific reaction channels. 

In a study of 2pu-npu transitions, Henri et al." ques- 
tioned the reality of transitions driven by hidden quasicross- 
ings associated with the series S,,,, which had been dis- 
cussed in Ref. 3. However, it is not clear from the text of their 
paper just which assertions in Ref. 3 Henri et al. believe are 
wrong or why. The results derived in Ref. 3 were based on an 
exact calculation of the terms of the problem of two Cou- 
l ~ m b  centers. Those results follow from a general, math- 
ematically rigorous theory of inelastic transitions in the 
adiabatic with which Henri et al." ap- 
pear to be unacquainted. An attempt was made in the second 
section in Ref. 10 to construct diabatic terms, which were 
introduced in a qualitative way in Ref. 3 to illustrate possible 
inelastic transitions through hidden quasicrossings associat- 
ed with the series S,,, . For this purpose, the matrix of the 
total Hamiltonian in the atomic basis was broken up into two 
blocks and then diagonalized in each block. This procedure 
is a formal procedure in this case and does not reflect the 
essence of the matter, so that we are not at all surprised to 
find that the behavior of the resulting diagonal matrix ele- 
ments does not agree with the diabatic correlation diagram 
in Ref. 3. The introduction of diabatic states in this case is a 
complex problem (as was pointed out in Ref. 3) and requires 
a more systematic approach. In the third section of Ref. 10, 
Henri et al. derived scaling laws for the nonadiabatic-cou- 
pling matrix elements, but those laws do not--despite the 
assertion of the authors-by themselves explain why the ma- 
trix elements are bell-shaped at R =: 1 a.u. As we mentioned 
earlier (see also Ref. 3), this shape can be explained in a 
simple way on the basis of the series of branch points S,,, . 
The results calculated on the probability for 2po-npu transi- 
tions by the strong-coupling method which Henri et al. pre- 
sented in the fourth section of their paper are not convincing, 
since they did not solve the problem of dealing with the 

translational factor. Instead, the integration of the strong- 
coupling equations was artificially terminated at R = 2 a.u., 
where the matrix elements W;p'," depend most strongly on 
R (Fig. 5). The problem of the translational factor is a gen- 
eral one for the strong-coupling method. It arises because 
the adiabatic basis is not matched with the physical bound- 
ary conditions in the limit R- co . As a consequence, there is 
a constant component at large R in the nonadiabatic-cou- 
pling matrix elements, and this constant component leads to 
transitions which do not decay as R-+co. One possibility for 
solving this problem was proposed in Refs. 11. 
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