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Nonlinear interactions in open and closed systems are considered. It is shown that in open 
systems nonlinear interaction of nonresonant waves with resonant waves can lead to 
amplification (damping) of the nonresonant waves, while in closed systems this instability is 
absent and an adiabatic invariant-the number of quanta of the nonresonant waves-is 
conserved. 

1. INTRODUCTION 

Nonlinear interactions of waves in various media are 
now being actively studied. The purpose of this paper is to 
draw attention to specific features of nonlinear interactions 
in open and closed systems. We shall be especially interested 
in strongly nonequilibrium systems subjected to the action of 
external sources that can transfer energy to the system. If 
besides this there is an energy sink, then in a system far from 
equilibrium a stationary spectrum of excitations, waves, and 
particles can be established. It is known that open systems 
with external pumping and an energy sink are capable of self- 
~rganization.'.~ Here we shall direct attention to the possi- 
bility that the law of conservation of the adiabatic invariants 
may be violated in such systems. As a consequence, periodic 
waves of very high frequencies (higher than all the charac- 
teristic frequencies of the system) can be amplified 
(damped) possible in such systems. This instability is absent 
in closed systems. One much-studied system that can be 
open is a turbulent plasma with pumping and dissipation of 
energy. Using this example we shall illustrate here the phe- 
nomenon of amplification (damping) of high-frequency 
waves. In many laboratory experiments on magnetic con- 
finement of a plasma the system is essentially open. An ex- 
ample ofsuch a system is heated electrons, which can give up 
energy both to other particles of the plasma and to radiation. 
Radiation losses also play a large role in an astrophysical 
plasma (the solar atmosphere, pulsars, and other objects), 
which also provides examples of open systems. The physical 
mechanism of the exchange of energy between particles and 
nonresonant waves in the presence of resonant waves is dis- 
cussed in detail in Ref. 3. [Below, by resFant waves (w ,, k, ) 
we shall mean vibrations satisfying the Cerenkov-resonance 
condition a, = k, v with certain particles of the distribu- 
tion; by nonresonant wayes ( a ,  k )  we shall mean oscillations 
that satisfy neither the Cerenkov condition nor the scatter- 
ing condition: w # f a  v, w - w, # (k  - k, ) . v. ] This mecha- 
nism, as will be demonstrated, ensures conservation of the 
number of quanta in closed systems, and amplification 
(damping) of waves in open systems. 

2. INTERACTION OF PARTICLES AND RANDOM FIELDS IN A 
PLASMA 

For illustration we shall consider a system of particles 
and random fields in a turbulent plasma. In the first approxi- 
mation the interaction of the particles with the turbulent 

fields is described, as is well known, by the quasilinear equa- 
tion4 (see also Ref. 5)  

(the spectrum (Ek, 1' is assumed to be essentially subther- 
mal). Here cP, = (f, ) is the regular part of the distribution 
function, and for simplicity is assumed to depend only on the 
time: @, = @, ( t ) .  The turbulent oscillations are assumed 
to be longitudinal, and k, = (w,,k,), dk, = dw,dk,; IEk, 1' 
is the correlation function of the Fourier components of the 
turbulent field: 

where the angular brackets denote averaging over a statisti- 
cal ensemble. We note that Eq. ( 1 ) describes, in principle, 
the interaction not only with weakly turbulent fields but also 
with strongly turbulent ones (when the dependence of lEk, 1' 
on the frequency w , does not reduce to the 6-function depen- 
denceS(w, - w,, ); on the use of ( 1)  in a strongly turbulent 
plasma, see Ref. 6 .  

The quasilinear equation ( 1 ) can be obtained easily 
from the general kinetic collisionless equation 

a f P  a f e  5 f e  - f v - f  eE-= Q,. 
at  a r  ap  

For Q, = 0, representing fp in the form of the sum of the 
regular part @, and fluctuating part Sf, and neglecting the 
nonlinear terms in the equation for Sf,, we obtain Eq. ( 1 ). In 
the right-hand side of ( 3  ) we have introduced the term Qp to 
describe phenomenologically the more general case of open 
systems in which there are external sources or sinks of ener- 
gy, momentum, or particles. The properties of Qp can vary. 
We consider the case of regular sources (Q, ) = Q, , when 
the quantity Q, will appear only in the equation for the regu- 
lar part cPp of the distribution function (but not in the equa- 
tion for Sf, ). As a result, an additional term Q, arises in the 
right-hand side of Eq. ( 1 ). It plays a fundamental role, inas- 
much as it can lead to the establishment of a stationary dis- 
tribution function (see below). 

A different situation arises when the source Q, is not 
regular, e.g., when Q, describes losses of various kinds. In 
this case Q, can often be written in the form 

Then, apart from the fact that in the right-hand side of ( 1 ) 
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the term (Q, ) = - (d/dp) F(p)@, will appear, in the 
equation for the fluctuating part Sf, of the distribution func- 
tion there also appears a source SQ, = - ( d /  
dp) F(p)Sf,. If we assume that the characteristic time of 
the losses is much longer than the period of the turbulent 
oscillations (which, as a rule, is the case), then the term SQ, 
in the equation for Sf, can be treated using perturbation 
theory. As a result, for the regular part of the distribution 
function we obtain the equation 

In the general case the last term is small in comparison with 
the second, but in those cases when the losses [the second 
term in (5)  ] exactly cancel the quasilinear heating [the first 
term in (5)] ,  resulting in the establishment of a stationary 
distribution function, the last term in (5) becomes of the 
same order as the other nonlinear interactions. 

Here we have arrived at the problems of when nonequi- 
librium systems are stationary and the role of so-called adia- 
batic interactions. 

3. CONSERVATION OF AN ADIABATIC INVARIANT (THE 
NUMBER OF QUANTA) IN A TIME-DEPENDENT CLOSED 
SYSTEM 

Numerous investigations of quasilinear processes have 
shown that Eq. ( 1 ) does not in fact have time-independent 
solutions. This has become clear in a particularly striking 
way in the study of ion-acoustic turbulence excited by an 
electric field.' It is also clear from general considerations, 
inasmuch as Eq. (1) contains not only diffusion over the 
angles in momentum space but also diffusion in energy, as a 
consequence of which the particles continuously acquire en- 
ergy (if (E,,  I 2  is stationary). This acceleration (heating), 
like Fermi acceleration, is due to the fact that ( 1 ) contains 
only a diffusion term and no friction term (as, e.g., in the 
Landau collision integral). Therefore, a balance leading to a 
stationary distribution is impossible. In open nonequilibri- 
um systems, when Q, #O, such a balance and a stationary 
distribution are, in principle, possible. 

For Q, = 0 a system obeying (1)  will vary weakly in 
time. In this case the particles will not radiate nonresonant 
waves, and as a result of this the number of quanta of nonre- 
sonant waves will be adiabatically conserved. The question 
of the adiabatic interaction was discussed in detail some time 
ago (see the review in Ref. 8).  However, this question, as will 
be seen from the following, requires a more precise treat- 
ment. This is due to the uncertainty in the definition of the 
slowly time-varying dielectric permittivity, which depends 
simultaneously on the frequency. We shall show how this 
uncertainty arises. 

In time-varying spatially uniform systems the relation- 
ship between the spatial Fourier components D, ( t )  and 
E, ( t )  of the electric induction and electric-field intensity, 
respectively (for the present we consider only longitudinal 
fields), has the form 

t 

I lk  ( t )  = I E .  ( t ,  t r )  & ( t t )  ( d t r / 2 n ) ,  (6) 
- c-2 

which expresses in general form, with allowance for causal- 
ity, the linear dependence between D, ( t )  and E, ( t ) .  

In stationary systems E,  depends only on the difference 
T = t - t ' (the factor 27~  in the denominator of (6)  has been 
introduced in order that the relation Dm,, = E,,,E,,, hold 
for the Fourier components. For time-dependent systems it 
is therefore customary to write E ,  (t,t ' ) as a function of the 
arguments T = t - t ' and ( t  + t ')/2 (see Ref. 8): 

e, ( t ,  t') = e k  (t- t ' ,  ( t + t l )  12 ) .  (7)  

When the parameters of the system change slowly in com- 
parison with the characteristic period of the oscillations, E ,  

is a rapid function of T = t - t '  and a slow function of 
( t  + t ')/2 = t - r/2. Therefore, approximately, we have 

g k  ( t ,  t ' )  "&lr  ( t ,  t )  - ( ~ 1 2 )  d ~ r  ( t ,  t ) / d t .  (8) 

Defining E ,  (w,t) by 
cn 

we obtain from (8)  

The imaginary part of E, ,  described by the second term of 
( lo),  corresponds to the result of PitaevskiX9 

The nonresonant oscillations will be described by the 
equation (here and everywhere below, for illustration, only 
longitudinal waves appear) 

~ k ( ~ k ( t ) ,  t )  =ol ~ = ~ k ( t ) ,  (11) 
which gives the frequency w of the oscillations as a function 
of k and t .  Differentiating ( 11 ) with respect to the time, we 
obtain 

d t  o=o k ( L )  

We write the field E, ( t )  in a weakly time-dependent 
medium in the form 

1 

separating the slowly time-varying amplitude EL0' ( t )  and 
the eikonal. The induction D, ( t )  should also be represented 
as in ( 13), by separating out the amplitude D f '  ( t )  . 

Substituting (8)  and (13) into ( 6 ) ,  we obtain 
L. 
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In the same way that in Eq. (8)  E, ( ~ , t  - 7/2) was expanded 
in powers of r ,  in the second, "slow" argument, we must 
expand Ep) ( t  - r ) ,  and also exp( - ismk ( t  ')dt '), in pow- 
ers of r :  

Then (14), after the introduction of E, (w,t) in accordance 
with (9),  takes the form 

D~ ( t )  = exp [ - i  J uk ( t l ) d t l  ] 

The equation obtained by equating D, ( t )  to zero in 
( 16) is the equation describing the longitudinal oscillations; 
the first term in the curly brackets in (16) corresponds to 
( 11 ). Equation ( 16) together with ( 11) gives the law of 
variation of the field amplitude: 

(17) 
This law describes the variation of the nonresonant wave 
amplitudes [the imaginary part of E, (w,t) is absent, since 
the waves are assumed to be nonresonant]. Equation ( 17) 
describes conservation of an adiabatic invariant-the num- 
ber N ,  ( t )  of quanta, equal to 

The energy density W(t) of the waves is connected with the 
number Nk ( t )  of quanta by the relation ( f i  = 1 ) 

Indeed, differentiating ( 18) with respect to t, 

( ( d l d t )  E!" ( t )  I '=2yr ( t )  I EL" ( t )  (9  ), 

where yk ( t )  is determined in (171, we obtain ( d /  
dt)N, ( t )  = 0. 

4. CONSERVATION OF THE NUMBER OF QUANTA, AND THE 
NONLINEAR INTERACTION 

We now show where the error occurs in the arguments 
of the preceding Section. The choice of the second argument 

in ( 7 )  in the form ( t  + t ')/2 is, in fact, arbitrary. It would be 
possible to replace it by an arbitrary linear combination of r 
and t ', equal to t when t ' = t. For example, choosing the 
second argument in (7) in the form t ', in place of ( 8) we 
obtain 

e k  ( t ,  t') = & k  ( T ,  t - T )  =ek ( T ,  t )  --z8ek ( T ,  t )  /at.  (20) 

The factor-of-two difference between the second term in 
(20) and (8) means that the adiabatic invariant ( 18) is not 
conserved. The authors of Ref. 10 asserted that the magni- 
tude of the imaginary part of E, in a slowly varying system 
depends on the model used to describe the system. But the 
quasilinear theory is a specific description, and in particular 
it can be established exactly whether (8) ,  (20), or any other 
analogous relation holds. We shall show that in reality it is 
(20) that holds, and not (8),  and shall then show how the 
paradox which then arises in connection with the conserva- 
tion of the adiabatic invariant ( 18) is resolved. 

We shall find the perturbation Sf,,, ( t )  of the distribu- 
tion function f,,, ( t )  of the particles. For the Fourier compo- 
nents Sfpyk, we have 

dt' 
i ( a - k v )  ~f . , , .=e  J & ( t f )  ( a m p ( t f )  a p ) e i u f 9 -  

2n ' 

whence 
m 

Since D, ( t )  = E, ( t )  + 4rPk ( t ) ,  where the polarization is 

we have, on the basis of (2 1 ), - 
dz ~ ~ ( t )  = j ek (z, t -7 )  ~k ( t -7 )  g (22) 

0 

- 
J 6, ( T )  &=I. 
0 

As we see, it is (20), and not (8)  or any other relation, that is 
fulfilled. In accordance with the definition (9)  we now have 

We now show how to solve the question of the conservation 
of the adiabatic invariant ( 18). For this we write explicitly, 
using (23), the imaginary part of (20) that arises after Four- 
ier transformation: 

and for d@, /dt we use the quasilinear equation ( 1 ). Thus, 
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It can be seen from (25) that besides (25) it is necessary to 
take the nonlinear permittivity E:,, into account as well, 
since it has the same order of magnitude as (25). By the 
standard method for the interaction of resonant and nonre- 
sonant fields (see Ref. 1 1 ) we obtain 

With allowance for the nonlinear interaction, in place of 
( 17) we now obtain 

1/21 E:') ( t )  1-28 I E ~ )  (t) ~ ~ / d t = y ~ = y k ~ + ~ * ~ ,  (27) 

where is defined in analogy with ( 17), and, if we allow for 
the difference between (20) and (8),  has the form 

For the change of ( 18), i.e., of the number N ,  ( t )  of quanta, 
we now obtain 

We shall perform the following transformations of (26). We 
expand the difference denominator 

- 1 1 
= -+. mi-kiv ( O , - - ~ ~ V ) ~  

f f ... . 
@-mi- ( k -k i )~  a-kv (a-kv)' (o-kv) 

(31) 
The use of the expansion (31) is legitimate because (26) 
contains the factor S(w, - k, v ) .  The second term of (3 1 ) 
drops out of (26) because it is odd under the replacement 
w,-+ - w,, k,-+ - k, (since IE,, l 2  does not change under 
this replacement), while the third term of the expansion 
(31) (and, analogously, all the subsequent terms) gives 
zero, since commuting (a, - k, . v ) ~  with (k  - a /ap) in 
(26) preserves the first power of (w, - k, v), which upon 
multiplication by S (w, - k, . v) gives zero. Accordingly we 
now transform (26): 

N dp ( k l L ) -  1 ... 
hn 8u .k  = )-_-- 

(2n) a-kv dp a-kv 

1 ]...=$I - dp 1 
X 

(o-kv) (Zn) (a-kv) 
(kt$) . . . 

- 1 a2ek(o,t)  --- (32) . 
2 a o a t  

[we have integrated by parts and have used the fact that 
( k*d / ap ) (k ,*d /dp )  = ( k , - a / a p ) ( k - a / a p ) ~ .  Substi- 
tuting (32) into (30), we obtain dN, (t)/dt = 0; i.e., the 
number of quanta is an adiabatic invariant. 

We note that with the aim of simplifying the formulas 
we have assumed everywhere that the resonant waves (w,, 
k , )  are also longitudinal. However, all the results obtained, 
including formulas (30), (32) and the conclusion that an 
adiabatic invariant-the number N, ( t )  of quanta-is con- 
served, also remain valid for transverse resonant waves (of 
arbitrary modes, in general). Thus, the result dN, ( t ) /  
dt = 0 does not depend on the nature of the resonant waves 
and is general. 

We have proved the statement that an adiabatic invar- 
iant (the number of quanta) is coperved under the assump- 
tion that the system varies only in time but is spatially uni- 
form. However, the mathematical apparatus developed in 
Secs. 3 and 4 can be generalized to the case of spatially non- 
uniform systems. Thus, e.g., it is possible to show, in analogy 
with Secs. 3 and 4, that in the case of a stationary spatially 
varying closed one-dimensional system the number of quan- 
ta of nonresonant waves is also conserved. 

It can be seen from the above derivation that 1) 
allowance for the nonlinear permittivity is essential, 2) an 
adiabatic invariant is conserved (naturally) only in closed 
systems, in the absence of external sources. 

5. NONLINEAR INTERACTIONS AND THE POSSIBILITY OF 
AMPLIFICATION (DAMPING) OF NONRESONANT WAVES IN 
OPEN SYSTEMS 

The question of the nonlinear interactions describable 
by Im E; [see (26) and (57)] has recently been widely dis- 
cussed in the literature.I2 The starting point in the very first 
papers" was the assumption that stationary distributions of 
particles (ap ) and of turbulent fields ( l E ( k , )  1 2 )  exist. 
From the analysis performed it is clear that under these con- 
ditions Im E: = 0, and (26) correctly describes the interac- 
tion of the nonresonant and resonant waves. Here the most 
interesting effects are phenomena of conversion upward in 
frequency, which can be manifested in the generation of 
Langmuir ion-acoustic waves1' and in the generation of elec- 
tromagnetic waves of very high frequencies.12 In this con- 
nection we point out the inaccuracy of Ref. 13, in which the 
authors attempted to prove from general considerations that 
Im E: = 0. 

Under real conditions one often observes time-indepen- 
dence. A special role is played by open systems in which 
there is a source or sink of energy or particles. In those cases 
when the source Qp has a purely regular character, there 
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remains only the effect due to nonlinear conversion (26). 
Particles moving in the field of a nonresonance wave pump 
energy over into high-frequency waves, the number of quan- 
ta of which can grow in an avalance-like manner with time 
(if the anisotropy of (Ek,  1' remains constant and if is 
stationary and, possibly, even isotropic). In conditions when 
Qp depends on the distribution of particles [e.g., is deter- 
mined by (4) ], a contribution from Q, arises in the equa- 
tions for both the regular part and the turbulent part of the 
distribution function. In this case the regular distribution is 
stationary: 

d 
ne2 J dlr, k , ' (~, , ,  (k, -) 6(o,-klv) ( k l  

3 ~ '  

and therefore Im E:, which arises as a consequence of time- 
dependence vanishes and only Im E: remains. However, be- 
cause of the presence of the term 6Qp = - ( d /  
dp) F(p)Sfp, E: is modified as follows: 

(35 

We shall make the following transformations: 

I a 
Fi(p)Op---- @P (k$)Fi (p) .  (36) 

o-lcv d p ;  o-kv 

After we have discarded the total derivative with respect to 
the momenta, which does not appear in ( 35 ) , the first term 
in ( 36) acquires the form 

In the last step we have used the relation (33). On the basis 
of (32) and (33) we find that the contribution of (37) to SE; 
will be equal in magnitude but opposite in sign to E:. Thus, in 
the sum E: + there remains only the contribution of the 
second term in (36) : 

Im (6€kL+&k") 

For the excitation of Langmuir waves by ion-acoustic waves 
under conditions of stationary ion-acoustic turbulence gen- 
erated by a constant electric field E, (see Ref. 7) ,  we have 

and, consequently, I m ( 6 ~ f  + E:) = 0, i.e., nonresonant 
Langmuir waves cannot be generated. Evidently, the auth- 
ors of Ref. 13 were edging intuitively toward a proof of this 
statement. However, their route (an attempt to prove that 
Im E: = 0)  was, as already noted, fundamentally erroneous. 
It is clear that the absence of upward conversion in frequen- 
cy in the given case is a consequence of the very special form 
of the function F(p)  ( F  does not depend on p) .  In all other 
cases in open systems (e.g., when two-particle collisions of 
electrons and ions are taken into account) upward conver- 
sion in frequency is possible, even if we ignore the fact that in 
actual experiments there are always losses and a stationary 
distribution is established. 

6. PROOF THAT THE CONTRIBUTION OF SECOND-ORDER 
CURRENTS TO THE NONLINEAR INTERACTION VANISHES 

The expression (26) that was used above for the nonlin- 
ear permittivity E: was obtained under the assumption that a 
nonzero contribution to it arises only from nonlinear cur- 
rents of third order in the field. We shall demonstrate the 
erroneous nature of Refs. 14, in which the nonlinear permit- 
tivity was found to have a nonzero contribution arising from 
second-order currents. 

The contribution from the second-order currents to the 
nonlinear permittivity has the form 

In the given nonlinear interaction the scattering condition is 
assumed not to be fulfilled, i.e., w - w ,  - (k  - k, ) v # 0, 
Im ~ f -  k ,  = 0. Therefore, 

For the real parts of SkVklk - k, and S, - k , , k ,  - k, we have 
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= I  %{ (2n) [( kl d, a P (kv)] 

1 1 
X[ (o-kv)'(o--k-v) (L-:)+( ( o - k ~ ) ~ ( o ~ - k ~ v )  

1 + 
(al-k,v) ((0-kv) 

1 +-  (43 
(6)-kv) (ol-ktv) 

1 
Re S A - ~ , . ~ , - ~ ~  - - 

1 1 
kt - - -----7 

X[ ( ~ - k ' - ~ )  (o,-klv)" iP (a--k-v) (a-kv)' 
1 ( k ) ( k 1 ) }  (44) 

Withallowance for the equality (k, a /dp)  (k, . v) = (k,, a /  
ap) (k  V )  we find from (43) and (44) that 

Thus, we have given a general proof that, for the interaction 
of resonance and nonresonance waves, 

Im 6ekN=0. (45 

This assertion was made without detailed proof in Refs. 11 
and 12. Thus, the use of the expression (26) for the nonlin- 
ear permittivity is correct. 

7. CONSERVATION OF THE NUMBER OF QUANTA FOR 
ARBITRARY MODES OF OSCILLATION 

The results of Sec. 4 can also be generalized to the case 
of arbitrary modes of oscillation. Taking into account only 
the time dependence, we obtain (for the spatially uniform 
problem) in place of (2 1 ) 

w 

v e-'a' {E. (t-r) + [ -I& (t-r)]} 6fP,k(t)=e 5 2ni(w-kv) 
C 

dm, (t-r) 
X 

(46) 
8~ 

Here Hk ( t )  is expressed in terms of Ek ( t )  using the Max- 
well equations: 

t 

Substituting (47) into (46) and changing the order of inte- 
gration, we obtain 

w 

Next, in analogy with (22), we must express the induction 
Dk ( t )  in terms of 6 f P ,  ( t )  : 

I 

dp Dk (t) =El (t) +4ne dt, v8fP,k (tl) - . 
- ea (2n) 

Omitting the calculations, we give the final expression [ob- 
tained in analogy with (23) ] for the instantaneous dielectric 
permittivity (w,t) in the quasilinear approximation: 

Here EL:; and EL:; are the contributions from the first and 
second terms in (48) : 

The first term in (49) is analogous in structure to the 
longitudinal dielectric permittivity E, (o,t)  in Sec. 4. But the 
second term in (49) has a somewhat different form. There- 
fore, in place of formula (24), describing the longitudinal 
waves, we have 

a a ,,, I a a ,,, 
Im &r,a = -- E ~ , B  ( a ,  t) + --a 8k .v  ( a ,  t) a. at  a ao 

The dispersion equation now has the form [E( t )  
= e( t )E( t )  I 

The simplest case for analysis is that of unpolarized electro- 
magnetic radiation, which is transverse: 

Introducing 

and following the method developed in Secs. 3 and 4 of the 
present paper, we now obtain for the change in the number 
N ,  (t)  of quanta 

1 a Nk(t) =2n2(,?3:" (t) 1' (T-a'&!t' (o,  t ) )  , (55) 
o do  0-m*  ( 1 )  

82 8 k  it) , ( a ,  t) 

, dod t  

where&:) and EL' ) ( ' )  are defined in (49)-(51) and (54), the 
quantity a@, (t)/dt appearing in (56) is found from the 
quasilinear equation ( 11, and Im E:"', obtained by the stan- 
dard method, has the form 
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(here, to simplify the formulas, without loss of generality we 
again choose the resonant field to be longitudinal). 

Integrating (57) twice by parts over the momenta, we 
can convince ourselves that the sum in the square brackets in 
(56) vanishes. Thus, we have shown that an adiabatic invar- 
iant (the number of quanta) is conserved in closed systems 
for transverse waves too. 

8. EXAMPLES OF NONLINEAR INTERACTION IN OPEN 
SYSTEMS IN ASTROPHYSICS; DISCUSSION OF THE 
RESULTS 

We shall consider how nonresonant waves evolve in an 
open system, using the example of electromagnetic waves of 
high frequencies (wsw,, ) in the presence of longitudinal 
resonant waves. We shall assume that the losses Q,, in the 
system completely balance the quasilinear acceleration of 
the particles, i.e., the relation (33) is valid. This leads [see 
(35)] to an additional term in the linear (now transverse) 
dielectric permittivity describing the nonresonant waves: 

The expression for the nonlinear permittivity is given by for- 
mula (57), which, by means of transformations analogous to 
those performed in formulas (36) and (37) and with the use 
of the result of Sec. 7, can be brought to the form 

in which the quasilinear collision integral has been separated 
out explicitly. Expressing the latter in terms of a source using 
Eq. (33), after some transformations we obtain the follow- 
ing expression for the growth rate: 

The results obtained open up the possibility of creating 
ultrahigh-frequency amplifiers on completely different prin- 
ciples, using time-independent weakly anisotropic resonant 
waves of relatively low frequencies in open systems. 
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