
Absolute determination of the intensity of light from photocurrent statistics 
D. N. Klyshko 

M. V. Lomonosou State University, Moscow 
(Submitted 21 October 1985) 
Zh. Eksp. Teor. Fiz. 90, 1 172-1 18 1 (April 1986) 

It is shown that a certain class of states of an electromagnetic field gives rise to a photocurrent 
the statistics of which carries information on the average radiation intensity and on the 
detector efficiency. This can be used to develop absolute (standard-free) photometry. 
Radiation statistics with the following properties is suitable for absolute calibration of 
photodetectors: the normalized factorial moments g'k' of the photon numbers n should 
depend on the average photon number Z and the nature of this dependence should be known. It 
is shown that such "calibrating" radiation can be obtained from ordinary radiation by 
parametric scattering and two-photon absorption effects. Radiation from a laser operating at 
its threshold can also have the required properties. However, harmonic generation and many- 
photon detectors are of no interest in such photometry. 

$1. INTRODUCTION photon number P,, including the most widely encountered 

A method for absolute (standard-free) determination 
of the quantum efficiency 7 and of the photon flux by "two- 
photon light" consisting of separate pairs of practically si- 
multaneously generated photons has been developed.'~~ In 
this method, two-photon light is directed to two photon 
counters connected by a coincidence circuit. If a pulse ap- 
pears at the output of one detector and not at the output of 
the other, it follows that the second detector has "missed" a 
photon. Consequently, if the counting time is sufficiently 
long, the ratio of the number of coincidence pulses m, to the 
number of pulses in the first channel m, is equal to the quan- 
tum efficiency of the second detector: 7, = m,/m,. This 
method gives also information on the number of photons 
which reach the detectors in the counting time (n = m ,m,/ 
m, ) and makes it possible to construct a generator produc- 
ing a selected number ofphotons. Two-photon light can also 
be used in calibration of analog detectors with a continuous 
output signal, image converters, and-in principle-photo- 
graphic films. At first sight counting of a number of photons 
using a detector with an a priori unknown efficiency seems 
impossible and initially this method seems to be mysterious. 

The purpose of the present paper is to present the gen- 
eral principle of the method and ways in which it can be 
modified. It is shown that in addition to two-photon light, it 
is possible to use other types of radiation for absolute calibra- 
tion of detectors and also that two detectors are not essential 
for the purpose (and this is why the essence of the method 
will be considered dealing mainly with a one-detector sys- 
tem). It is found that a certain class of states of an electro- 
magnetic field creates a photocurrent with the statistics that 
determine the average number of photons ii which reach a 
detector during the sampling time T (here and later we shall 
consider continuous radiation and assume that all the quan- 
tities apply to a time interval T and a photocathode section 
A, i.e., n is the number of photons in the detection region 
V,, = cTA ). 

It is known that there are certain distributions of the 

Poisson and geometric distributions, which are not affected 
by the process of one-photon absorption. The distribution of 
the number of photocounts P :, repeats the initial form of P,, 
on a modified scale: E = qE. In this case the photocurrent 
statistics provides no information on the value of E. How- 
ever, there are distributions (in particular, N-photon distri- 
butions) which are not invariant under one-photon absorp- 
tion and in such cases the observed function P :, carries full 
information on P,, including 5 and other parameters of the 
distribution. Naturally, the form of the initial distribution 
should be known apriori and the degree of the change in the 
distribution should depend on E. 

Another simple example is two-photon light in a system 
with one detector. In the case of the one-photon photoeffect 
when E(l the probabilities of single and double pulses are 
clearly of the following form: 

P i  ( I - )  P,'=q2ii/2 (1.1 

(whereas in the case of the initial radiation we have P, = 0 
and P, = ii/2). Hence, we find that 

A more rigorous formulation of the requirements in re- 
spect of the statistics of radiation suitable for absolute pho- 
tometry with one-photon detectors and the general scheme 
of a possible experimental procedure are given in the next 
section. Later, in $3 we shall show that the required radi- 
ation cannot be generated by doubling the frequency of the 
laser of the thermal radiation (with the Poisson and geomet- 
ric distributions, respectively). Two-photon light will be dis- 
cussed in greater detail in $4 and in the Appendix. In $5 we 
shall demonstrate that ordinary radiation passing through 
matter exhibiting two-photon absorption acquires proper- 
ties essential for photometry. In $6 we shall consider laser 
radiation in the case when the excess above the threshold is 
not too large. The statistics of such radiation is, in accor- 
dance with the familiar model of Scully and Lamb, also not 
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invariant under linear absorption. Finally, in $7 we shall 
discuss briefly the possibility of using the two-photon photo- 
electric effect. 

$2. ABSOLUTE DETERMINATION OF THE NUMBER OF 
PHOTONS 

We shall mention briefly the relationship beween the 
statistics of photons in the radiation incident on a detector 
and the statistics of photocounts at the detector output (for 
details see, for example, Refs. 3-6). For the sake of simpli- 
city, we shall assume that the selected detector is of the one- 
photon and one-mode type, i.e., we shall assume that the 
volume of the detection region V,,, is much less than the 
volume of the field coherence region V,,, . In this approxi- 
mation the process of detection involves "binomial" trans- 
formation of the distribution: 

pml =x (:) q m ( ~ - ' l ) n - m ~ , , = < : i m e x p ( - ~ )  :)/rn!, 
n-m (2.1) 

where the angular brackets [like the bar in Eq. ( 1.1 ) ] denote 
averaging over the states of the incident field; = 72 is the 
photocount number operator; 2 is the photon number opera- 
tor for the detection region; the colon in the above equation 
denotes the operation of normal ordering. The same trans- 
formation describes also the change in the photon statistics 
as a result of linear attenuation (or amplification if the spon- 
taneous radiation is ignored) of the field in a material with a 
transmission coefficient g (Ref. 6) .  The relevant equations 
are of the form5-' 

where r is proportional to the transition probability, to the 
density of atoms at the lower level (it is assumed that the 
upper level is empty), and to the layer thickness. Assuming 
that g = exp( - T ) ,  we can readily show that Eq. (2.1) is 
the solution of Eq. (2.2). 

The fairly complex transformation of the distribution 
(2.1 ) corresponds to an elementary transformation of the 
generating function: 

where the generating function for the number of photo- 
counts is defined as follows: 

It follows from Eq. (2.3 that the inverse transformation of 
Eq. (2.1 ) is of the same form, but with 7 replaced with l/7. 
Equation (2.1 ) then describes the change in the photon sta- 
tistics under ideal amplification conditions when no addi- 
tional noise is introduced. In particular, the distribution of 
Eq. ( 1.1 ) reduces to the initial two-photon distribution. 

According to Eq. (2.4), the derivatives of the generat- 
ing function at the points x = 0 and x = - 1 determine the 
factorial moments and the probability, respectively. A sim- 
ple relationship between the factorial moments for photons 
and photocounts follows from Eq. (2.3 ): G(k" = qk G(k) , SO 

that the normalized factorial moments g'k' =G'k' /-k n are 
invariant under linear attenuation: g'k" = g(k) . Therefore, 
determination of the photocurrent statistics when E and g 
are not known can give information only on the relative 
quantities, viz., the normalized factorial moments of the 
photon distribution. The question now arises: how to obtain 
the absolute value of the average number of photons E from 
relative measurements? 

We shall find the generating function for the normal- 
ized factorial moments and distributions: g ( x ) = ~ ( x / E ) .  
According to Eq. (2.3), we have Q '(x) = @x).  The deriva- 
tives of Q(x) at the point 0 and - E determine the normal- 
ized factorial moments g(k)  and the distributions p,, =Pn / 
E n .  The function Q(x)  carries all the information on the 
photon distribution which can be obtained using a photon 
counter with an unknown value of 7. Clearly, in absolute 
photometry we can use only the radiation for which Q de- 
pends on E or on other parameters of the distribution govern- 
ingE:Q= f (x,a,,a,, ... ). 

This is not true of the Poisson distribution, when we 
have 

or in the case of the geometric distribution, which is charac- 
terized by 

The nature (functional form) of these distributions does not 
change as a result of the transformation described by Eq. 
(2. I ) ,  which alters only the scale of the distribution 
(E j77~). 

The distributions (2.5) and (2.6) are governed by one 
parameter. A two-parameter distribution describing the 
sum of a coherent signal and Gaussian noise has the follow- 
ing generating function4: 

Q (x, S ,  N )  = (11-xN)-l exp [ x S /  ( I - x N ) ]  . (2.7) 

In this case the process of linear absorption, i.e., the x - q x  
transformation of the argument, once again changes only the 
values of the parameters Sand N by the factor 7 but leaves 
the form of the generating function unaltered. This applies 
also to the two-parameter Pascal distribution which de- 
scribes the statistics of photons in M modes of thermal radi- 
ation. 

Q ( x ,  f i ,  M) = ( I - x E / M ) - ~ .  (2.8) 

However, in some cases the form of the distribution is 
affected by linear absorption and this makes it possible to 
determine the absolute values of E and 7. Let us assume that 
we know apriori the functional forms of the photon distribu- 
tion and the corresponding generating function, both deter- 
mined by a set ofp parameters a , ,  ..., a,. The factorial mo- 
ments are then certain known functions of these parameters: 

f 1 a  . . . , a )  g k = f ( a 1 .  . . a )  k22. (2.9) 

Studies of the statistics of photocounts makes it possi- 
ble, in principle, to determine (after elimination of the ef- 
fects of the "dead time," the finite volume of the detection 
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region, etc.) the probabilities P & and the moments z. Let 
us assume that, for example, the moments E,  z, ..., mp + 

are determined; their combinations give the normalized fac- 
torial rn~mentsg '~ '  . As a result, we obtain a system of equa- 
tions for the parameters of the photon distribution ai : 

If this system is complete, its solution can give complete 
information on the statistics of photons, including the aver- 
age number E (without the use of calibrated energy meters!). 
Some examples of application of this procedure will be given 
later. 

Determination of higher moments with k > p  + 1 can 
be used to check the initial hypothesis on the nature of the 
statistics of the radiation incident on a detector. The, the 
formula 7 = E / E  can be used to find the main detector char- 
acteristic which is its quantum efficiency. If the incident ra- 
diation is monochromatic and if calibrated frequency and 
time-interval meters are available, it is possible to determine 
also the average energy U = fiwE and the power U/T. 

It should be stessed that the absolute determination of 
these parameters is possible essentially because of the quan- 
tum-optical effects. According to the semiclassical Mandel 
formula, the normalized factorial moments of photocounts 
are equal to the normalized ordinary moments for the energy 
distribution during the sampling time: 

The dimensionless n~mber sg '~"  cannot give information on 
the dimensional quantity n, irrespective of the density of the 
distribution p ( U) . 

$3. TRANSFORMATION OF PHOTON STATISTICS AS A 
RESULT OF FREQUENCY CONVERSION 

Light with nontrivial statistics can be obtained from 
ordinary light with the aid of the nonlinear-optics effects, 
i.e., with the aid of many-photon processes. The occurrence 
of such processes in the atoms, molecules, or crystals, alters 
the statistical properties of the incident excites 
new field modes, and results in a correlation between pho- 
tons belonging to modes of different It 
would be of interest to consider the possibility of utilizing 
photon bunching ( g'2' > 1 ) and antibunching ( g"' < 1 ) ef- 
fects in absolute photometry. 

We shall first consider the effect of frequency doubling 
w, + wO+w in a transparent material. Using the approxima- 
tion of constant single-mode pumping and the Heisenberg 
equations, we obtain the relationship a = ira;, where a and 
a, are the photon annihilation operators and r is the ampli- 
tude conversion coefficient. Hence, using the equality 
(a + ak ) = G(k) , we obtain 

Consequently, only the Poisson distribution (exhibited by 
coherence of the field13 is invariant under frequency multi- 
plication conditions. In the case of geometric pumping, it 
follows from Eq. (2.6) that g'k' = k!(2k - I)!!, i.e., that 

strong photon bunching occurs (g"' = 6 ) .  However, accord- 
ing to Eq. (3.1), the normalized factorial moments of the 
second-harmonic field (and the correlation g- G h3' )  are 
independent of the photon distribution parameters, i.e., they 
provide no additional information, so that absolute measure- 
ments are impossible. Generation of higher harmonics yields 
similar results. 

Generation of the sum frequency w , + w2- also fails 
to produce radiation with the required statistics, because in 
this case we have a = ira,a2 and this yields 

Generation of the difference frequency w, - w ,+, is 
more interesting and in this case the first order treatment 
gives 

Hence, E2 = r2Eo(E, + 1 ), where n, = a,+ a ,  are the 
numbers of photons in the modes. The term independent of 
Fi, is the quantum noise of the converter. A comparison of E2 
in the presence and absence of a field of frequency w , makes 
it possible to determine Z,. In this alternative quantum pho- 
tometry method1, the comparison standard is in the form of 
spontaneous radiation emitted by the frequency converter. 

We shall be interested in the case when E l  = 0 and a 
crystal is a source of two-photon light. This effect is known 
as parametric scattering or the frequency splitting effect 
(see, for example, Refs. 10-1 3 ) . 

94. PARAMETRIC SCATTERING 

Spontaneous parametric scattering can be interpreted 
as a result of decay of the pump photons into pairs of pho- 
tons, i.e., this is a process which is opposite to the generation 
of the sum frequency: w,-+w, + w,. The photons belonging 
to the same pair ("biphoton") are created simultaneously 
(within the limits of 1 psec) at the same point in a crystal1 or 
along directions linked by the phase-matching condition 
(ko=kl  + k2). 

It follows from Eq. (3.3) and from the corresponding 
expressions for a , ,  obtained in the first order with respect to 
ii,, that 

- 
Hence, we find that v l E l  = ~ ~ 7 7 ~  nln2 (Ref. 10). This rela- 
tionship was confirmed experimentally in Refs. 2 and 14. 

In the degenerate case (k, = k,), it follows from Eq. 
(3.3) that 

This last formula is equivalent to Eq. ( 1.2) because if E( 1, 
it follows from Eq. (2.1 ) that 

Therefore, in the first approximation with respect to the 
pumpintensity we havean equality G "' = G "'typical oftwo- 
photon light and it follows from this equality and from Eq. 
(4.2) that PI = 0 and P2 = E/2. 
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- 
The above formula for n,n2 does not allow for "acci- 

dental" coincidences proportional to E,E2 = E:. It was 
pointed out in Ref. 15 that in the case of parametric interac- 
tions described by a Hamiltonian of the type a$a,a, + H.c., 
in addition to the Manley-Rowe relationships, there are also 
integrals ( (n ,  - n21k ) = const. In particular if k = 2 and 
for the initial vacuum state, we have (nln,) = (nf ), so that 

This last relationship makes it possible to determine E ,  from 
the correlation of photocounts in two channels and from the 
bunching factor of one of the channels." 

When the pump statistics is known, we can also calcu- 
late g',l). It is shown in the Appendix that 

G : ~ ) = T ~ G ~ ( ' ) +  ( i / 8 )  7' (Gi2) -G:') ) + . . . , 
(4.5) 

G:~ '=~T~G:"  + . . , , g1(2) =2gd2'+0 (T') 
(in the degenerate interaction case the pump photon bunch- 
ing factor g:' is multipled by 3 instead of 2) .  The inequality 
gf2'  >gh2) which is then obtained means that photons are 
bunched more strongly in each channel than in the pump 
field (even in the case of spontaneous parametric scatter- 
ing). This is. in conflict with the self-evident concept of ran- 
dom decay of pump photons, for which in accordance with 
Eq. (2.3) we should have gi2' = gh2'. 

Terms of the order of 4G A ' )  in Eq. (4.5) appear because 
of allowance for the noncommutative nature of the operators 
a, and a,+, and allowance for their change as a result of the 
interaction. Let us assume that, as usual, the conditions 
ii,)ii, and Ghk+ '))GAk) (i.e., E,)gF'/ghk + I ) )  are satsi- 
fied; then, the pump radiation can be regarded as a given 
classical quantity. The factorial moments then reduce to the 
ordinary moments and we thus obtain (see the Appendix) 

- 
G:') =2 (~h(  2 ) = 2 ~ ~ 2 +  ("I,) T " X ~ ~ + .  . . , (4.6) 

Here, x = rn;" and the averaging is carried out over the 
classical distribution of n,,. In the Poisson distribution cases 
with ii,,)l, we have 3 = E t ,  so that f (x)  = f (Z) and 
g!" = 2gh2'. Only in this case can we justify the "parame- 
tric" approximation for determinate, classical, and given 
pumping. Results similar to Eq. (4.6) but with the replace- 
ment of 2gA2' by 3gh2' are obtained for degenerate parametric 
scattering. 

A two-channel coincidence detector can also be used in 
the case of one-mode calibrating radiation if we employ a 
semitransparent mirror that separates the probabilities p 
and q = 1 - p a photon flux into two halves (Brown-Twiss 
intensity interferometer). The probability of coincidence is 
then proportional to m,m, =pqq,q,G'2' SO that the nor- 
malized output signal from the interferometer is identical 
with the bunching factor g',) of the incident radiation. This 
result can begeneralized in an obvious manner to an N-chan- 

nel coincidence detector. Such a method for determination 
of the factorial moments has practical advantages over the 
one-channel method. 

55. TWO-PHOTON ABSORPTION 

We shall now assume that the investigated radiation 
crosses a layer of a cold material exhibiting two-photon ab- 
sorption. A change in the statistics is described by the fol- 
lowing  equation^^*^.^: 

A general solution of Eq. (5.1 ) is obtained in Refs. 8 and 9. 
In view of the low probability of two-photon transitions it is 
sufficient to consider only a solution which is of the first 
order in T. Then, Eq. (5.1 ) yields the following correction to 
the generating function: 

6Q ( x )  =-T (2x+x2) d2Qo/dx2. (5.2) 

The derivatives of this function at x = 0 determine the cor- 
rections to the factorial moments: 

Consequently, the rate of "unbunching" in the Poisson 
pumping case is independent of the initial intensity E,: 

whereas in the geometric pumping case it does depend on 
this intensity: 

Therefore, if we mea~ureg '~ '  for two values of E,, we can then 
in principle find A, and T with the aid of Eq. ( 5.5 ) . However, 
it is simpler to determine T using the Poisson pumping and 
the relationship (5.4), and then apply Eq. (5.5). 

On the other hand, determination of three quantities- 
g'2' and the average numbers of photocounts Tii, and Ei at the 
entry and exit from the absorber-also gives full informa- 
tion. In fact, Eq. (5.4) and the relationships 

in the Poisson pumping case yield 

where E = EVEo. In the geometric pumping case, we find 
that 

It should be noted that two-photon absorption can also 
be used in other forms of absolute measurements. For exam- 
ple, the amplitude of a magnetic field H I  in the rf range has 
been determinedl"rom the ratio of one- and two-photon 
absorption under magnetic resonance conditions (the field 
H, is then expressed in units ofw/y, where y is the gyromag- 
netic ratio). 
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$6. LASER RADIATION 

Below the excitation threshold a single-mode laser is 
known to generate not only ordinary thermal radiation, but 
also a flux of photons with the geometric distribution. When 
the threshold is exceeded significantly, the saturation effect 
limits the field amplitude and its state then approaches co- 
herence and the photon distribution approaches the Poisson 

We shall be interested in the intermediate case when, in 
accordance with the Scully-Lamb m~de l ,~ .~ . ' '  the following 
two-parameter distribution describes a number of photons 
in the laser resonator: 

P . = I / @  ( a )  - [ p !  an/(j3+n) ! ] - i =ap /p !  ea, (6.2) 

where @(a) =@ ( 1,1 + & a )  is a confluent hypergeometric 
function. Approximate expressions are valid beginning from 
a certain excess above the threshold in the range a / P L  2 
(Ref. 5); we then have Po(l and Eza - 0. 

Using the definition (2.4), we can find the generating 
function for the distribution of Eq. (6.1 ): 

It should be noted that the x+vx transformation does not 
reduce to a simple change of the scale so that the distribution 
(6.1 ) changes its form as a result of linear attenuation of the 
radiation (for example, as a result of passage through the 
exit semitransparent mirror of a resonator). In accordance 
with the definition of Eq. (6.2), the function @ ( z )  satisfies 
the equation 

which yields 
G ( L ) = ~ -  !3+!3Po=a-p, G'"= (a-j3-1) G(')+a=Ti2+j3, 

G(3)= (a-p)  G(')+2 (I+p) G(1)-2arii3+3pn-2j3. 
(6.5) 

Above the threshold the normalized factorial moments are 

Solving this system, we find that 

where h, ~ g ' ~ '  - 1. The quantum efficiency is given by 
77 = WE. We recall that 77 includes also the losses in the 
optical channel between the laser resonator and the detector, 
i.e., it includes the exit mirror of the resonator. 

$7. TWO-PHOTON DETECTOR 

We shall now consider the possibility of using the two- 
photon photoelectric effect in absolute photometry. A sim- 
ple generalization of the derivation of Eq. (2.1 ) shows that 
the generating function is again given by Eq. (2.4), if we 
assume that 6i = v: i i2 .  Differentiating the generating func- 
tion k times, we obtain 

As expected, this result is analogous to Eq. (3.1) de- 
scribing transformation of the photon statistics in the course 
of frequency doubling. Although the detection process alters 
the statistics of the non-Poisson radiation, such a change 
does not depend on Fi. 

Generalizing this discussion, we can draw the conclu- 
sion that n-photon detection, like n-fold frequency multipli- 
cation, is of no interest in absolute photometry. 

CONCLUSIONS 

Absolute photometry depends on the quantum nature 
of light and on the nature of the process of photodetection. 
This applies also to analog detectors.' Although at present 
two-photon light is the optimal representative of calibrating 
radiations, it is desirable to seek for variants suitable also at 
other wavelengths and at other intensities. The saturation 
effect may be of interest from this point of view. 

We have considered here the problem of existence and 
possibility of generation, in principle, of calibrating radia- 
tions so that no numerical estimates were attempted. The 
practical feasibility of these methods will require separate 
investigation, but it is already clear that the two-photon ab- 
sorption effect will most probably be too weak for photomet- 
ric applications. 

APPENDIX 

Dependence of the statistics of parametric scattering on 
the pumping statistics 

We shall first consider the degenerate case (k ,  = k,). 
The effective HamiltonianI2 corresponding to the exact 
phase matching yields the following Heisenberg equations: 

where c-ia, and the operators a and a, include the factors 
exp (iwt ) and exp (iw,t). 

We shall seek the factorial moments in the form of a 
series in T. The higher derivatives can be obtained with the 
aid of Eq. (A. 1 ) . For example, 

Here and later we shall drop the terms which do not contri- 
bute in the vacuum state of the incident subharmonic field. 

Using Eqs. (A. 1 ) and (A.2), we obtain 

The negative term is the result of an allowance for the change 
in the pump field. It follows from the commutation relation- 
ships that 

Similarly, 
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As a result, we obtain 
G ( ~ ) = T ~ G : ' )  +('/.,) t4 ( 2 ~ : )  -G:')) + . . . , 

In the case of nondegenerate parametric scattering, we 
find from Eqs. (A. 1) and (A.2) that 

d=cb+, 6=ca+, t=-ab, 
(A.7) 

a= (cc+-bb+)a, a=c(c+c-b+b-1) b+, 
where a=a, and b =a,. Hence, we obtain the derivatives 

The result is Eq. (4.5). 
Assuming then that iiO)ii and iio)ghk'/ghk + I ) ,  we go 

over to constant classical pumping. Then, the system (A.7) 
has the following solutions 

where u = cosh x ,  v = sinh x ,  x = rn;", and p = arg(c) are 

random classical quantities. Hence, we can readily find G'k' 
[see Eq. (4.6) 1. 

"In practice, accidental coincidences are found by moving one of the de- 
tectors out of the two-photon coherence 
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