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Equations are obtained for the distribution of the chemical potential (pressure) of superfluid 
He-3 flowing through a narrow channel with allowance for the diffuse reflection of the 
quasiparticles from the walls. The possibility of interpreting the experimentally observed 
dissipation in terms of phase slippage is discussed. 

1. INTRODUCTION 

Experimental interest in the phenomena connected 
with flow of superfluid He-3 through thin channels has in- 
creased greatly in the last few years. Principal attention is 
being paid to measurements of the critical velocities and of 
the relaxation of the superfluid flow (see, e.g., Refs. 1-3). TO 
measure the critical pair-breaking velocities it is necessary 
that the channel radius be comparable with the incoherence 
length c ( T ) .  At such channel sizes, no vortices can be pro- 
duced and also, an important factor for the A phase, the 
anisotropy vector 1 cannot move. These conditions were re- 
cently realized in an experiment by Manninen and Pek01a.~ 
They used a porous filter with hole radii R = 0.4 ,urn, ap- 
proximately five times larger than lo. They plotted in the 
experiment the dependence of the pressure difference A P  on 
the two sides of the filter on the helium flow I through the 
filter. A pressure difference was unobservable at a flow lower 
than a certain critical value I, and appeared only at values 
above I,. The critical flow I, varies with temperature like 
( T ,  - T)'I2 and agrees well with the predictions of the 
Ginzburg-Landau theory for the pair-breaking f l ~ w . ~ - ~  At a 
flow I >  I, the slope of the Ap(I) curve was such that the 
flow of the normal component was small compared with the 
total liquid flow. This allows us to assume that under these 
conditions superconductivity is preserved at a constant pres- 
sure difference-a situation analogous in many respects to 
the so-called resistive state of supercond~ctors,~ where the 
superconductivity against the background of a constant 
electric field is maintained by phase-slippage processes. The 
present paper deals with the possibility of interpreting the 
experimental data of Ref. 3 in terms of phase slippage in 
superfluid He-3. 

For this purpose we need first equations for the distri- 
bution of the chemical potential (pressure) along the chan- 
nel. These equations cannot be obtained in the hydrodynam- 
ic approximation, for in narrow channels of radius 
comparable with the coherence length the particle mean free 
path 1 is always large compared with the pore radius (in Ref. 
3 the ratio I / R  ranged approximately from 100 to 10, de- 
pending on the pressure). Section 2 is devoted to the deriva- 
tion of the corresponding equations in the basis of the micro- 
scopic theory. Also discussed in this section is sound 
propagation in thin channels. The experimental data are 
compared qualitatively with the suggested theoretical pic- 
ture in Sec. 3. 

2. DERIVATION OF THE KINETIC EQUATIONS 

We follow the method used earliers to obtain the equa- 
tions of orbital dynamics in 3He-A and based on an expan- 
sion of the ~ l i a s h b e r ~   equation^.^ Just as in Ref. 8, we disre- 
gard Fermi-liquid effects, which do not alter the physical 
picture in this case. We put in this section li = 1. 

The ~ l i a s h b e r ~  equations are expressed in terms of qua- 
siclassical Green's functions integrated with respect to the 
energy variable & = (p2/2m) - EF: 

where letters with carets de%ote matrices over the spin in- 
dices. The order parameter A, and the mass flux j are ex- 
pressed with the aid of these functions in the form 

Here n is a unit vector in the direction of the momentum p,, 
v(0) = mpF/2r2 is the density of states on the Fermi sur- 
face, and E * = E * w / 2 .  The trace Tr i%taken over the spin 
indices. The matrix Green's function G satisfies the equa- 
tion9 

where 

rZ is a Pauli matrix in the space of the functionsg and f, and 
? is the collision integral: 

Here 

is the eigenvalue matrix for the pair interaction. We shall not 
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write out the known cumbersome equations for 2, since they 
can be found in Refs. 8 and 9. The curly brackets denote 
convolution with respect to E. The functions with super- 
scripts R and A are respectively retarded and advanced 
Green's functions, which satisfy Eq. (3) with the one excep- 
tion that the right-hand side contains the collision integral 

To derive the kinetic equation we introduce the even 
f ''I and the odd f ' I '  parts of the distribution function, in 
accordance with the expressionlo 

The functions f '" and f "' have the following properties: 

The calculations consist of substituting expression (6) in 
Eq. (3 )  a n i  taking into account the equation for the regular 
functions GRCA' , and of expanding the obtained expression 
in terms of the small time and spatial derivatives. To simplify 
the situation, we assume that the transverse dimensions of 
the pore are much larger than go, but are as before smaller 
than the mean free path 1. In this case the stationary equation 
for the order parameter remains the same as in an unbound- 
ed volume of liquid, but the kinetic equation for the distribu- 
tion function will differ from the hydrodynamic limit. 

We begin with the case of the A-phase. In this phase the 
order parameter and the Green's functions can be written in 
the form 

Here 8'"' are Pauli matrices in spin space, and the letters 
without carets denote the orbital parts of the corresponding 
functions. Thus, 

A ( T )  ( Y )  Y = A ' + i A N ,  

where A' and A" are two mutually perpendicular unit vec- 
tors. Their product defines the anisotropy vector 
1 = A'xA".  

We assume below for simplicity that the spin part of the 
order parameter remains unchanged, i.e., that the unit vec- 
tor d in spin space is constant; we shall track only the vari- 
ation of the orbital part of the order parameter. In this case 
the functions f and f j2' are diagonal in the spin indices 
and we getX 

I,='/,i Sp [ I -  (IR-I") f")], 

At this stage it is convenient to confine oneself to tem- 
peratures close to critical, Tc - T4Tc. Then A4 T, and fur- 
thermore at E- T the density of states i($ - g' ) is con- 
stant and equal to unity, making the claculations much 
simpler. 

To connect in Eqs. (7) and (8) the derivative of F'2' 
with the function f "' and conversely, it is convenient to 
return for a while to the initial equations (3). The coordinate 
dependence of the complete functions 

breaks up into two parts: fast variations ofg and 2 over dis- 
tances of the order of the transverse dimension of the chan- 
nel and, as will be shown below, a slow variation of the func- 
tions f "' and f '2' over distances much larger than the 
transverse dimension of the channel. The time dependence 
of the distribution functions f "' and f '2' is assumed to be 
slow compared with reciprocal time 7;' of the inelastic 
collisions. This means automatically that the corresponding 
frequencies are smaller than the reciprocal time r; ' - u,/R 
of particle transit between successive collisions with the 
walls. At distances on the order of the pore radius we can 
therefore neglect the collision integral and all but the radient 
term in Eq. (3 ) for g and g. We get 

We separate in f 'I' the part odd in n. We write for this pur- 
pose 

g= (gR-gA)  f'O'+g1+ (gR-gA)  f(Z', 
g=- (gR-gA) f'O'+g'+(gR-gA) j'Z', 

where f "" = tanh(~/2T) is the equilibrium distribution 
function. From ( 12) we obtain 

We shall assume complete accommodation of the quasiparti- 
cles in collisions with pore walls. It requires that the correc- 
tiong' to the Green's function vanish at that point r, of the 
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wall from which the particle departed as a result of the last 
collision with the wall. The solution of (13) with such a 
boundary condition is" 

gf=-lr-rBI ( n V )  [ ( g R - g A )  f(')]. 

The corresponding boundary condition for the function g' 
should be set at the point r; at which the particle reaches the 
wall 

Here r, and r; are the points where a straight line parallel to 
v, and passing through the particle location r penetrates 
through the walls of the channel (see Fig. 1).  Since 
(gR -gA)Sf( i )=J(g ' -g) ) ,  wehave 

where d ,  = Ir, - r;) is the distance along the particle tra- 
jectory between the wall points. Thus, 

Analogously, separating the part off  "' that is odd in n, we 
get 

where f his2' are the parts containing even powers of n. 
To continue the derivation we need an explicit expres- 

sion for the regular functions gR(A' and f R ( A '  with 
allowance for the spectrum distortion by diffusion scattering 
from the channel walls. The Green's functions can be calcu- 
lated by the method of trajectories, as was done, e.g., in Ref. 
12. It is simpler, however, to solve Eqs. ( 3 )  for regular func- 
tions with corresponding boundary conditions on the walls. 

The boundary conditions on diffusely reflecting walls 
can be obtained by a method proposed by Ovchinnikovi3 for 
an analogous problem in superconductors. To this end, we 
replace the diffusion of the reflecting wall by a thin scatter- 
ing layer of impurities, such that the mean free path in this 
layer is much less than its length. The impurity density in the 
layer is assumed so high that 7T< 1, where ? is the path time 
in the layer. Since scattering by impurities disrupts the tri- 
plet pairing, we have in the interior of the layer 

R(A), fp+R(A)_t O, 
f p  --gp + *I. 

The equations for f f"", f ,+ R ( A )  inside the layer (the y axis 
is directed along the inward normal to the surface) 

Here n is the impurity density in the layer a,,, is the scatter- 
ing cross section, and 

P-'=nvF J 0,~ dzd.,. 

We consider first Eq. ( 16) for the retarded Green's function. 
It can be seen that at vFy > 0 the function f f increases in the 
interior of the layer as y-+ - oo , and we must therefore stip- 
ulate f E,, = 0 on the boundary. The function f f at v, < 0 
decreases the interior of the layer, except for the combina- 
tion 

j fPR.., dQ.7 

which remains constant. We must therefore require that this 
expression also vanish on the boundary. The boundary con- 
ditions for the functions f ,+ and f :, f ,+ A can be obtained 
similarly. Thus, we must stipulate that on diffusely reflect- 
ing walls (cf. Ref. 13) 

where m is the inward normal to the wall. 
The stationary regular functions satisfy equations ob- 

tained from (3  ) : 

as well as the normalization conditions 

For a narrow channel we can omit from (20) the particle- 
particle collision integral. 

We shall see below that the important role is played by 
frequencies E much higher than A ( T )  . For these frequencies, 
Eq. (20) with boundary conditions (18) and (19) can be 
easily solved and yields 
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so that 

where the vectors r, and r; on the boundary are defined in 
Fig. 1. In the derivation of expressions (2 1 ) we took it into 
account that at frequencies E)A the functions f oscillate 
over distances U ~ / E  much shorter than the length {(T) on 
which the changes of the order parameter take place. Equa- 
tions (21 ) are valid if, furthermore, the scale of the disper- 
sion is much smaller than the transverse dimension of the 
channel: u ~ / E ( R .  In the derivation of (21) we used only the 
boundary condition ( 18). The boundary conditions ( 19) 
are imposed on the opposite channel wall with respect to the 
particle motion, where 

A~IE ,  flR(A) =f A;/&. 

As a result, we obtain from ( 1) for the normal component of 
the order parameter 

i.e., the known condition that 1 be perpendicular to the dif- 
fusely reflecting wall. 

We shall need later expressions averaged over the chan- 
nel cross section, of the type 

With the aid of (2  1 ) we get 

where 
1 

A~' (T)  TB-'(v)=- J IrnvFl I A ~ I  B2 do. 
~ ' 9  . (23) 

The integration with respect to d a  is carried out here along a 
line on a surface bounding the channel cross section. 

The quantities IAp l B 2  and A, (T )  in (22) and (23) are 
taken on the channel walls. In the case of purely diffuse re- 
flection the order parameter is suppressed on the walls, ac- 
cording to Ref. 12, to a value A, - [lo/&( T) ] A,, where A, is 
the value of A in the volume. At temperaures close to critical 
we have therefore A, (T)  - T( 1 - T/Tc ) .  For the scatter- 
ing from the walls to be more effective than inelastic scatter- 
ing we must require that the temperature satisfy the condi- 
tion T, /T, 1 - T /Tc . The upper bound on the proximity to 
Tc will be established below. 

If it is assumed that the order-parameter structure cor- 
responding to the Z-phase is preserved all the way to the 
wall, we have - 

1 Apl BZ=As2 (T) sinZ (myp), 

1 
zB-l (v) = - 5 I mv,, 1 sin2 (;;;YP) do. 

2s " 
The actual expression for the characteristic time between 
collisions depends on the shape of the channel cross section. 
For a round channel, for example, 

where v, is the v, component perpendicular to the channel 
axis. 

We shall need also the mean value 

In the case of the A-phase 

Since 1 is secured to the boundary and cannot vary with time, 
we get 

We return now to Eq. (8)  for f (2'. Using ( 14) and averaging 
(8) over the channel cross section taking (22) and (24) into 
account, we have at E%A 

a ~ ( ~ )  up aZf(Z) aB2 
<d,> n," - +- f ( 2 )  

a t  2 az2 E " ~  

The particle-particle collision integral at AgTis (see Refs. 8 
and 9)  

Here 

A 

The expressions in the curly brackets of the operator L are 
taken at E~ = E - E~ - E ~ ,  p3 = p - p, - pz. 

Equation (25) for f (" can be easily solvedL4 if the parti- 
cle mean free path for collisions with one another is 
I = u,T,, while the transverse dimension R of the channel 
and the temperature satisfy the relation 

i.e., in a rather narrow region near the critical temperature 
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( T, - T) 24R /I. We shall see below that the characteristic 
scale of variation off  '2' is much larger than the "diffusion" 
length I, = (R1)'I2. Therefore, assuming the f'2' varies 
more slowly in time than T;', the principal terms in (25) 
will be the third, fourth and fifth. At E-T, the principal 
term is the one with the collision integral, so that at E- Twe 
have 

1 a@ 
x ' ~ ) = - P ' + - -  2 a t '  

wherep* is independent of E or p. At E 5 T we have 

- 
The constant p *  can be expressed in terms of the chemical 
potential, by expressing the change of the mass density of the 
liquid in the form 

Putting 6p = 2v(O)m6p, we obtain 

- - 
The quantity p, = - ( 1/2)d@/dt has the meaning of the 
chemical potential of Cooper pairs, so thatp* can be regard- 
ed as the difference between the chemical potential of the 
liquid, reckoned from EF, on the one hand and the chemical 
potential of the condensate on the other. 

Substituting now (28) in (25) and integrating with re- 
spect to d& and dnP , we get 

s 

D22+l_+p*ji!$Jda -- AD' 
at az2 , 2T T.AB'+T~~'  -0, (31) 

where 

putting& =xAB (T,/T,)"~, in (31), weget 

. - -, 

Here 

The characteristic time between the collisions with the walls 
is 7, -R /u,. The quantities D and a/~;'~ depend on the 
shape of the channel. For a channel of circular cross section, 
for example, 

Using ( 14) and (38) we easily obtain the normal mass 
flux. The normal-flux density averaged over the cross sec- 
tion is 

An expression for the supertluid flux j, is well known (see, 
e.g., the review15) and will not be written out here. The total 
flux is equal to the sum of the normal and supertluid fluxes: 

Expression (33) is the Knudsen formula for the flux density 
of a normal Fermi gas." Equation (32) is similar to the 
corresponding equation of superconductivity theory,14 ex- 
cept that the first term does not occur for superconductors in 
view of the electroneutrality, i.e., the incompressibility of the 
electron liquid: dp/dt = 0. 

Equation ( 32) determines the characteristic length 

over which we have in superfluid He-3 relaxation of the con- 
stant component of the deviation 6p of the chemical poten- 
tial from the chemical potential of the condensate. In 
order of magnitude, I, -I, (R / I )  'I4 ( T /AB ) ' I2 and exceeds 
the diffusion length 1, by virtue of condition (27). This phe- 
nomenon is similar to the charge disequilibrium in supercon- 
ductors, where the corresponding relaxation length is the 
depth of penetration of the electric field.14 

From the continuilty equation 

from (34), and from (32) we easily obtain, taking (29) and 
(39) into account, 

1 am 
6~ +-- = bs div j.. 2 at  

Here 

~ s = ~ T ( T . T B )  '"lmv ( 0 )  naAE ( T )  (37) 

is the second-viscosity coefficient. It can be seen from (37) 
that the second viscosity in a narrow channel differs from its 
unbounded-channel value calculated earlier in Ref. 16. 

We discuss now the conditions for the applicability of 
our results. First is satisfaction of the inequality 

Moreover, we used in the derivation of (21 ) the fact that at 
the characteristic frequencies that make the main contribu- 
tion to (31 ), i.e., at &-AB (T,/T, )'I2, the inequality v,/ 
E({(T) is valid. Taking (27) into account, we find that the 
temperature should be in the range 

The condition (38) on the channel dimensions is easily met 
in experiment. Satisfaction of condition (39) on the tem- 
perature is a somewhat more complicated matter, but still 
does not raise any difficulties in principle. Experimental ver- 
ification of the results is therefore perfectly feasible. 

Equations (32)-(37) describe the distribution of the 
fluxes and of the chemical potential (pressure) in the chan- 
nel. The equation for the order parameter can, generally 
speaking, not be obtained in closed form. The distribution 
function f "' defined by the kinetic equation (7) depends 
substantially on the form of the spectrum in the energy re- 
gion E - A. If we confine ourselves to the case when the chan- 
nel size is much larger than g( T ) ,  we can obtain from (3 ) for 
regular functions in the first-order approximation (without 
allowance for the smearing of the spectrum) 
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where 

We put f  ("  = f  (" + (a f  ( ' ) / d ~ ) ~ ( ' ) .  The collision integral J, 
in ( 7 )  can be reduced at A ( T  to the T-approximation forms 

As a result we get from ( 7 )  

In the case of the A-phase we have 
8AP dAp' + A; - = -2A2 (T) (ln) A~dt at 

With the aid of ( 4 0 )  and ( 2 8 )  we can write down an equa- 
tion for the order parameter in the A phase: 

Averaging is carried out here over the channel cross section. 
The left-hand side of Eq. ( 4 2 )  is the usual Ginzburg-Landau 
equation," while the right-hand side describes the dissipa- 
tion due to motion of the anistropy vector and the deviation 
of the chemical potential. Equation (42) leads, in particular 
to Eq. ( 3 6 ) .  

The first term in the right-hand side of ( 4 2 )  is connect- 
ed with the motion of the entropy vector 1. If the range of 
variation of 1 exceeds the path length I = u ~ T , ,  we obtain 
from (41) for the component that is even in n 

where 7 = v ( 0 )  T, A3 ( T )  r 2 / 6 4 ~  is the Cross viscosity coef- 
ficient." If, however, the changes of 1 are concentrated in a 
region of size smaller than I, the principal role is assumed by 
the diffusion term in Eq. (41 1, so that no closed equation can 
be obtained forx"'. It can be stated, however that the expres- 
sion for the cross viscosity will differ from the Cross for- 
mula. In particular, the viscosity coefficient contains in 

place of the free-path time the diffusion time r, -a2D, 
where a is the size of the region in which 1 varies. 

The equations ( 3 2 )  for the chemical potential and the 
expressions for the current ( 3 4 ) ,  as well as Eqs. ( 3 6 )  and 
( 3 7 ) ,  are not restricted to the A-phase. To apply these re- 
sults to the B-phase it is necessary, first, to take into account 
the corresponding equation for the superfluid flow in the B 
phase (see, e.g., Ref. 15) and second, modify the expression 
for the characteristic time rB between collisions with the 
walls. In the case of the B-phase the order parameter is trans- 
formed near the walls because its normal component is sup- 
pressed. The exact numerical value of the coefficient a in 
Eqs. ( 3 2 )  and ( 3 7 )  should therefore be found by solving the 
equation for the order parameter in the specified form of the 
channel. In order of magnitude, we can put a - 1. The quan- 
tity in the B-phase is simply the derivative of the or- 
der-parameter phase. 

Equations ( 3 2 ) - ( 3 7 )  can be used to describe fourth 
sound in narrow channel. To this end they must be supple- 
mented by an expression for the acceleration of the super- 
fluid component of the liquid. For the A-phase we have 

In the case of the B phase the last terms in the right-hand 
sides of (43 ) drop out. 

If the vector 1 is fixed and cannot rotate, the equations 
can be written in a form that is the same for the A- and B- 
phases: 

ai. aCL 8% + c3-= p*, -- p' s o .  
az at  az3 2mv (0) c3 

This yields the dispersion equation 

where siO' = [p , /2m2y(0)  ] is the fourth-sound velocity 
without allowance for the Fermi-liquid corrections. The 
fourth-sound velocity in the channel is 

The sound damping is 

Estimates show that in the region ( 3 9 )  where results are 
valid we always have p, 6 Jm <D. Therefore, notwithstand- 
ing the appreciable change of the second-viscosity coeffi- 
cient by diffuse scattering from the walls, the statement 
made in Ref. 18, that the contribution of 6, to the fourth- 
sound damping in a narrow channel is small, remains in 
force. 

3. DISSIPATION IN FLOW OF He-3 THROUGH A CHANNEL 

It was mentioned in the introduction that experiment3 
has demonstrated that at a flux density exceeding the critical 

713 Sov. Phys. JETP 63 (4), April 1986 N. B. Kopnin 713 
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pair-breaking current density the flow is accompanied by a 
pressure difference and the superfluidity is not completely 
destroyed. Under the experimental conditions of Ref. 3, 
where the radius of the channel is comparable with the co- 
herence length {(T), vortex formation is difficult and the 
dissipation may be caused by the phase slippage process, 
which is analogous to the resistive state in superconductors. 

Consider first the case of the A-phase. Since the 
superfluidity in the volume is not disrupted, v, should be 
bounded. The time average of dv, /dt is therefore zero. It can 
be seen from (43) that two mechanisms can compensate for 
the acceleration due to the chemical-potential gradient: 

(here to is the phase-slippage period). The second term in 
the right-hand side of (46) is specific to the A-phase; we 
shall discuss its role somewhat later. At high flux densities in 
narrow pores, the orientation of the anisotropy vector 1 is 
determined by the walls and by the superfluid flow of the 
liquid. Therefore the motion of 1 in the main volume of the 
channel is frozen, so that the last term of (46) is practically 
always zero. We have thus from (46) 

everywhere in the channel except fgr a few points called the 
phase-slippage centers (PSC). In the vicinity of a PSC Eq. 
(47) no longer holds andji* has a discontinuity. In a region 
outside the PSC, Eqs. (32) and (34) can be rewritten in the 
form 

where a = 2mv(O)D is the "conductivity" of the pore. 
From (48) and (49) we can determine the discontin- 

uity &* on one PSC. In the model where I, is assumed 
constant, we have (see, e.g., Refs. 7 and 19) 

Here z, and z, are the points where p*  = 0 (see Fig. 2) ,  and 
zo the location of the PSC. If the distance between neighbor- 
ing PSC is large, the differential "resistance" of one PSC is 

The physical mechanisms of phase slippage can vary. 
At fixed 1 the phase slippage may be due to vanishing of the 
order parameter in the PSC region over the entire cross sec- 

tion of the channel, or due to passage of a singular vortex. 
The chemical-potential discontinuity Aji* is then connected 
with the phase-slippage frequency: 

where w, = 2r/t0 is the Josephson frequency. We have used 
here the fact that at fixed 1 the quantity @ is the phase of the 
order parameter and changes by 2 r N  in each slippage pro- 
cess. The phase slippage can be produced also at nonzero 
order parameter through rotation of the vector 1 in the PSC 
region (passage of a nonsingular vortex). It must be noted, 
however, that the size of the nonsingular vortex must be 
larger than f (T) ,  otherwise the order parameter becomes 
suppressed and this vortex will be indistinguishable from a 
singular one. The chemical-potential discontinuity Aji* on 
the PSC is in this case, as seen from (43), equal to 

Such a phase slippage mechanism was proposed by Volo- 
~ i k . ~ '  The integral in the right-hand side of (52) is a topo- 
logical invariant equal to 4?rN, where the integer N is the 
degree of mapping of the region (z,t) of variation of 1 on a 
sphere, determined by the function I(z,t). Therefore2' 

This relation differs by a factor 2 from the usual Josephson 
relation (5 1 ). By measuring the PSC oscillation frequency it 
is possible in principle to distinguish between the singular 
and nonsingular phase slippage mechanisms. 

A characteristic feature of the experimental results3 for 
the A phase was observation of two dissipation regimes, as 
manifested by the existence of two different slopes of the lot 
of Ap against f. Whereas the larger slope of the A( j) charac- 
teristic is due to the behavior of the He-3 inside the pore and 
should be attributed to the phase-slippage processes dis- 
cussed above, the presence of a less steep section of Ap ( j ) ,  as 
seen from the experiment, is due to the influence of the re- 
gions near the end poins of the pore. It was suggested in Ref. 
3 that this dissipation mechanism is connected with rotation 
of the vector 1 near the ends of the pore, where the pinning of 
1 is weaker. The order of magnitude of the dissipation due to 
rotation of 1 can be estimated at VT ( d  l/dt)* where V is the 
volume in which 1 rotates and T is the viscosity coefficient. 
The rotation frequency, according to (53), is w, -Ap/fi, so 
that the dissipation is 

Equating it to the work of the external force SjAp/mp that 
maintains the flow, where S is the channel cross section, we 
obtain 

j- (m3qR/pfrz) A p .  (54) 

It is assumed here that the sizes of the channel and of the 
region where rotation of 1 takes place are of the order of R. 
Since the region where 1 varies is much smaller than the 
mean free path I, the quantity in (54) is not the Cross viscos- 
ity (contrary to the assumption in Ref. 3 ) ;  it must be ob- 
tained by solving Eq. (41 ) without the collision term in the 
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right-hand part. Thus, the order of magnitude of the viscos- 
ity coefficient is 

q-v (0) AS (T) RITvp. 

The slope d(Ap)/dj has in this case a temperature depen- 
dence (T, - T)-3'2, which agrees with the experimental 
results of Ref. 3. 

In the case of the B-phase, only one dissipation regime 
was observed in Ref. 3. Its behavior is similar to the dissipa- 
tion regime with a large slope a(  Ap )/dj for the A-phase. The 
time derivative of the superfluid velocity in the B-phase is 
given by (43) without the last term in the right-hand side. 
Therefore if the superfluidity is preserved, dv,/at = 0, 
only one dissipation mechanism is possible and is connected 
with the unbalance of the chemical potentials of the liquid 
and of the Cooper pairs, ji* #O, described above for the A 
phase. For the slope of the characteristic of an individual 
PSC we obtain in this case Eq. (50). The mechanism of 
phase slippage in the PSC can be the usual one, i.e., due to 
vanishing of the order parameter or to passage of a singular 
vortex, or via formation of boojums on the Fermi surface in 
accord with the predictions of Ref. 2 1. 

The temperature dependences (50) obtained for the 
slopes of the characteristic in the B phase and for the steeper 
section in the A-phase, d(Ap)/aj c ( T ,  - T )  - ' I 2 ,  do not 
agree, however with the conclusions of Ref. 3 concerning the 
experimental dependence of the slope. Let us examine this 
situation in greater detail. The distribution of the chemical 
potential and the difference of the pressure on the ends of the 
channel depend strongly on the relation between the length 
of the channel and the quantity I,. If we use the data of Ref. 
3, we see that I,  ranges under the conditions of Ref. 3 from 1 
to 10 pm, depending on the pressure, i.e., it is comparable 
with the approximate pore length 10pm. If 1, is large, only a 
small number of PSC can be accommodated by the length of 
the pore, so that the observed slope a(Ap)/aj should actual- 
ly be of the order of Eq. (50). The situation becomes more 
complicated, however, by the fact that on the basis of the 
experimental results of Ref. 3 it is impossible to separate the 
"resistance" introduced by PSC, primarily because the filter 
through which the He-3 was passed contained a very large 
number of channels. Thus, the experimental curves consti- 
tute an average over a large number of channels containing 
different numbers of PSC, so that the sections due to individ- 
ual PSC are averaged out. If, however, a large number of 
PSC can be located along the channel, it follows from the 
theory of the resistive state7 that at small Ap the characteris- 
tic will not have any linear section at all. Thus, the available 
data are insufficient for a detailed comparison of the theory 
with experiment. It would be desirable, first, to increase the 
range of pressure differences and fluxes so as to measure as 
large a part of the characteristic as possible. Second, mea- 
surements should be possible on a single channel, where the 
discontinuity of the pressure difference with increasing pres- 
sure would be observable. Dissipative flow in a channel 
should be accompanied also by generation of sound at Jo- 
sephson frequency, in full analogy with the nonstationary 
Josephson effect that will be discussed presently. These ex- 
periments might provide an exhaustively answer to the ques- 

tion of the role of PSC and of the observable dissipation. 
The fact that discontinuities of the chemical potential 

and of the pressure are produced on each PSC and are due to 
Josephson-frequency oscillations of the order parameter and 
of the superfluid component, leads to a close analogy 
between PSC and weak connection (narrow opening) 
between two reservoirs with liquid He-3. Obviously, such a 
system should be subject to the nonstationary Josephson ef- 
fect, i.e., should generate oscillations (sound in this case) in 
the presence of a constant pressure difference. 

Let the channel contain a weak link (narrow opening) 
characterized by the equation 

f a = . f o  sin ( A m ) ,  (55) 

where A@ = @+ - @- is the difference between the phases 
on the two sides of the narrow opening. By virtue of the 
condition that the superfluidity in the channel is preserved, 
av, /at = 0, we have d 2@/dzdt = 0, and therefore 

where @ is independent of time and @- is an oscillating 
increment. Thus, the superfluid flow through the narrow 
opening (55) will have a component that oscillates at a fre- 
quency w, = 2Ap. where A,u is the difference between the 
chemical potentials on the ends of a channel containing one 
narrow opening (one PSC). In the case of small damping of 
the fourth sound, the alternating part of the chemical poten- 
tial is p- = iw@- /2, so that the pressure difference 
between the ends of the channel will oscillate with an ampli- 
tude 

In conclusion, the author thanks G.  E. Volovik, V. P. 
Mineev, Yu. N. Ovchinnikov, and J. Pekola for helpful dis- 
cussions. 

"In contrast to Ref. 8, we have retained in the left-hand side of ( 8 )  the 
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