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A study is made of how the topology change due to the presence of dislocations in a crystal 
influences the motion of excitations. It is shown that the scattering of excitations involves 
anomalous transverse forces that cannot be expressed in terms of the scattering amplitude. The 
specific corrections to the conductivity due to the disturbance of the phase in the presence of a 
finite dislocation density are investigated for many-valley semiconductors. 

INTRODUCTION &=e0 (6pi )  + r i j k 6 p i ~ j r + $ j k ~ j k ,  (1.2) 

The interaction of excitations with dislocations is im- 
portant for understanding a number of kinetic phenomena in 
solids.' The majority of on this subject have either 
used the effective-mass method or directly employed the 
Born approximation for scattering by the deformation po- 
tential created by the elastic fields around the dislocation. It 
was found that the transport cross section is determined 
mainly by large scattering angles, i.e., by the poorly under- 
stood region near the core of the dislocation (see, e.g., Ref. 
2).  The goal of this paper is to study the effects associated 
with large distances from the core and to investigate the scat- 
tering anomalies that are specific to dislocations. 

Analogous effects arise in the interaction of excitations 
with vortices in superfluid He,, where, as one of the present 
authors has shown,3 the long-range field of a vortex gives rise 
in the phonon scattering to an anomalous transverse force 
that cannot be expressed directly in terms of the transport 
scattering cross section. It was later shown that this force is 
directly due to a feature analogous to the Aharonov-Bohm 
effect in the scattering of electrons by a narrow ~olenoid.~ A 
similar effect has been detected in the scattering of excita- 
tions by screw dislocations, for which the deformation po- 
tential is absent in the isotropic approximation and terms of 
a purely geometric nature must be included in the Hamilto- 
nian.'-' It was shown in Ref. 8 that the Aharonov-Bohm 
effect arises in this case. 

In the present paper we consider the general case of the 
interaction of excitations with an arbitrary dislocation and 
study both the scattering anomalies and certain other effects 
due to a topological interaction. 

1. INTERACTION AND ANOMALIES IN SCATTERING BY 
DISLOCATIONS 

In considering the interaction of dislocations with exci- 
tations, we will be interested in large distances, where the 
deformations are small and slowly varying, so that the effec- 
tive mass method can be used. 

The general approach for obtaining the effective Hamil- 
tonian is presented in the monograph of Bir and P i k u ~ . ~  We 
perform a coordinate transformation matching the de- 
formed unit cell with the undeformed cell: 

x,O=x,O ( x i ) ,  xi=x,O+u, (5 ; ) .  (1.1) 

where u,, = h(duj/dx, + du, /ax, ) is the deformation ten- 
sor, 6p, is the (assumed small) deviation of the quasimo- 
mentum from its value at the minimum ~ ' ( p ) ,  Ejk is the 
tensor of the deformation-potential constants, TUk is the ten- 
sor which specifies the displacement of the minimum o f ~ ( p )  
in the reciprocal cell (both these quantities depend on the 
interaction of the excitations with the lattice and cannot be 
evaluated in general form). In order to write the Hamilto- 
nian for the interaction with dislocations, we must express 
Sp, = (id /ax: - kj ) in terms of the deformed coordinates 
x, : 

and assume that ~ ( S p , x )  gives the local energy density. Here 
the multivaluedness of transformation ( 1.1 ) is unimpora- 
tant, since the distortion tensor w,, = du,/dx, is single-val- 
ued. 

We shall assume the simplest case of cubic symmetry 
and suppose that the vectors k corresponding to the position 
of the minima in the cell of the reciprocal lattice have a two- 
fold symmetry axis, so that the most important tensor here, 
To,, is of the form 

I'ij,=y,kiSj,+9zki (k jknlkZ)  + 9 3  (bijkn+6inkj), 

where y, is generally of the order of l/m when k is of the 
order of the unit cell dimension. If k occupies a position of 
special symmetry (the Brillouin zone center, reciprocal lat- 
tice sites), then r vanishes, there are no terms linear in 6p, 
and the deformation corrections to the effective-mass tensor 
must be taken into account. We will be interested in the cor- 
rections to the "kinetic" part of the energy; we therefore 
collect all the remaining terms into an effective potential 
U ( r )  created by the dislocations, so that 

where A ,, is the component along k,A, consists of the com- 
ponents in the perpendicular plane, and 

Aj=-kiwij+ylkjuii+yzkj(kikn/k2) ur,+yskiuji. (1.4) 

If the mininum of E is found at the point k = 0, then 

Aj=-p i z~ i j+~~p ju i t+  ~2piuji. ( 1.4') 
To a linear approximation in the deformations, the energy of In considering the interaction of charge carriers with 
the excitations after transformation should be of the form the dislocation, we shall assume that the semiconductors are 
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highly enough doped that there is a finite density of charge 
carriers, no large Read cylinders of ionized donors form 
around the dislocations, and the situation is close to metal- 
lic. We note in this regard that the deformation potential at 
large distances is decreased substantially by screening, 
whereas the effective vector potential A, does not alter the 
charge density and is therefore not screened. 

We will be interested in systematic effects which do not 
vanish on averaging over the distribution of the dislocations, 
which are assumed to be rectilinear and parallel. 

At large distances the transfer of excitations from one 
valley to another by the dislocation field is extremely rare, 
and so the excitations in each valley can actually be treated 
independently. 

Let us consider the case in which k is directed along the 
dislocation, which we assume is parallel to thez axis, so that 

The first term here is of the form of the vector potential of the 
magnetic field, which is concentrated at the core of the dislo- 
cation. The second term gives rise to a magnetic field in the 
plane perpendicular to the dislocation. Let us consider the 
influence of the second term on the motion of the excitations. 
The corresponding classical equations of motion are of the 
form 

dv, dA, m - = - v  
dv dA,  m"=-v 

dt dx I' dt d y  
2 ,  

dv ,  d-42 8-42 
m-= - - v ~ - 7 v x ~  dt a Y dx 

from which we get for the change in the velocity along the 
unperturbed trajectory 

m6v, ( r )  = y , k ( u i i ( r )  - u i i ( 0 )  ) =6A1.  

Because uii changes sign along the trajectory because of the 
random distribution of the dislocations, we see that there is 
no systematic change in u, to first order in A,. In an analo- 
gous way it can be shown that there are no systematic contri- 
butions of second order in v, and v,. 

If we consider the phase acquired along some excitation 
trajectory owing to the presence of A,, then because of the 
random distribution of the dislocations it too will lack a sys- 
tematic nature for a trajectory with a general position. 

The case in which k, lies in the plane perpendicular to 
the dislocation is more complicated, since all the terms in 
( 1.4) are nonzero and A, itself also lies in this plane, so that 
there is an effective magnetic field parallel to the disloca- 
tions. The value of A, depends on the entire set of forces 
applied to the body and not only on the density of disloca- 
tions and the deformations they cause. 

The features in the small-angle scattering are due to the 
singular component ofA, , which gives the main contribution 
to the circulation integral 

Ip = ~ ~ d x j .  
C 

where the center C is a rectangle enclosing the dislocations, 
with a side of length L along the projection of the velocity of 
the incident excitations onto the plane perpendicular to the 
dislocation and with a short side (LR)"~,  where /1 is the 

wavelength of the incident excitations, and l,niZ%L)A, 
where 1 is the mean free path of the incident excitations and n 
is the dislocation density per unit area. The main contribu- 
tion to the circulation, -b k, where b is the Burgers vector 
of the dislocation, is from the singular terms in A, due to the 
presence of dislocations and to anomalies of the distortion 
tensor. 

The contribution to the circulation from the regular 
elastic deformations, which vary over distances of order d" 
(where d" is the dimension of the object), is smaller by a 
factor of -n,L '(A /L) '". For this reason we shall hence- 
forth consider only effects due to the first term in ( 1.4); this 
gives an exact treatment of screw dislocations with kllb in 
the isotropic approximation of the theory of elasticity 
(uii = 0)  if one allows for an additional coefficient ( 1 - y,/ 
2)  in A,. Our approximation corresponds to allowance for 
only the "topological" interactions;' here one gets compara- 
tively simple physical answers. Because A, = - kidui/dx,, 
the corresponding magnetic field is parallel to the disloca- 
tion and concentrated in the core, with dimensions of an 
atomic scale; we have the same situation as in the Aharonov- 
Bohm effect: The vector potential can be eliminated locally 
by a gradient transformation, but it is impossible to do this 
over all space. 

There is an extensive literature on the Aharonov-Bohm 
effect, which was reviewed in detail in Ref. 10. Let us briefly 
show how calculations can be done in the case of an arbitrary 
dispersion relation. 

The wave function of the excitations at large distances 
from the dislocation core consists of a distorted incident 
wave and a scattered wave. We assume that the latter is 
known from the solution of the problem of scattering by a 
given entity (which takes into account the influence of the 
dislocation core) everywhere except in the region of small 
scattering angles, where we must find the specific form of the 
wave function. This singular diffraction region should clear- 
ly be directed along the group velocity of the excitations in 
the region of the dislocation core. 

To construct the solution we use the local solution of 
the Schrodinger equation with Hamiltonian ( 1.3) (for a sin- 
gle valley), whereby the vector potential is eliminated by the 
gradient transformation 

where - co corresponds to the direction along which the 
incident particles arrive. Function (1.6) is not single-val- 
ued, since q, = $A,dx, #O, and we should make a cut along 
the singular diffraction region, where function (1.6) has a 
discontinuity; in the exact solution this discontinuity is re- 
placed by a relatively narrow transition zone. In this zone 
the derivatives of 1C, in the perpendicular direction are large 
compared to the derivatives in the parallel direction (at large 
distances all the derivatives remain small after the exponen- 
tialS e"rrei6~r have been factored out). In addition, we can 

neglect the small vector potential inside the transition zone, 
since the Schrodinger equation for 1C, = e'krei8P'f(x,y) with 
Hamiltonian ( 1.3) is of the form 
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The x axis is directed along the group velocity M a p  of the 
incident excitations. Equations ( 1.7) is the familiar parabol- 
ic equation introduced by Leontovich in the theory of dif- 
fraction. We require a solution of the form 

whereupon the equation is easily integrated to give 
L + m  + 00 

cp- = J A (x, y )  d r ,  y+-0. 
- ea 

Equations ( 1.7)-( 1.9) give the solution in all regions. We 
note that if the singular region is nct directed along ddap ,  
there will be no solution that admits joining, since the first 
derivatives with respect toy remain in the equation. 

Importantly, the solution we have constructed is not in 
the form of a sum of the incident wave and a diverging cylin- 
drical wave. In a formal calculation by expansion in angular 
harmonics, we obtain both a divergence in the total cross 
section a and a logarithmic divergence in the "transverse" 
transport cross section a, = $ sin pda (p ) ,  while the ordi- 
nary "longitudinal" transport cross section 
a,, = J (  1 - cos p ) d a ( p )  converges (p  is the angle to the 
direction of the incident excitations). The divergence in the 
transverse force is fictitious; this force can be evaluated di- 
rectly by using the solution just obtained. Using the Schro- 
dinger equation with Hamiltonian ( 1.3 ), we easily obtain an 
identity which expresses the law of momentum conserva- 
tion: 

where the last term [ S ( Y )  is the area bounded by the con- 
tour y], which does not have the form of a divergence, gives 
the average value of the force acting on the excitations, and 
the first term gives the momentum carried off by the scat- 
tered excitations (n, is the vector normal to the contour 
3). Our solution permits evaluation of the momentum car- 
ried off by the excitations in the small-angle region (where 
we can drop A ) : 

< ~ , > = t i n v  sin cp, cp= 0 dxj=kb? (1.10) 

where b is the Burgers vector of the dislocation, n is the 
density of incident excitations, and v = ( a ~ / a p ) ,  is the pro- 
jection of the velocity of the incident excitations onto the 
plane perpendicular to the dislocation. We note that Burgers 
vector is a lattice vector, and so this force vanishes if 
k = mk0/2, where k, is a reciprocal lattice vector and m is an 
integer. 

If we consider only the topological interaction, then 
cpo= (k+bp) b; (1.10') 

if we allow for corrections to A of the type written in ( 1.4'), 
Eq. ( 1.10') remains valid for k = 0. 

The flow of excitations to a dislocation thus gives rise to 
a transverse force perpendicular to the flow. This force is of a 
specific, diffractional origin and cannot be expressed in 
terms of the scattering cross section. If there is a large num- 
ber of dislocations (with a density n, ) with the same orien- 
tation and the same Burgers vector, there will be an average 
force density F, n, acting on the excitations. In the equilibri- 
um situation, when the k and - k valleys are identically 
occupied, there is no net force because the contributions of 
the different valleys cancel. Any breakdown of equilibrium 
between the k and - k valleys will give rise to a Hall current 
(for example). 

In concluding this section we note that the scattering 
features we have found are general for the scattering of exci- 
tations by topological defects. Suppose that the excitations 
in the field of linear defects are described by a certain Hamil- 
tonian Z ( p , r )  that can be represented at large distances as 
Z = Z o ( p )  + S Z ( p , r ) ,  where S X  is a small correction. 
The change in momentum along the direction of the group 
velocity v = dXo/dp is 

t 

We are interested in small angles and large distances; then 
the diffraction in the phase acquired above the x axis (along 
V )  and below the x axis along the unperturbed trajectory of 
the particle is given by the expression 

where the contour integral (Fig. 1 ) is taken over a long and 
narrow rectangle surrounding the x axis and enclosing the 

FIG. 1 .  Contour along which the integration is performed in the plane 
perpendicular to the dislocation (the x axis is directed along the projec- 
tion of the group velocity of the incident excitations onto this plane). 

822 Sov. Phys. JETP 63 (4). April 1986 S. V. lordanskil and A. E. Koshelev 822 



defect. If q, #O, we have the Aharonov-Bohm situation de- 
scribed above, which leads, in particular, to an anomalous 
transverse force. The anomalies in the scattering of different 
excitations by topological defects in He, and He, can be de- 
scribed in the same way (in particular, for phonons scatter- 
ing off vortices in He, we get the familiar result3 for the 
transverse force). We note that the phase difference q7 deter- 
mines the additional transverse force perpendicular to the 
group velocity. We also note that all the scattering anomalies 
for dislocations are due to the lack of a center of inversion for 
dislocations, but unlike scattering by point defects, where 
the leading role for excitations with small momenta is played 
by isotropic s scattering, they incorporate no specific small 
quantity whatever. 

2. SOME NONEQUlLlBRlUM EFFECTS IN THE PRESENCE OF 
A FINITE DENSITY OF IDENTICAL DISLOCATIONS 

The anomalies in the scattering of excitations by dislo- 
cations are very specific and have a number of macroscopic 
consequences. Unlike scattering by impurities and in general 
by scatterers which act through some potential U(r) for 
which the average ( U(r) ) reduces in the homogeneous case 
to a trivial shift of the chemical potential, here we have an 
essentially inhomogeneous situation, since the transverse 
force evaluated in the previous section is the same for all 
dislocations with identical Burgers vectors and so does not 
vanish on averaging over the dislocation distribution for a 
finite dislocation density. In writing the kinetic equation for 
the excitations one must include this force (as an external 
macroscopic force or a certain average vector potential (A) ) 
in addition to the collision integral of the excitations with the 
dislocations. Accordingly, the Hamiltonian of the excita- 
tions is of the form 

where r is a unit vector along the dislocation and n, is the 
dislocation density. The gauge of (A, ) is unimportant, since 
the kinetic equation contains only the field strengths. The 
form of the average vector potential is adjusted so that the 
average force which arises agrees with ( 1.10). We take only 
the leading term in 6p into account, so that p = k b. The 
kinetic equation is of the form 

Because of the lack of a center of symmetry, the colli- 
sion integral including collisions with dislocations gives dif- 
ferent scattering probabilities for the processses p-p' and 
pf+p. However, this happens only in the second Born ap- 
proximation, and the corresponding effects differ little from 
scattering by asymmetric impurities." These effects will not 
be considered here, as we discuss only the r approximation 
for the collision integral. 

Let us take as an example the "photothermal" effect: 
the appearance of an electronic heat flux under illumination 
by a circularly polarized electromagnetic wave in the pres- 
ence of parallel screw dislocations with an area density n,. 
We shall consider the single-valley case, when q, = p b, 

where p is referred to the center of the Brillouin zone. As- 
suming that p - b( 1, we have 

(2.3) 
As independent variables in the kinetic equation it is conven- 
ient to take u, = dR/dpx ,u, = dR/dp, , p, . Then, in the 
presence of a circularly polarized alternating electric field 
Ex = E cos wt,  E, = E sin wt the kinetic equation becomes 

- + - - cos at-o, 
at dux 

f - f o  +?($-sinot+o,)=--, a u T O  

where w, = n, bp, /fim, and r, is the time between collisions 
due to the short-range impurities. 

If the solution of equation (2.4) is sought in the form of 
a series in powers of eE, a time-independent correction to the 
distribution function appears in second order: 

where el = mu:/2. Using this correction, we can get an 
expression for the heat flux: 

where n is the electron density and ( . . . ) denotes an aver- 
age over the equilibrium distribution function f , ( ~ )  of the 
electrons. At low dislocation densities we have w, (w,l/~,, 
and this expression becomes 

where& is the average value of the electron energy (E = +kT 
for an nondegenerate electron gas and E = +&F for a degen- 
erate electron gas). For a thermally isolated sample of finite 
length L, the temperature difference arising at the ends is 

so that the total heat flux is zero: q + xVT = 0 (nondegener- 
ate electron gas; 1 is the mean free path). 

For the second effect, let us consider a semiconductor 
having two valleys, k,, and - k,, with k,llz-the direction of 
parallel dislocations with Burgers vector b. 

If we apply a voltage and a current j flows along they 
axis, the Hall currents of carriers from opposite valleys arise: 

The total current along the x direction is the sum of the Hall 
current and the diffusion current: 

At the boundary of the sample we have j,,, = 0 (we assume 
that there is no transition of electrons from valley 1 to valley 
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2 at the boundary). The diffusion equations for carriers from 
different valleys are 

where r, is the time for transfer from one valley to the other 
in the interior of the semiconductor. Solving these equations 
and applying the boundary conditions, we find 

i.e., an excess of electrons from one of the valleys arises on 
the surface. 

If, under the same assumptions, we impose a static mag- 
netic field along thez axis (the direction of the dislocations), 
the electrons in different valleys will feel a different effective 
magnetic field. Thus, many-valley semiconductors having 
dislocations oriented along the magnetic field should exhibit 
a splitting of the cyclotron resonance lines. 

3. INFLUENCE OF DISLOCATIONS ON LOCALIZATION 
EFFECTS IN MANY-VALLEY SEMICONDUCTORS 

The interference between electron trajectories return- 
ing to the same point but traversed in opposite directions 
leads to a singular quantum-mechanical correction to the 
cond~ctivity.'~ A consequence of time-reversal symmetry is 
that the electron acquires the same phase on these trajector- 
ies, and so the correction depends strongly on perturbations 
which break this symmetry, e.g., a magnetic field.'3.'4 

In many-valley semiconductors whose valleys do not lie 
at the Brillouin zone edges (Si,Te,Bi2Te3), the situation is 
more c~mplicated. '~. '~ At long intervalley relaxation times 
r, >ri (r, is the momentum relaxation time within a valley) 
and for scattering solely by a scalar potential, the electron 
Hamiltonian has an approximate symmetry with respect to a 
change in the sign of the group velocity within a valley": 
~k (PI  = E~ ( - PI. AS a result, an additional quantum cor- 
rection arises due to the interference between trajectories 
from the same valley but traversed in opposite directions. In 
a brief comm~nication'~ t!le present authors have shown 
that the presence of dislor.ations breaks this symmetry and 
strongly influences the correction to the conductivity. In the 
present section we consider this question in more detail. 

The quantum correction to the conductivity in the 
many-valley case can be written in the form' ' * I 3  

6~:"'=- -E TD,, (k) [c:: (r, r) +c:: (r, r) ] , ( 3.1 
rift k 

where 
1 A 

c?:(r, r f )=  - ( ~ & ~ ( r ,  rr)Gk8k.(r, r') ) 
nv'c 

(k ,  + k, = k, + k,) are cooperons containing the valley in- 
dices, the retarded and advanced Green functions are of the 
form 

v is the single-valley density of states (with allowance for the 
spin degeneracy), Do (k)  is the tensor describing the diffu- 
sion of electrons from the valley centered at k, r is the total 
momentum reiaxation time, 

1 1 1  -=-+-, 1 1 -=z-, 
'c Zi Tm Tn k, Tkkt 

rkk, is the characteristic time for a transition from valley k to 
valley k,, and the angle brackets denote an averaging over 
the impurity distribution. 

The first term in square brackets in (3.1 ) gives the sin- 
gle-valley interference correction arising on account of the 
symmetry of the Hamiltonian with respect to change in the 
velocity within a single valley, and the second term is the 
correction due to the time-reversal symmetry of the Hamil- 
tonian (we shall call this the two-valley correction). 

Let us first consider the two-valley correction. The coo- 
perons 

1 
~1::' (q) = J J dri drz exp (-iq(ri-r2) ~1::' (rl, r2) 

can be determined from the following system of equations, 
shown graphically in Fig. 2. For illustration, let us consider 
the simplest case, in which there are only two valleys and the 
corresponding system of equations in the case q( 1/1 (I  is the 
mean free path) is of the form 

Z Z ~:;:=c:~~( - T i  c:;: + - 'ce cr:: ) , 
where 

and rp is the time for disruption of the phase by inelastic 
processes. From (3.2) and (3.3 ) we easily find 

1 - 1 
I/~+Dijqiqj 1/5+2/~+D<jq,qj 

FIG. 2. Equations determining the cooperons C I :f (q). The scattering is 
assumed isotropic. 
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Substituting this expression into (3. I ) ,  we find the corre- 
sponding correction to the conductivity: 

Let us now consider the single-valley correction. We intro- 
duce the notation 

Summing the series of ladder diagrams, we get the following 
expressions for the cooperon: 

Let us evaluate CO, (q)  for q(l/l, taking into account the 
nonparabolic distortion of the band.I4 To do this, we sepa- 
rate the energy E, (p)  into parts which are symmetric and 
antisymmetric in p: 

ek(p)=ek+(p)+ek-(p),  ek+( -p )  =ek+(p),  
ek- ( - P I  =-er- ( p ) .  

At a low occupation of the valleys we have I E ;  (p )  I (EL (p). 
In a crystal of cubic symmetry with valleys situated along 
the faces of the cube (silicon), the leading terms in the ex- 
pansion is smallp are 

p12 pIZ 
E L +  ( p )  = - + - , et-  (p) = YPZP, .~ .  

2m, 3m, 

Substituting E, (p) into the definition of C ;  (q) and invok- 
ing the condition qg l/l, we get 

Here T~ is the time for disruption of the phase on account of 
the distortion of the bandI4: 

where the angle brackets denote an averaging over the Fermi 
surface within a single valley. If&; is given by (3.5), we have 

Substituting (3.6) into (3.4), we obtain the following 
expression for the single-valley cooperon: 

1 - 1  

c k ( q ) =  [ t  (-+ ti ~ i ~ t i q ~ ) ]  , 

where 1 / ~ ,  = 1/~+,  + 1 / ~ ~  + 1 / ~ , .  
According to formula (3.1 ), the corresponding single- 

valley correction to the conductivity will be of the form 

Let us now consider how dislocations affect the quan- 
tum corrections to the conductivity. It was shown in Sec. 1 
that dislocations create an effective vector potential A, (k)  

for the electrons of each valley [Eq. ( 1.3) 1. In the quasiclas- 
sical approximation the vector potential alters the Green 
function in the following way 16: 

I' 

c:* ( I ,  r ~  = erp ( i j A (k) d l )  G:'* (r-r.1 
r 

(the integration in the exponent is over a straight line joining 
the points r and r'). Let us consider the effect of this vector 
potential on the two-valley contribution. The quantity 

1 cLk (r,  r') = - (G-kR(r, I") ) (GrA (r ,  r') ) 
nv'c 

which determines the two-valley cooperon in the quasiclas- 
sical approximation is not affected, since 
A( - k)  = - A(k),  and the phase factors in the retarded 
and advanced Green functions therefore cancel. Thus, the 
two-valley contribution is affected by the dislocations only 
to the extent of a slight change in the mean free path, since 
this contribution is related to the time-reversal symmetry, 
which is not broken by dislocations. The situation is differ- 
ent in the case of the single-valley correction. The velocity- 
reversal symmetry within a single valley is broken by dislo- 
cations, and the single-valley interference will be 
suppressed. The quantity 

that determines the single-valley cooperon is altered in the 
presence of dislocations in the following way: 

I 

Ck"r1, r2)  = exp [ 2 i  5 A (k) dl] Cro (rl,  rz). 

Using this expression, we can introduce the following equa- 
tion for the single-valley c~ope ron '~ :  

(3.7) 
We shall take into account only the topological interaction 
of the electrons with dislocations [the first term in ( 1.4) 1. 
As we have pointed out, in this case a dislocation is equiva- 
lent to a narrow solenoid with a flux = ( M e )  k b/2n-. 
The distortion tensor appearing in A, combines the contri- 
butions of different dislocations in an additive way. We shall 
assume that the dislocations are rectilinear, parallel, and dis- 
tributed uniformly with a density n, . Thus 

A j ( r ) =  - k l W l j ( r , - r , i ) .  

Equation (3.7) can be made isotropic by the change of 
variables: 

then 

D, '" D, ( -  D. a,, i , l = ( $ ) a ' * A , , ,  Ed=--nd, D. 

here a is the angle between k and the direction of the disloca- 
tions. In the new variables Eq. (3.7) becomes 
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Formally, this equation is identical to the equation for the 
Green function of a particle of mass 1/20, moving in the 
field of parallel solenoids of density n, , each of which carries 
a flux of ( 2 k / e ) k .  b. 

At a low density of dislocations, when D,n, sin #I /  
T ,  (p = k b) ,  the linear (in n, ) correction to the cooperon, 
averaged over the dislocation distribution, is given by the 
expression 

AC (i, 5) = lid 1 (C1 (i, i) - CO (i, i)) dil. (3.9 

Here C O  is the free Green function, while the Green function 
in the field of a solenoid is 

m 

(here J,, ( x )  is the Bessel function of order v, and we have 
used the Aharonov-Bohm eigenfunctionslO). Integral (3.9) 
can be evaluated exactly: 

Substituting this result into (3 .  l ) ,  we obtain the linear (in 
n, ) correction to the conductivity: 

If there are several types of dislocations in the crystal, the 
correction is the sum of the contributions from the various 
dislocations. 

In the case of a high dislocation density, D, n, ) I/T,, it 
is extremely difficult to obtain an exact answer. For pur- 
poses of estimation, however, it is sufficient to replace r ,  by 
( D ,  n, ) - ' in the formula for the quantum correction, since 
in this limiting case the phase disturbance is mainly due to 
dislocations (we assume sin p- 1 ); we thus obtain 

We note that this effect can be substantially larger than the 
change in the conductivity due to the change in the mean free 
path. The same effects can also occur in the two-dimensional 
case under analogous assumptions about the many-valley 
spectrum of the carriers, e.g., in inversion layers at the sur- 
faces of many-valley semiconductors. Dislocations reaching 
the surface lead to suppression of the single-valley interfer- 
ence corrections and to a decrease in the conductivity of the 
two-dimensional electrons. By analogy with the three-di- 
mensional case, in the two limiting cases the change in the 
conductivity in the presence of dislocations is of the form 

We note that the dislocations reaching the surface should 
not have a component of the Burgers vector perpendicular to 
the surface. If there is such a component, each dislocation is 
associated with a step on the surface, and the scattering of 
electrons by the steps will lead to a decrease in the conductiv- 
ity that is much larger than the expected effect. A promising 
system in which to observe this effect is the ( 11 1 ) surface of 
silicon. Since all the valleys are situated identically with re- 
spect to this surface, the sixfold valley degeneracy is pre- 
served on this surface (see Ref. 17). In addition, the most 
typical 60-degree dislocations for the diamond-type lattice 
have Burgers vectors parallel to this surface. 

CONCLUSION 

The change in the topology of the crystal due to the 
presence of dislocations causes the interaction of excitations 
with dislocations to be essentially different from the interac- 
tion with point impurities or linear filamentary defects. This 
difference is manifested most strongly in the scattering 
anomalies and in the appearance of an additional transverse 
force that cannot be expressed in terms of the scattering am- 
plitude. For this reason the influence of dislocations on the 
quantum corrections to the conductivity is of a specific form 
and can be measured experimentally. 

In closing, we wish to thank D. E. Khmel'nitskiiand E. 
I. Rashba for helpful discussions. 

I )  In this section p denotes the deviation of the momentum from the point 
of the minimum E(,. 
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