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The two-fluid approximation in relativistic electromagnetic hydrodynamics is used to 
analytically calculate the behavior of small isothermal z-independent perturbations in an 
axisymmetric Bennett pinch near the stability threshold. The results confirm the previous 
numerical findings that the equilibrium configurations are unstable against shearing of the 
system as a whole but are stable to filamentation. The spectrum of the acoustic Goldstone 
branch of the long-wave pinch oscillations is calculated. 

1. INTRODUCTION 

The problem of hot plasma confinement has stimulated 
work on equilibrium plasma configurations' and their stabil- 
ity2 in the framework of magnetohydrodynamics (MHD). 
An energy principle for analyzing plasma MHD stability 
was developed in Ref. 3 and applied successfully to several 
complicated systems in Refs. 4-6. 

The MHD equations neglect the relative motion of the 
electrons and ions in the plasma, which is regarded as a con- 
tinuous, electrically neutral, conducting fluid. Yet it is clear 
that the passage of current through the plasma necessarily 
involves a relative motion of the electron and ion subsys- 
tems. Their relative velocity v0 (drift velocity) is related to 
the current Iby  I = eN, v,, where e is the electron charge and 
N, is the number of electrons per unit length of the current 
channel. 

The applicability of the MHD approximation to high- 
current plasma systems is discussed in detail by Kadomt- 
sev7. The relative motion of the electron and ion subsystems 
can be neglected if the drift velocity is small compared to the 
characteristic velocities of the problem. For time-dependent 
flows, v, must be small compared to the MHD velocity of the 
plasma. On the other hand, because an equilibrium plasma is 
at rest, the thermal velocities of the electrons and ions are the 
only characteristic velocities relevant to studies of the equi- 
librium plasma configurations. 

Trubnikov8 was the first to carry out an MHD analysis 
of the stability of a fully ionized cylindrical plasma column 
carrying a longitudinal current uniformly distributed over a 
cross section. He found that such a system is destabilized by 
axisymmetric (m = 0 )  longitudinally periodic perturba- 
tions, and sausage formation and pinching occur. The need 
to avoid the sausage instability is one of the reasons why the 
more complicated toroidal plasma configuration was pre- 
ferred. 

However, pinch research over the last three decades has 
shown that "plasma in which a strong sausage formation 
occurs may be more efficient neutron emitters than systems 
specifically designed to avoid the sausage in~tability."~ Ex- 
periments with dense pinched plasmas revealed that the 
plasma column is stable against axisymmetric perturbations 
during the entire lifetime of the dis~harge.'~"' The MHD 
analysis of the nonlinear stage of the sausage instability car- 

ried out in Ref. 12 shows that the current is not cut off even 
though abrupt constriction of the current channel may oc- 
cur. 

Pinch systems are currently not restricted to devices in 
which the plasma current is high and the drift velocity low. 
For example, for relativistic electron beams partially neu- 
tralized by ions, vo is comparable to the speed of light and is 
certainly much greater than the thermal velocities of the par- 
ticles. It has become clear that the one-fluid MHD model 
cannot be used to fully analyze even the macroscopic stabil- 
ity of pinch systems. 

If the drift velocity is large compared to the thermal 
velocities, the pinch system can be described macroscopical- 
ly by the two-fluid MHD equations.I3 In this case one can 
neglect the mutual drag exerted by the electrons and ions, 
which can be regarded as equilibrium subsystems that inter- 
act through the electromagnetic field induced by the 
charged particles themselves. The quasineutrality approxi- 
mation is also invalid for relativistic drift velocities. Further- 
more, the analysis has been limited to small oscillations of 
the pinch about the equilibrium state because no 
general methods for analyzing stability (in particular, no 
analog of the Bernstein-Frieman-Kruskal-Kulsrud energy 
principle3) has yet been derived for the two-fluid electro- 
magnetic hydrodynamic (EMHD) model. 

The density, pressure, electromagnetic field, and veloc- 
ities of the charged fluids are all coupled and oscillate to- 
gether in a pinched system. These oscillations have so far 
been considered only in a few limiting cases for which an 
analytic treatment is possible. It was shown in Ref. 15 that in 
the two-fluid EMHD model, the pinch system is particularly 
susceptible to destabilization by short-wave ion-sound oscil- 
lations which are uniform in the direction of the current and 
cause the current channel to break up into parallel structures 
or jets. A condition for pinch systems to be stable against 
current channel stratification was derived there by analyz- 
ing the behavior near the stability threshold. In general, nu- 
merical methods are needed to verify if this condition is sat- 
isfied; however, an analytic treatment is possible for a 
Bennett pinch,I6 in which the electron and ion densities de- 
cay radially in the same way. In the present paper we show 
that for Bennett pinches the two-fluid EMHD model can be 
used to find the linear response in addition to permitting an 
analytic treatment of the stability problem. 
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2. BENNETT EQUILIBRIUM 

The crucial assumption in the two-fluid EMHD de- 
scription of pinching is that the thermal velocities of the 
electrons and ions are small compared to the drift velocity u,. 
Because the Coulomb cross sections fall off rapidly as the 
relative velocity of the colliding particles increases, this as- 
sumption enables one to neglect the mutual drag exerted by 
the electron and ion subsystems. If we neglect radiation, 
each of these subsystems can be regarded as in thermal equi- 
librium in the average force field associated with their collec- 
tive interaction. As far as the individual particles are con- 
cerned, the collective electromagnetic field behaves like an 
external field, even though it is generated by the charged 
particles themselves. When a current flows, the system can- 
not be in overall thermodynamic equilibrium because the 
relative velocity of the electron and ion subsystems is non- 
zero. 

Provided the electrons and ions can be treated as two 
subsystems in thermodynamic equilibrium, no further ap- 
proximations are needed to describe the pinching. The equi- 
librium states of an axisymmetric system which does not 
vary in the direction of the current can be classified in terms 
of six parameters-the number of particles Nu per unit 
length, the temperature T,,  and the velocities v, of the sub- 
systems (a = e,i); moreover, one of the u, can be made to 
vanish by choosing a suitable reference frame. Four dimen- 
sionless parameters can be constructed from the remaining 
five dimensional variables. If we assume a Boltzmann distri- 
bution, the energy of magnetic compression must balance 
the energy of expansion (thermal and electrostatic) of the 
particles1' in order for the pinch system to be in equilibrium. 
This energy balance condition imposes a constraint on the 
parameters of the system, so that only three dimensionless 
variables remain independent; we may take them to be 
p= vdc,A = Ti /ZTe,  and E = e2Nefi2/Te, where c is the 
speed of light, Ti and Te are the ion and electron tempera- 
tures, Z is the ion charge, and E is the energy of magnetic 
compression divided by the electron temperature. In gen- 
eral, if one assumes a Boltzmann distribution then an axi- 
symmetric pinch system uniform in the direction of the cur- 
rent will have a three-parameter family of equilibrium 
configurations. 

The equations describing the equilibrium configura- 
tions in the classical Boltzmann approximation can be ex- 
pressed in the form" 

where the functions 11, satisfy the boundary conditions 

The parameter yo appears here in place of E,  and fi, A, and yo 
completely specify all the possible configurations. The elec- 
tron and ion densities n, ( r )  are given in terms of 11, (z) by 

where the discharge radius ro is chosen as a convenient scal- 
ing factor (the condition that the various forces be in equilib- 
rium for an isolated pinch system does not alone suffice to 
determine ro) . 

In general, Eqs. ( 1 ) with the boundary conditions (2)  
must be solved numerically for arbitrary fi,A,yo. The value 
of the physical parameter E corresponding to specified p, A, 
and yo is then calculated from the solution. 

For fixed fi and A, there exists a value 

yo=y,"=-ln[1-~2A/(1+A) ] ( 3 )  

for which the radial density distributions for the electrons 
and ions are identical. The solution in this case was first 
derived by BennettI6; it depends on two parameters (fi and 
A are arbitrary) and is given by 

lleB(z) =2 1n [ I +  ( Z / Z ~ ) ~ ] ,  giB(r) =$eB ( r )  +yoB, 

where z: = 8(1 + ~ ) / l l p ~ .  
It is remarkable that for a Bennett distribution, the two- 

fluid EMHD model can also be solved analytically to find 
the linear response (assumed to be uniform along the cur- 
rent). 

3. STABILITY THRESHOLD 

Oscillations in a pinch system were studied analytically 
in Ref. 15 in the two-fluid EMHD model for the extreme 
case when the wavelength is very small or very large com- 
pared to the radius of the pinch. The long-wave oscillations 
were associated with net displacements of individual regions 
of the current channel. Owing to the "elasticity" of the elec- 
tromagnetic field, the pinch system is stable against long- 
wave perturbations. 

For axisymmetric plasma structures that are uniform in 
the direction of the current (i.e., z-independent), the pertur- 
bations are of the form 

f (r, cp, z, t )  =f (r)exp (iwt-ikz-imcp). 

After linearization, the two-fluid EMHD equations for a 
nonrelativisitc, nondissipative system have the following 
form. The equation of continuity for the electron (a = e )  
and ion (a = i) subsystems: 

the Euler eauations: 
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the entropy conservation equations 

the magneto- and electrostatic equations: 

Here w: = w - kv, is the Doppler-shifted oscillation fre- 
quency for particles of species a ,  and 

is the Laplace operator. 
For short-wave perturbations the radial dependence 

f ( r )  may be taken to have the form 

In this case the oscillations are localized and the linearized 
equations reduce to an algebraic system. If Re)w and 
m -qro % 1, the spectrum for longitudinally uniform oscilla- 
tions is given by15 

Here Re = (e,/m,c)dA,/dr is the local Larmor frequency 
of the electrons, ro is the pinch radius, w, is the ion Langmuir 
frequency, Q = q2 + mz/?, and r, is the Debye radius. 

The localization condition qro) 1 for the perturbations 
breaks down near the stability threshold Q,,d =D2, and 
their wavelength becomes comparable to the radius of the 
discharge. Thus the local approximation cannot be used near 
threshold, and in general the equations must be solved nu- 
merically. However, the Bennett case yo = yt (3)  is excep- 
tional in that the existence of a stability threshold can be 
demonstrated analytically. The following analytic treatment 
can be used to simplify the numerical analysis of stability for 
all values of yo for which equilibrium is possible. 

The problem simplifies substantially because the insta- 
bility threshold (at which the current channel breaks up into 
small pinches occurs when wZ vanishes. We can therefore let 
w2+ - 0 to see whether or not a stability threshold exists. 
The system will be unstable if and only if the system of homo- 
geneous linear equations admits a nontrivial solution with 
zero boundary values. 

For w = k = 0, the Euler equations ( 5 )  imply that 
v,,, = 0. Since the entropy conservation equation holds 
identically, we need only consider isothermal perturbations: 
pa, = T,nal,T, =const. The continuity equation with 
v,,, = 0 implies that v,,, = 0 if m #O. Equations (4) and 
(6) then imply that thez-projection v,,, of the velocity van- 
ishes, and we get the following system of equations for a 
pinch near the stability threshold: 

is the Laplace operator, the subscripts a 8  take the values i, e 
for ions and electrons, Y, = rial /nao are the relative density 
perturbations, and Pa = v,/c, where v, is the velocity of 
subsystem a and c is the speed of light. 

For a Bennett pinch, the change of variable 

reduces (7) to the form 

where summation over the repeated subscript /? is under- 
stood. In a reference frame moving with the ion subsystem 
(Pi = O,Pe = /?) , the tensor aaB has the components 

a,,=2 (1+A) (1-8')  /8', a,;=-2 (1+A-Ap2)lp2, 
(9)  

a,,=-2 (1+A) /Ap2, aii=2 (l+A-Ap2) /Apt. 

They depend only on the two parameters P =  v,Jc and 
A = Ti/ZTe, as is to be expected since Bennett equilibrium 
corresponds to a two-parameter family of equilibrium struc- 
tures. We will need the following properties of the tensor aaB 

(9): 

The trace S and determinant A of the matrix a,@ are related 
by 

S+2=-AI2. 

If Eqs. (8) have a nontrivial solution satisfying the zero 
boundary conditions 

then the system must be unstable. 
We have derived Eqs. ( 8) by using the nonrelativistic 

two-fluid EMHD model; however, their validity is not limit- 
ed to P4 1. Equations (8)  can be derived from the electro- 
and magnetostatic equations, as was done in Ref. 19. In this 
case one uses only the relativistic invariance of the distribu- 
tion functionz0 and the fact that when k = 0, the perturba- 
tion leaves the system uniform along the direction of the 
original current. 

The general solution of system (8) can be found if we 
note that the associated Legendre functions satisfy the equa- 
tion 

(dzldxZ-m2) Pym(th X )  =-v ( v + l )  (ch X )  -ZPym(th x ) .  ( 10) 

Assuming a solution of (8)  of the form 

v,  (5)  =b,Pvm (th x )  (11) 

we then find a homogeneous system of algebraic equations 

Here for the coefficients b,, where A = Y ( Y  + 1 ). The solvability 
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condition det(ilSaB + aaB ) = 0 for ( 12) reduces to the qua- 
dratic equation il ' + A S  + A = 0 for A. Noting that S '/ 
4 - A = ( S  + 412/4, we find that there are two values 
ill = 2 and A, = A/2 for which the system (12) [and hence 
also (8) ] has a nontrivial solution. These values correspond 
to four values of the index Y; however, only the two values 

are actually needed to construct the general solution of (8).  
If we note that for nonintegral Y the functions P :(th x )  and 
P,"( - th x )  give linearly independent solutions of Eq. 
( lo),  we can write the general solution as 

v. (5) = batPtW' (th X) +bazQim (th X) 

Here the coefficients b,, and ba2 satisfy Eqs. ( 12) with 
A = A ,  = 2, while b,, and b,, satisfy (12) withil = A, = A/ 
2. 

Of the four linearly independent Legendre functions in 
(13), only the first satisfies the zero boundary conditions, 
andthenonlyifm= l : P i ( t h x )  = l /chx, 

There are no other nontrivial solutions of (8)  satisfying zero 
boundary conditions for the range of parameters 
0 </3< 1,O < A < co of physical interest. This confirms the 
conclusion reached previously in Ref. 15, where a numerical 
analysis suggested that Bennett pinches are unstable to per- 
turbations with m = 1 but are stable for m > 1. 

The instability form = 1 has a straighforward interpre- 
tation. Under isothermal conditions it is present for all val- 
ues ofp  and A and reflects the invariance of the system with 
respect to global transverse displacements. When k #O the 
system is no longer uniform along the current, but the pinch 
oscillation spectrum must contain an acoustic Goldstone 
branch which becomes a static shear as k --+ 0 and describes 
continuous bending of the pinch similar to the vibrations of a 
string. 

4. ACOUSTIC BRANCH OF THE LONGWAVE OSCILLATION 
SPECTRUM 

The Goldstone branch of the spectrum can be calculat- 
ed by the technique used by Pitaevskii2' in his analysis of the 
oscillations of a vortex filament in a nonideal Bose gas. Let w 
and k be nonzero but small enough so that 

Then the motion of both the electrons and the ions is "frozen 
out" in the rz plane normal to the magnetic field, and we can 
take v,,, = v,,, = 0. Thus only the motion of the electron 
and ion fluids along the magnetic lines of force must be con- 
sidered, v,,, # 0. 

We consider the case when the number Ne of electrons 
per unit length of the current channel satisfies 

component A, of the perturbation of the vector potential in 
the equations of motion. Since me (mi, we may also neglect 
the inertia of the electrons. The acoustic branch of the pinch 
oscillation spectrum is then the one associated with the azi- 
muthal displacements of the ion component. In a reference 
frame for which the ion subsystem is stationary at equilibri- 
um, we recover Eqs. (7) with the term 

replaced by 

and 

in the equations for the ions (a = i) and electrons (a = e) ,  
respectively. Passing from r to the variable x = ln(r/r+,), 
we get the following equations for a Bennett pinch: 

where f i  and x are the dimensionless frequency and wave 
vector of the oscillations. Since fi2( 1 and x2  4 1, Eqs. ( 15) 
can be solved separately forx) 1 and for x2e2" 4 1; these two 
regions overlap when 1 (x (ln( l /x) .  

For x >  1, the solutions of Eqs. ( 15) tending to zero as 
x - co are expressible in terms of modified Bessel functions: 

(the terms proportional to ch-'x are negligible for x )  1 ) . In 
the intermediate region 1 (x(ln(l /x)  we have 

For x gin( l /x)  the terms proportional to xZ and f12 may be 
treated as perturbations, and we seek a solution of the form 

For Y, we obtain system (8)  with m = 1. The solution tend- 
ing to zero as x + + GO is given by ( 14), where the factors 
b,, satisfy Eqs. (12) with il = 2. Since 

det (26,8+aaB) =0, 

we can set one of the amplitudes equal to unity, be, = 1, say. 
Equations (12) then imply that we also have b ,  = 1, and 
therefore Y,, = l/chx. 

For Y,, we get the system 

We can then neglect the terms containing the azimuthal (d2/dx2-l)val-aagvg( ch-2 x=fa, (18) 
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where 

We are interested in the solution of ( 18) that tends to zero as 
x -+ - w and matches the asymptotic solution ( 16) for 
x>) 1. We use the method of variation of constants and seek a 
solution of the form 

where the u, are the four linearly independent solutions of 
the homogeneous system: 

1 
U ,  = - 2x+sh 2x 

Uz = 
chx ' r u3=PvZ1 (th X) 

ch x 

the functions A, (x)  are to be found, g, = 1, and g, = - g, 
where 

We impose the two additional constraints 

A..u,=o, ~ a , . u i = o  
i = 1  i -3  

(20) 

on A, (x), where the primes denote derivatives with respect 
tox. Substitution of ( 19) in ( 18) together with (20) leads to 
the equations 

Equations (20) and (21 ) yield two uncoupled systems of 
algebraic equations for the pairs A ; , A ; and A ;,A ;: 

f i +  gfe - " 
2Q2 x2eZx 

Ai'ui=O, Airs' = - - -+- 
i - i  i = i  I+g (I+g)ch3x C ~ X  ' 

The solution is readily found to be 

where the Wronskians w, = uiu; - uku] are nonzero and 
independent of x for the linearly independent pairs of func- 
tions u, and u,; in fact, w,, = 4. 

We can use (22) to find the functions v,, that vanish at 
x =  - w :  

We set the constant A,, equal to zero, since a term propor- 
tional to u, is already contained in v,, . The primes in (23) 
indicate functions of the argument x' over which the integra- 
tion is performed: u j = u, (x') ,u, = u, (x)  . 

Since Eqs. ( 16) are accurate only up to logarithmic 
terms, we may neglect x2e2"/chx' in (23); with (17) and 
(23), we then obtain 

for l (x( ln( l /x) .  Here 

The function u, ( x )  z 2 e -  ", while u2(x) and u4(x) grow ex- 
ponentially: u,(x) = ex,u4 (x)  = u4,eX,x >) 1. Writing 

we see that in order for expressions ( 16) and (24) to coin- 
cide, we must have C = D = 2% and 

2PzIl/(l+g) wi2+K=x2 1n x, 

Eliminating 2, we find that x and fl are related by 

Substituting I , / w , ,  = 1/3, we get the spectrum 

for the acoustic Goldstone branch of the pinch oscillations, 
where the constant y is - 1. A more detailed analysis includ- 
ing the logarithmic terms gives the value 

for y in (25). 
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