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Starting with an oscillator-strength sum rule, we derive an integral relation which must be 
satisfied by the bound-electron radiation absorption coefficient in a plasma, when the 
distribution of ions with respect to degree of ionization and excitation state is arbitrary. 
Making use of this relation, we formulate and solve a variational problem which, under 
conditions of local thermodynamic equilibrium, yields the smallest possible value of the 
Rosseland mean free path 1,. We compare the estimated minimum 1, with estimates of the 
actual value of this quantity in the presence of multiply charged ions, using a lead plasma as an 
example. 

1. INTRODUCTION 

The correct treatment of radiative transfer in a plasma 
is of the greatest importance in the hydrodynamics of high- 
temperature phenomena.' The simplest case, that of a plas- 
ma transparent to its own radiation, reduces to a considera- 
tion ofbulk radiative energy losses. In a fully ionized plasma, 
these are the well known bremsstrahlung losses. In an in- 
completely ionized plasma of multiply charged heavy ions, 
calculations of bulk energy losses must incorporate free- 
bound (recombination radiation) and bound-bound (line) 
transitions as well as free-free transitions. The situation is 
considerably more complicated when the plasma becomes 
optically thick. Quantitative analysis is especially difficult in 
the intermediate case of a plasma which is optically thick in 
some parts of the spectrum (in particular, in the lines of 
bound-bound transitions) while remaining transparent in 
others. Clearly, the hydrodynamic problem must then be 
solved in conjunction with the radiative transfer equations, 
which include the effects of plasma opacity. It could be said 
that an increase in plasma density gives rise to an increase in 
opacity, although the accurate criterion is actually that the 
photon mean free path (in some region of the spectrum) 
becomes less than some characteristic linear dimension of 
the plasma. This also often occurs in a plasma with multiply 
charged heavy ions, in which the photon absorption cross 
sections are particularly large in certain regions of the spec- 
trum which are generally narrow, and which correspond to 
the discrete spectral lines of these ions. 

One field which has aroused great interest is the hydro- 
dynamics of high-temperature phenomena associated with 
inertially confined thermonuclear fusion, where the com- 
pression of thermonuclear targets to extremely high densi- 
ties plays a pivotal role (see the collections of articles, for 
example, in Refs. 2 and 3 ) .  Under the physical conditions 
needed to initiate thermonuclear fusion, the plasma density 
in the target shell must be hundreds of times higher than the 
density of the solid material, with a temperature measured in 
thousands of electron volts ( - 10' K)-the characteristic 
temperature for ignition of a thermonuclear reaction at the 
center of the target, which contains hydrogen fuel. Conse- 
quently, we need to know the physical properties of an inho- 

mogeneous dense plasma, which in general is not an ideal 
gas, particularly the mean free path of radiation within it as a 
function of frequency. 

In practice, such a plasma exists in a state of local ther- 
modynamic equilibrium (LTE) between the matter and the 
internal radiation. Radiative transfer may then be treated in 
a radiative thermal conductivity approximation, which fol- 
lows directly from the radiative transfer equations in the 
limit of a plasma which is optically thick over the entire 
spectrum. This approximation is applicable when the pho- 
ton mean free path, as a function of frequency, is less than 
some characteristic hydrodynamic dimension of the inho- 
mogeneous moving plasma (this dimension is obviously al- 
ways less than the linear size of the plasma, as was mentioned 
previously). The radiative thermal conductivity approxima- 
tion is widely known, and has been discussed in connection 
with many problems in physics' and astrophy~ics.~ To im- 
plement it, one need know only the Rosseland mean free 
path of the photons. In general, the Rosseland mean free 
path is obtained by integrating the reciprocal of the absorp- 
tion coefficient over frequency, i.e., the photon mean free 
path with the Rosseland weighting function, which is pro- 
portional to the partial derivative with respect to tempera- 
ture of the equilibrium Planck function. This makes it clear 
that bound-bound transitions can make a significant contri- 
bution to the Rosseland mean free path only when some 
mechanism broadens the corresponding absorption lines 
sufficiently. For the natural linewidths, which are in fact 
small, this contribution can usually be neglected.' 

Thus, in order to compute the radiative transfer of ener- 
gy in an inhomogeneous plasma, it is necessary to know the 
spectral dependence of the photon absorption coefficient. In 
a plasma consisting of multiply charged heavy ions, the most 
difficult aspect is taking bound-bound transitions into ac- 
count,' since in order to do so, one needs to be concerned 
with the distribution of ions in various ionization levels, take 
an enormous number of transitions between a multitude of 
quantum states of complex ions into consideration, and cal- 
culate spectral line broadening due to all possible mecha- 
nisms. In a dense, nonideal plasma, this task is even further 
complicated by the fact that strictly speaking, one needs to 
calculate the structure of the quantum levels not of a single 
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isolated ion, but of a whole group of interacting ions and 
electrons in a state of thermal agitation. 

The contributions of bound-bound transitions, i.e., line 
absorption effects, have been discussed in a great deal of 
detail in the review by  COX.^ It was emphasized there for the 
first that taking bound-bound transitions into consideration 
can result in a marked (severalfold) reduction in the Rosse- 
land mean free path, as, for example, under considerations 
indicated previously for inertially confined thermonuclear 
fusion. 

If the mean level of ionization of the plasma is known, 
we can obviously make fairly accurate allowances for the 
contributions of bremsstrahlung and scattering from free 
electrons; however, as we have already pointed out, we have 
practically no detailed information on the role of bound- 
bound transitions, and only extremely sketchy data on free- 
bound transitions (with regard to the latter, for example, see 
Ref. 1 ) . Under these circumstances, it is natural to reformu- 
late the calculation of the Rosseland mean free path in such a 
way that for given frequency-dependent absorption and free- 
electron scattering coefficients, we take the contribution of 
all transitions from bound states (both bound-bound-and 
bound-free) to be an unknown function of frequency, which 
must satisfy some general requirements. For the general re- 
quirement on the absorption coefficient, we make use of an 
oscillator-strength sum rule derived for dipole transitions of 
an arbitrary atomic system in the field of a light wave.6 As we 
show below, this approach can be rigorously followed within 
the scope of the classical Euler-Lagrange variational prob- 
lem, the Rosseland mean free path itself playing the role of 
the functional being varied. In other words, having solved 
the variational problem, we will obtain, for any given plasma 
temperature T and density p, a lower bound on the Rosse- 
land mean free path (it is generally clear from physical con- 
siderations that the extremum is a minimum in the present 
case). We will demonstrate below that in a dense plasma, 
this estimate of the minimum is quite close (within a factor 
of 2 or 3 )  to the actual value. 

In the present paper, when we calculate the lower 
bound, we assume for simplicity that we have a plasma in 
statistical equilibrium containing ions of only a single ele- 
ment, with atomic number Z and atomic weight A.  The gen- 
eralization to a mixture of different elements is not at all 
difficult, since in the ultimate formulas only the mean den- 
sity of bound electrons appear. In a low-density plasma, this 
comes from the Saha equation, while in a dense plasma, it 
can be estimated in a mean-ion appr~ximation.~ 

Furthermore, we shall completely neglect collective ef- 
fects in the propagation of electromagnetic waves in plasma; 
that is, we assume &op T (where up is the plasma frequen- 
cy). Finally, we emphasize that this work does not pretend 
to derive strictly accurate quantitative results for the Rosse- 
land mean free path over a wide range of temperature and 
density in any material. Nevertheless, the method we pro- 
pose and the simple formulas derived make it possible, in 
every specific instance, to obtain an estimate of the mini- 
mum Rosseland mean free path which is close to the actual 
value over a certain range of parameters. 

2. ROSSELAND MEAN FREE PATH AND AN OSCILLATOR- 
STRENGTH SUM RULE 

In the situation we are considering, the Rosseland mean 
free path I ,  is defined by4 

R ( u )  = (15/4n4) u4e-" (i-e-")-' ( 2 )  

is the Rosseland function; u = hv/T is a dimensionless fre- 
quency; k,,*(v) and k f ,  *(v) (measured in cm- ) are the 
bound- and free-electron radiation absorption coefficients, 
respectively (the asterisks denote the fact that they must be 
corrected for induced emission)"'; k, (cm-I) is the free- 
electron scattering coefficient (which is frequency-indepen- 
dent in the Thomson scattering approximation, and requires 
no correction for induced scattering). In accordance with 
these definitions, we assume that k,., * (v)  is a known func- 
tion of frequency and k,  is a known constant, while k,, * (Y)  

is an unknown function which satisfies - 

and which must be determined by finding an extremum of 
the functional ( 1 ). We now demonstrate how condition ( 3 )  
follows from a theorem on the sum of oscillator strengths 
(the Thomas-Reiche-Kuhn sum rules). 

We consider an atom (ionized i times) which contains 
Z - i bound electrons, and which lies in quantum state n 
with excitation energy EI, (by n, we mean the entire set of 
quantum numbers specifying the state of the atom; the exci- 
tation energy is measured from the ground state). In gen- 
eral, the absorption of electromagnetic radiation is accom- 
panied by the following types of transitions in the overall 
system of atoms and free electrons: bound-bound transitions 
n - n', bound-free n -c and free-bound c - n transitions, as 
well as free-free transitions c +c'. We make use of the Thom- 
as-Reiche-Kunh sum rule for those transitions, and only 
those, for which the initial states are discrete states. In other 
words, we assume that the unknown term k,, * (Y)  derives 
from the collective contribution of all transitions of the types 
n - n' and n - c, while the remaining c - n and c - c' transi- 
tions are included in the known term k f ,  * (v) . 

In the general case, n -n' transitions can occur both 
with absorption of a photon of frequency 

(true absorption, vb,. > 0 )  and with emission of a photon of 
frequency - v:,. (induced emission, vb,. < 0).  Transitions 
at positive frequencies v',,. give a positive contribution to the 
absorption coefficient k,, *, and those at negative frequen- 
cies give a negative contribution. The latter statement is also 
true for n -c  transitions (excitation energy EL. is simply re- 
placed by &:). As a result, the total absorption coefficient 
k,, * is an algebraic sum of positive and negative absorption 
terms, which correspond to the positive and negative fre- 
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quencies of the appropriate transitions. 
The oscillator strength f I,. of a dipole transition n -n' 

is defined8-' in such a way that 

ne' c j ~ : ~ ,  ( v ) ~ v  =-fnn., 
m,c 

where<,. (v) is the absorption cross section for electromag- 
netic radiation, having the form of a narrow resonance near 
the transition frequency v',,. (negative values of f ',,, and 
8,,, correspond to negative frequencies vd,. 1. For transi- 
tions n +c, the concept of a differential oscillator strength is 
usually employeds9', being defined by 

(dfldv) .,'= (m,clnea) anCi(v) , (6)  

where d,, (v) is the photoionization cross section of an i- 
times ionized atom in state n, which is non-zero for frequen- 
cies v > vh,,,, , where vb,,, is the photoionization threshold. 
With this notation, the Thomas-Reiche-Kuhn sum rule is of 
the form8 

m 

For subsequent developments, it will be convenient to intro- 
duce a total absorption cross section d, (v) for an i-times 
ionized atom in state n, determined by the entire set of transi- 
tions n -n' and n -c. In the limit ofinfinitely narrow bound- 
bound transitions, according to (5) and (6), we have 

It follows from the discussion above that the frequency v in 
(8) can take on any value in the range - ~ ; / h  (v < a, with 
d,(v) >Oforv>Oandu;(v) <Oforv<O. Withthedefini- 
tion (8 1, the sum rule (7)  takes the form 

ne2 j o,(v)~v=- (Z - i). 
eni/h mec 

The total absorption coefficient k,, * (v)  for bound elec- 
trons makes physical sense only for positive frequencies, and 
may be expressed in terms of a; (v)  in the following manner: 

0, enilh<v 
k*; (v) = N:[ ani(v) +{ ani ( v ) ,  O < v ~ e n i / h  

i , n  

Here N i  (cmP3) is the number of i-times ionized atoms in 
state n per unit volume. Bearing in mind that 

we obtain (3) directly from (9) and (10). We emphasize 
that Eq. ( 10) and the integral relation ( 3 ) hold for arbitrary 
(and not just equilibrium) distributions of ions in the var- 
ious excitation and ionization states. 

If the bound-bound transitions are not taken to be infi- 
nitely narrow, but instead we incorporate the actual (i.e., 
broadened) spectral line profiles, then these profiles must be 
substituted into (8)  instead of &functions. Accordingly, we 
must give up the exact photoionization threshold v;,,, , for- 
mally replacing this quantity by zero. Furthermore, in Eqs. 
(9)  and ( lo),  instead of the exact value E; / h  of the frequen- 
cy, we need an infinite quantity which allows for an arbitrar- 
ily broadened given state and ground state. It is easy to see 
that these changes have no effect on the derivation of Eq. 
(3).  

The definition of the absorption coefficient (10) as- 
sumed in the present paper, which is corrected for induced 
emission, differs somewhat from the conventional defini- 
tion. However, if from k,, * we omit the term k,, *, due solely 
to bound-bound transitions [first term on the right-hand 
side of (8) ] ,  we obtain from ( 8) and (10) 
m 

Y "e2 x (N~~~:..+N~-Y:..) J k*.. (v) dv = za T' N.%:. = - 
o me' {,ntnq meCi ,n ,n '>n  

In order to go from a full sum over n' above to a sum 
over n' > n, for "positive transitions" with v;,. > 0, in the 
double sum 

we have changed the order of summation, 

n V , n > n '  

and interchanged the summation indices n and n': 

We have taken the usual  definition^^,'^ of the Einstein coeffi- 
cients B ',,, and B L., . In the LTE approximation, where the 
excited states are populated in accordance with Boltzmann 

. . 
statistics and N -g; exp( - E', /T) , the relation" 

enables us to transform ( 12) to the well known form4 

Note that in the present case, the total absorption coefficient 
from bound states k,, *(v) cannot be transformed to the 
form ( 14), as c-n transitions (the inverse of n -c transi- 
tions) are included in the term kfe * (v) . 

3. SOLUTION OF THE VARIATIONAL PROBLEM AND 
ESTIMATION OF THE MINIMUM ROSSELAND MEAN FREE 
PATH 

We are thus obliged to find an extremum of the function 
(1) with the constraint ( 3 ) .  We introduce the notation 
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cp(u) =kb.*(v), F ( u )  =be* (v) +k., (15) - 

and consider first the simpler case F(u) = 0. To solve the 
variational problem, we employ Lagrange's method of unde- 
termined multipliers," i.e., we seek an unconditional extre- 
mum of the functional 

rn m 

Equating the variational derivativedL /dp to zero, we obtain 

cp ( u )  =h-'"R'" ( u )  . (18) 

Substituting (18) into the auxiliary equation ( 3 ) ,  we find 
the values of A, p,  and I,,,, : 

735 
I , . , .  [cm] = ( J R '  du) ko-' = - 6' (3) ko-' 

o n4 

Here g(x) is the Riemann zeta function, and 7 is the mean 
ionization level. It can be shown by direct substitution that 
( 19)-(21) do in fact minimize the functional ( 1 ). 

Carrying out a similar computation for F(u) $0, we 
obtain 

c p ( ~ ) = ( k ~ + ~ F d u ) ( ~ X ' ~ d u ) - ' H " ( a ) - P ( u ) .  o o (22) 

However, from a practical standpoint, this result is meaning- 
less, as in a typical situation the integral of F will diverge at 
both limits of integration. Eliminating the divergence of this 
integral by artificially cutting it off, we obtain the absorption 
coefficient k, * (v) =p(u 1, which may be positive or nega- 
tive. This leads to the conclusion that when F(u) #O, the 
variational problem must be stated differently. 

In general, the absorption coefficient k,, * (v) can take 
on negative values over some region of the spectrum (as hap- 
pens in lasers, for instance). It is known that in LTE in a 
plasma of hydrogen-like ions, k,, * ( v )  > 0 for all 0 < v < w ; 
the latter limit is likely to hold for plasmas of more complex 
ions as well. Similarly, the known term kf, * (v) can in gen- 
eral be of either sign. However, when free-electron absorp- 
tion or scattering must be taken into account under LTE 
conditions, F(u) > 0 for all 0 < v < w . With an LTE orienta- 
tion, we formulate the generalized variational problem ( 17) 

for the case F(u) > 0, p(u) >O. In more realistic complex 
situations, it is necessary to incorporate additional physical 
assumptions, allowing for an appropriate restriction or ex- 
pansion of the class of functions p (u) for which one seeks an 
extremum of the functional ( 1 ) . 

When F(u) > 0, the search for an extremum of (1) 
must be broadened to the class of functions of the form 

In other words, we must find an extremum of the functional 

with the joining condition 

du = ko, 
u1 

when the limits u, and u2 are free parameters to be deter- 
mined in the process of solving the variational problem. 
Methodologically, the search for an extremum of (24) does 
not differ from the case considered previously: to the condi- 
tion for an extremum employed earlier, dL /dp = 0, we now 
add the conditions for an extremum within the finite range 
u, < u  < u ,  relative to the parameters u, and u,, d L /  
du, = dL /du, = 0, the expansion of which gives the follow- 
ing equations for u, and u,: 

R'" (u,)  R'" ( u  ) 
---=-A= j R ' d u / ( k o f  j ~ d u ) .  (26) 

F(u1) F(u2) ., 
u1 

It can be proven that for functions F(u) which behave in 
ways which are of physical interest, Eq. (26) has a unique 
solution with u, < u,. The lower bound on the Rosseland 
mean free path is then given [compared with (2 1 ) ] by 

To illustrate the quantitative difference between the 
variational problems (24) and ( 17), we consider an example 
with k, = ko, kJ, *(v) = 0. In that case, we find from (26) 
and (27) that u, = 1.91, u, = 6.48, = 0.867kG1 
(when k ,  = 0, Eq. (21) gives I,,,, = 10.9k; '). However, 
by simply substituting the solution (20) for k,, * ( v )  (which 
was obtained by assuming k, = kf, * = 0) along with 
k, = k,, into ( 1 ) , we obtain almost exactly the same result: 
I ',,,, = 0.904k; I. 

Note that a decrease in and I ',,,,, which are 
practically equal, has no special physical meaning from the 
standpoint of a real free-electron scattering contribution to 
the Rosseland mean free path. In fact, the quantity k,, which 
corresponds to Thomson scattering, will be k, = u,$/ 
m,A, where u, = 0.67.10-24 cm2. It should be completely 
obvious that k,,% k, so long as Z - 72 1, since from the de- 
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finition of ko in ( 16), we have In a dense plasma, where 

nezh ne2h 
Nbr = - (2-i) - - P 

m,cT m,cT A m, Am, ' 
>a,i----- 

which, after substituting for all known constants, reduces to 

The more free electrons there are, i.e., the closer the mean 
ionization 1evelTis to Z (complete ionization of the atoms), 
the harder it is to satisfy this last condition. Nevertheless, 
with just the K-shell electrons remaining, the derived condi- 
tion is satisfied for heavy atoms. Let us take Z = 82 and - 
i = 80 (lead with the K-shell electrons), so that we have an 
upper limit on the temperature: T(4.8.10" K. But even at 
T- 5 -  lo9 K and densities which are not significantly differ- 
ent from normal, lead is quite deficient in K-shell electrons. 

Without resorting to any new examples, it can be shown 
that the actual contribution of free-electron absorption or 
scattering to the desired quantity, is generally ex- 
tremely small. For practical estimates of the lower bound on 
the Rosseland mean free path in a plasma of multiply- 
charged heavy ions, we may therefore use the simple formula 
(21), which was derived using the first version of the vari- 
ational problem. In the next section, we consider an impor- 
tant problem, concerning how close this lower bound is to 
the actual Rosseland mean free path. 

and the main contribution to I ,  comes from transitions out 
of the ground state, the actual value of I ,  can be approximat- 
ed in the following way. Rejecting the classical formula for 
absorption in lines due to bound electrons,I3 and assuming 
that for high frequencies, the quantum mechanical calcula- 
tion (using Kramers' expression) gives uf (v)  - (v)  -3 ,  we 
approximate the ground-state absorption cross section by 

where 
a=eZ/iic, a,,=iiz/m,e2, 2ZH=ez/ao. 

To determine the three dimensionless constants ai , 6,  , and ci 
in the supplement to the sum rule (9) ,  we impose the follow- 
ing two conditions on 4 (v) ,  which reflect the actual regu- 
larities in the behavior of that quantity: 1) the maximum 
cross section u; (v)  must occur for hv = I, ; 2) in the limit 
hv)IHZ2, Eq. (30) must go over into the Kramers expres- 
sion for the K-shell photoeffect. In particular, for heavy ele- 
ments (Z )  1 ) with Z - i >  2, we have 

4. COMPARISON OF THE LOWER BOUND AND ACTUAL Substituting (30) into ( 1 ) and ignoring the contribution of 
VALUES OF THE ROSSELAND MEAN FREE PATH k,, *(v) + k,, we obtain the following estimate for the Ros- 

When I i /T)  1 in a low-density plasma, where I, is the mean free path in a dense 

ionization potential of the ground state of an i-times ionized AT3 [keV] 
atom, we may use Eq. ( 12) of Ref. 12 for a realistic estimate l"sdp[Cml= 074 p[g.cm-31ai [210+5b.($)z +s( 4 ;)&I. 
of the quantity I ,  ; in our present notation, this is (32) 

The hydrogen-like approximation and the exchange of sum- 
mation over quantum states and integration used to derive 
(28) in Ref. 12 are inapplicable when the ground-state pho- 
toionization threshold hv = Ii lies in the vicinity of the max- 
imum of the Rosseland function (2).  Since the function 
R(u )  attains its maximum at u, = 3.83 and has a width at 
half-maximum of Au,,, = 4.97, the conditional limit of ap- 
plicability of (28) can be taken to be I, / T >  5. 

The error in (32) when (29) is satisfied should evident- 
ly be less than a factor -2-5. On the one hand, this is cor- 
roborated by direct comparison of Eq. (30) with quantum 
mechanical calculations of the photoionization cross section 
of various elements.I4 On the other, although it is in fact not 
necessary that the actual maximum cross section d, (v),  tak- 
ing into account broadened and overlapping lines in the dis- 
crete spectrum (which comprise about half of the terms in 
the sum of oscillator strengths), be attained precisely at 
hv = I i ,  it is clear that the difference between the frequency 
at the maximum and Ii/h cannot change the value of I R  
significantly (by more than severalfold) when Ii/h lies in 
the vicinity of the maximum of the Rosseland function. 

From the standpoint of photon absorption by bound 

TABLE I. Comparison of Rosseland mean free paths calculated with different formulas for lead 
plasma at T = 300 eV. - -- - -- 
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electrons, a dense plasma differs from a rarefied one in two 
important aspects: a )  ionization equilibrium in a dense plas- 
ma is characterized by a lower value ofIi IT, the main contri- 
bution to the Rosseland mean coming from transitions out of 
the ground state; b) absorption lines are broader in a dense 
plasma, and give a larger contribution to the Rosseland 
mean free path (recall that infinitely narrow lines do not 
generally contribute to I, ). If by a dense plasma we mean 
one which satisfies (29), then by virtue these properties, it is 
precisely in a dense plasma that the fraction of the overall 
sum of oscillator strengths which gives the major contribu- 
tion to I, should be a maximum, and the estimate (21 ) of the 
minimum [see also (27) ] is the closest to the actual value. 

To demonstrate this result via a concrete example, we 
present in Table I the values of the Rosseland mean free path 
inlead, computedviaEqs. (21), (28), and (32) for T =  300 
eV over a wide range of density. The mean ionization level - 
i = ?( p,T) was computed with the aid of the generalized 
Raizer approximation, as in Ref. 7. Bearing in mind that 
"good agreement" of the computed values of the Rosseland 
mean free path means that they differ by only a small factor, 
we see from the table that in a dense plasma, with 1 5 Ii / 
T55,  all these estimates are consistent with each other; in 
the low-density regime, with Ii /T> 5, the lower bound on I, 
obtained in the present work is much smaller (by several 
orders of magnitude) than the actual values. Recall that the 
estimate (32) is not applicable in a low-density plasma, since 
(29) does not hold. The estimate (28) must be approached 
with a certain amount of caution, even in a very low-density 
plasma, since the contribution of discrete transitions was 
neglected in deriving it. Under these conditions, it would be 
preferable to use a much more complicated computational 
model, the modified Hartree-Fock-Slater model," which 
takes into account both the actual structure of the excited 
states of multiply-charged ions and the actual line-broaden- 
ing mechanisms. 

We note in conclusion that Eq. (28), which was derived 
in Ref. 12 for a low-density plasma, also provides a fairly 

good description of the high-density case as well, when the 
mean ionization level 7 is determined from a more general 
ionization equation than the one in Ref. 16, which is applica- 
ble to a dense plasma, and the condition I, / T 2  1 holds. In 
the limit I i / T 4  1, the error in (28) grows without bound, 
and only (32) should be used to give a realistic estimate of 
1, . 

The authors consider it their pleasant obligation to 
thank Ya. B. Zel'dovich sincerely for his interest in this work 
and for useful remarks. 

'Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High- 
temperature Hydrodynamic Phenomena, Academic Press, New York, 
1967. 

'P. Caldirola and G. Knopfel (Editors), Physics of High Energy Density 
Academic, New York ( 197 1 ) . 

'A. A. Filyukov (Editor), Problemy lazernogo termoyadernogo sinteza 
(Problems in Laser-induced Thermonuclear Fusion), Atomizdat, Mos- 
cow, 1976. 
4D. A. Frank-Kamenetskii, Fizicheskie protsessy vnutri zvezd (Internal 
Structure of Stars) Vnutreneye Stroyenie Zvyezd, D. A. Frank-Kamen- 
etskii (Editor), Fizmatgiz, Moscow, 1959. 

5A. N. Cox, in: (Physical Processes in Stellar Interiors, JPST, Jerusalem 
( 1962), (Mir. Moscow, 1970), p. 101. 

6H. Bethe, Quantum Mechanics of Simple Systems (Russ. Transl., 
ONTI, Moscow, 1935). 

'M. M. Basko, TVT, 23,483 (1985). 
'H. Bethe and E. Salpeter, Quantum Mechanics of One- and Two-electron 
Atoms, Academic Press, New York, 1957. 

9V. A. Ambartsumyan, E. R. Mustel', A. B. Severnyi, and V. V. Sobolev, 
Theoretical Astrophysics, Pergamon, London, 1958. 

'OL. Spitzer, Physical Processes in the Interstellar Medium, John Wiley, 
New York, 1978. 

"P. M. Morse and H. Feshbach, Methods of Theoretical Physics, 
McGraw-Hill, New York, 1953, p. 278. 

"Yu. P. Raizer, Zh. Eksp. Teor. Fiz. 37,1079 ( 1959) [JETP 37 ( 1959) 1. 
I3C. Cowley, The Theory of Stellar Spectra, Gordon and Breach, New 

York (1970). 
I4J. H. Scofield, Theoretical Photoionization Cross-Sections from 1 to 

1500 keV, Reprint UCRL-51326, Lawrence Livermore Laboratory, 
1973. 

I5A. F. Nikiforov and V. B. Uvarov, Dokl. Akad. Nauk SSSR 191, 47 
(1970) [Sov. Phys. Dokl. 47 (197911. 

I6Yu. P. Raizer, Zh. Eksp. Teor. Fiz. 36,1583 ( 1959) [JETP 36 ( 1959) I .  

Translated by M. Damashek 

985 Sov. Phys. JETP 63 (5). May 1986 lmshennik etal. 985 


