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An investigation is made of the luminescence spectra of CuCl microcrystals grown in an 
insulating matrix of silicate glass. A doublet structure of a resonance exciton luminescence line 
is found in the microcrystal size range a - 50-150 b; when the separation between the size- 
quantization levels is of the order of the longitudinal-transverse splitting of the exciton 
spectrum. A theory of size quantization of an exciton in a semiconductor sphere is developed 
allowing for the longitudinal-transverse splitting. It is found that the observed anomalous 
structure of the luminescence spectrum is due to a strong increase in the rate of exciton 
transitions when the positions of exciton lines governed by size quantization coincide with the 
frequency of a surface electromagnetic wave mode. 

1. IN1 RODUCTION 

Studies of three-dimensional semiconductor microcrys- 
tals grown in transparent insulating matrices are being pur- 
sued vigorously. Such heterophase systems make it possible 
to study the effects of size quantization in semiconductors, 
because this microcrystal growth method makes it possible 
to vary their size in a controlled manner over a wide range 
from a few tens of thousands or more angstroms.' The trans- 
parency of the silicate glass matrix in a wide range of wave- 
lengths from ultraviolet to the near infrared makes it possi- 
ble to employ conventional optical spectroscopy methods in 
studies of such systems. Size quantization of the energy spec- 
trum of free electrons is manifest in the interband absorption 
spectra of CdS micro~rystals.~ Size quantization of excitons 
has been observed and studied in the absorption and lumi- 
nescence spectra of CuCl m i c r ~ c r ~ s t a l s . ~ . ~  

We report the structure of a resonance exciton lumines- 
cence line of CuCl microcrystals which appears when their 
sizeisa-50-150 A. 

We show that the observed structure is associated with 
a large longitudinal-transverse splitting h,, of the exciton 
spectrum of CuCl crystals (h,, = 5.7 meV is given in Ref. 
5),  and is due to a strong reduction in the radiative lifetime 
of excitons in microcrystals when the positions of exciton 
lines governed by the size quantization of the energy spec- 
trum coincide with the frequency of a surface electromag- 
netic wave mode (surface exciton frequency). 

In Sec. 2 we shall give the experimental results and car- 
ry out a qualitative analysis of the observed pattern. A the- 
ory of size quantization of excitons allowing for the longitu- 
dinal-transverse splitting is presented in Secs. 3 and 4. The 
results obtained are compared with the theory in Sec. 5. 

2. EXPERIMENTAL RESULTS 

Microcrystals of CuCl were grown by diffusive phase 

minescence spectra of microcrystals were recorded using a! 
SDL-1 spectrometer on excitation with the A = 3642 A 
krypton laser line of 50 mW power. The spectra were record- 
ed at T = 4.2 K. 

Figure la  shows the luminescence spectra of CuCl mi- 
crocrystals as a function of their average radius 5. The spec- 
tral position and width of the A = 3902 b; line governed by 
the annihilation of excitons bound to neutral acceptors were 
independent of the microcrystal size. The position of the res- 
onance exciton luminescence line in the range of small sizes 
(Ti < 50 b;) is governed, as was shown earlier, by size quanti- 

~reci~i tat ion of a su~ersaturated solid solution in the interi- FIG. 1 .  a)  Resonance exciton luminescence spectra obtained for different 
a .  

or of a silicate glass Latrix by a method described in ~ ~ f .  1 @ues of the ayerage radius of CUCI microcrystals: 1 ) 1 = 45 A; 2)  1 = 56 
~ ; 3 ) ~ = 7 0 ~ ; 4 ) 1 = 7 6 A ; 5 ) 1 = 9 5 A ; 6 ) 1 =  1 3 2 A . b ) ~ e ~ e n d e n c e  

The average microcrystal radius was determined for each of the nositions of the maxima of the doublet structure on the average 
sample by the small-angle x-ray scattering method. The lu- radius bfmicr~cr~stals. 

- 
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zation of excitons and was described satisfactorily (see Fig. 
lb) by the following expression4 

where fiw, is the position of the bottom of the exciton sub- 
band and m is the translation mass of an exciton. 

When the microcrystal size was increased, a second line 
appeared in the resonance exciton luminescence spectrum 
when the size reached Z- 70-80 A, but the position of this 
line was independent of the microcrystal size (Fig. lb). 
When the microcrystal size was increased further, this line 
dominated the spectrum. The appearance of a line with a 
position independent of the microcrystal size can be under- 
stood if we ignore spatial dispersion associated with the mo- 
tion of an exciton as a whole, which corresponds to the limit 
m+ co. 

In fact, if we ignore spatial dispersion associated with 
the motion of an exciton as a whole, the interaction of a 
semiconductor sphere with light can be described by the 
macroscopic permittivity x(w) given by the following 
expression6 in the range of frequencies w close to the exciton 
line: 

where x, is the high-frequency permittivity and wT is the 
frequency corresponding to the bottom of the exciton sub- 
band; x (w ) is negative at frequencies w defined by 

The solution of the Maxwell equations gives, for this 
case, surface modes of frequencies wF which are found from 
the condition7: 

x (a,") + (F+1) xmlF=O, (3  

where x, is the permittivity of the matrix and F is the total 
angular momentum describing the spatial distribution of the 
electromagnetic field. It follows from Eqs. (2 )  and (3 )  that 

Only the state with F = 1 is optically active. We can see that 
the frequencies of; are independent of the radius of the 
sphere. This is due to neglect of the spatial dispersion. 

Using Eqs. ( 1 ) and (4) ,  we can readily estimate the 
shift of an exciton level due to size quantization, which is of 
the order of the longitudinal-transverse splitting in the case 
of microcrystals with a - 70-80 A, i.e., precisely in the size 
range in which a doublet structure appears in the spectrum. 
Therefore, the structure of the exciton spectrum can be de- 
scribed in this range of sizes by developing a theory of size 
quantization of excitons which allows for the longitudinal- 
transverse splitting of the exciton spectrum. 

3. ENERGY SPECTRUM AND RADIATIVE LIFETIME OF AN 
EXCITON IN A SPHERE 

The system of equations relating the exciton component 
of the polarization P(r)  to the electric field E(r) in a sphere 
is8 

where c is the velocity of light; D is the induction vector; 
E = f i ( ~  - W T  ); a = x, hLT/4.rr. The interaction of an ex- 
citon with the electric field in such a sphere is governed by 
the value of the interband matrix element .V, which also 
occurs in the expression for the longitudinal-transverse 
splitting w,, a: P2. In the usual scheme for the calculation 
of the radiative lifetime of an exciton the right-hand side of 
Eq. (5)  should be regarded as small, i.e., the interaction of 
an exciton with light can be allowed for using perturbation 
theory. In this approach the positions of size quantization 
levels are independent of P and, consequently, of w,, , and 
the lifetime is inversely proportional to P2. As pointed out 
in the Introduction, in this case the level position E and the 
longitudinal-transverse splitting are quantities of the same 
order of magnitude, so that the interaction of an exciton with 
the electric field cannot be treated using perturbation the- 
ory. It is then found that the positions of the size quantiza- 
tion levels depend strongly, via w,, , on the matrix element 
and the lifetime depends on 9 in a more complicated man- 
ner. 

Since in addition to the positions of the size quantiza- 
tion levels we are interested in the radiative lifetime, we find 
it convenient to solve the problem as follows. We consider 
the scattering of an electromagnetic wave by a semiconduc- 
tor sphere. The solutions of the system (5)-(6) are charac- 
terized by the total angular momentum F because of the 
spherical symmetry of the problem. The partial scattering 
cross section UF is9 

where 6, is the scattering phase. If the wave frequency is 
close to one of the frequencies w:) due to resonant creation 
of excitons at a size quantization level, the scattering phase 
SF can be represented by 

rin) 
6F = arctg - . 0-0(") 

F 

Then, the position of a size quantization level is given by 
E: = fi(wJ.") - a,) ,  whereas the radiative time is given by 
rg)  = l / r g ) .  Therefore, the problem reduces to finding the 
scattering phases. To do this, we must match solutions of the 
system ( 5  )-(6) at the boundary of the investigated sphere 
where r = a to the solutions of the Maxwell equations out- 
side the sphere. Moreover, we shall assume that the exciton 
contribution to the polarization satisfies the Pekar condition 
P ( a )  = 0 (Ref. 6). 

For a given value of the momentum F (F = 0,1,2,3, ...) 
the solutions of the system (5)-(6) exhibit (2F + 1 )-fold 
degeneracy with respect to the projection of the momentum 
M. For fixed values of F and M, these solutions can be found 
by expanding in terms of the spherical vectors 
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where the spherical vectors YF,,F,M(12) represent three- 
component columns and are eigenfunctions of the total mo- 
mentum operator 

FYF, 11, M=FYlr, I,, M, ( 1  1 )  
A A 

where F = i + ?; i is the orbital momentum operator; and I is 
the linear momentum operator with the value 1. Its projec- 
tions I,, I,, and I, are 3 X 3 matrices. The projections of the 
vectors P and E in Eqs. (9 )  and ( 10) are governed by the 
appropriate rows of the columns that occur cn the right- 
hand side. The explicit form of the operator I and of the 
functions YF,IF,M(fk) is given in Ref. 10. The functions 
Y, , -  ,,, (0) and Y , ,  + ,,,(O) have the same parity, 
which differs from the parity of the function Y , , ,  , so that 
the system of equations describing the radial functions u, 
u f ,  u- and v, u+, v- separates into two independent sys- 
tems. The first relates the functions u and u and the second 
the functions u+, u p ,  v+, and u-. We shall give only the 
second system of equations because-as demonstrated lat- 
er-only the solutions of this equation are important in the 
interpretation of the experiments. This second system is 

tiz A2 
- - AF-i~--e~-=av-, - - AF+lu+-eu+=av+, 2m 2 m  

F+1 [F(F+I) 1'" - o2 
(12) 

2F+1 A P - ~ v -  + 
2F+1 

F + l ~ +  = -- ( x ,  v-+4nu-), 
c2 

A h 

where the operators A,, TI+,  and T,- are defined as follows: 

The system ( 12) is obtained bearing in mind that the curl 
curl operator acting on vectors writgn down in the form of 
columns reduces to the operator (VI) .' ' 

Outside the sphere where r > a we have P = 0 and the 
solution of Eq. (6 )  with the same angular dependence as in 
the range r < a are sought in the form 

The functions w+ and w- satisfy the equations 

The solutions of the system (12) for the inner part of the 
sphere are sought in the form 

u-=Air-, (qr), u-=MjF-, (qr), 
(18) 

u + = B ~ ~ + ~  (qr), v+=Aj~+~  (qr), 

where j, (qr) are spherical Bessel functions related to Bessel 
functions with a half-integral index by 

Substituting the system ( 18) into the system (12),  weobtain 
the following system of equations for the coefficients A, B, 
M, and A: 

The condition for solubility of this system reduces to the 
dispersion equation for optical exciton waves1 ': 

It has three solutions. One of these solutions corresponds to 
a longitudinal exciton 

Two other solutions describe a mixed state of a transverse 
exciton and an optical wave. The terms with q -  l / a  are im- 
portant in the calculation of the size quantization levels. 
Since the sphere radius is much less than the optical wave- 
length 

we find that qSw/c .  For these values of q the exciton and 
optical branches are weakly coupled so that the solution of 
the system ( 19) corresponding to transverse excitons is of 
the following form in the limit ( m ~ / f i )  "' s w/c: 

and the solution corresponding to an optical wave is 

The electric field outside the sphere is described by 

w-=HjF-i (kr) +GA'/r,-, (kr), (25) 

where k = xy2,/20/c; Jlr, (x) are spherical Neumann func- 
tions. 
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It follows from the Pekar boundary condition for the 
exciton contribution to the polarization that 

u- (a )  =A~j , -~ (q ,a )  + A , ~ F - ~  (qta)+AjF-t(q,a) =0, (26) 

u+ ( a )  =Btji++t (qta) +BtjF+, (qta) +B&+; ( q ~ a )  =O. (27) 

It is clear from Eqs. (21 ), (23), and (24) that the coef- 
ficients A, and B, , A, and B, , AL and BL are all of the same 
order of magnitude. On the other hand, it follows from the 
condition (22) that qL a 4 1, so that the third term in Eq. 
(27) can be ignored. Then, using Eqs. (26) and (27), we can 
express the amplitudes Mi and M, of the electric field of 
longitudinal and transverse waves in terms of the amplitude 
ML of the electric field in the optical wave: 

It is clear from Eqs. (28) and (29) that M, /M, - (am/ 
~1'41. 

We shall now use the conditions that the normal com- 
ponent of the induction and the tangential component of the 
electric field be continuous at the boundary of a sphere. The 
normal component of the induction vector is D, = n(D*n), 
where n = r/r is the vector of the normal to the surface of the 
sphere. We can show that the operator representing t h e ~ r o -  
jection along the normal reduces to the operator 1 - (Ian)' 
when it is applied to vectors written in the column form [see 
Eqs. (9)  and ( 10) 1. Inside the sphere, we have 

Outside the sphere the induction vector is D = x ,  E, where 
E is given by Eq. ( 16). Therefore, the condition of contin- 
uity of the normal components of the induction vector at 
r = a i s  

x ,  (v- (a )  F1"-v+ ( a )  (F+I)'") (31) 
= x , ( ~ -  (a)F'"-w+ (a )  (F+I)'") . 

Equation (31 ) is derived using the Pekar condition of Eqs. 
(26) and (27), and also the relationship 

A F [F(F+l> 1'" 
[ I -  ( I ~ ) ' ] Y , , F - ~ . M  = ZF*~YP.F-' . .  - 2F+I YP ,P+~.M,  

(32) 
F+I [F (F+1) 1'" 

[ I - ( ~ ) ~ ] Y F , F + I , M  = y ~ 3 ~ + * 9 M  - 2F+I 
Y,,F-I,,. 

The condition of continuity of the tangential component of 

the electric field vector E, = E - n(n*E) can similarly be 
represented in the form 

v- ( a )  (F+I)"+v+(a) F5=w-(a) (F+I)'"+w+ ( a )  F". (34) 

We shall now write down the explicit expressions for v +  (a) 
and v- (a) : 

v- (a )  =MljP-t (qla) +MIjF-~  (q ta)  +MLjF-1 (q ta ) .  (36) 

Substituting Eqs. (25), (35), and (36) into Eqs. (31) and 
(34) and bearing in mind that M, (Mi, we obtain a system 
relating the amplitudes MI and ML of the electric field of the 
longitudinal and optical waves inside the sphere with the 
amplitudes Hand G characterizing the electric field outside 
the sphere: 

- x , ~ " [ ~ j F - t  (ka) + G J ~ ' F + ~  (ka) 1, (37) 

(F+l)'"Ml(ja-t (qla)+ja+t (qra) )+ (F+I) 'ML~F-~ ( Q L ~ )  - (F+I )"H~, - ,  (ka) -F (F+I)- '"GJ~'F+~ (ka) .  (38) 

The asymptotic behavior of the electric field in the limit 
r+  a, is given by 

It is clear from Eq. (25) that the scattering phase SF is relat- 
ed to the coefficients H and G by 

The final expression for the scattering phase is obtained by 
determining the ratio G /H from Eqs. (37) and (38) and 
application of the relationship (28) between the coefficients 
M, and ML : 

where F = 1,2,3, ...; r ( x )  is the gamma function; x = x ,  / 
x, is a function described by 

In the derivation of Eq. (40) we used the smallness of the 
parameter ka, replacing the functions j F - ,  (ka) and 
NF+ (ka) with their asymptotic forms. 

It is clear from Eq. (40) that the scattering phase is 
small, tan 8, -8, - (ka) 2F+ ' ( 1, because the sphere is 
small compared with the optical wavelength on the basis of 
the condition (22). An exception to this rule is the case when 
the denominator of Eq. (40) vanishes, i.e., when 
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As pointed out above [see Eq. (811 this occurs at optical 
frequencies corresponding to the creation of an exciton at a 
size quantization level. For each value ofF  there is an infinite 
series of such levels EJ."), the positions of which are deter- 
mined by the condition (42). We can find the radiative 
width of a level rJ."' by expanding the denominator in Eq. 
(40) near the value E = E:' and representing the expression 
for the phase 6, in the form of Eq. (8). We then obtain 

We can see that the maximum width, i.e., the minimum ra- 
diative lifetime, is exhibited by the states with F = 1. 

In addition to the size quantization levels at positions 
given by Eq. (42), there are also levels which are character- 
ized by a different angular dependence of the electric field E 
and of the polarization P, proportional to YF,,, as given by 
Eqs. (9) and ( 10). For a given value ofF  these states differ in 
parity from those discussed above. The positions of the cor- 
responding levels and their radiative widths can be found 
from the scattering phases, the expressions of which can be 
obtained by the same method as in Eq. (40). We give only 
the final answer: 

We can see that the level positions are governed by the condi- 
tion jF [ (2m~J."' ) 112a/fi] = 0, i.e., the situation is exactly 
the same as in the absence of the longitudinal-transverse 
splitting (aL, -0) .8 The minimum lifetime corresponds to 
the levels with F= 1 and-in order of magnitude-it is 
(ka) times longer than for the levels of different parity, but 
also with F = 1 [see Eqs. (40) and (43)l.  

In addition to the states described above, there are also 
states with F = 0. In the case of these states the angular de- 
pendences of E and Pare proportional to Yo,, and are purely 
longitudinal (curl E = curl P = 0). For these states the 
electric field differs from zero only inside the investigated 
sphere, so that their radiative width is zero. The positions of 
the levels are governed by the condition 

4. POSITIONS AND LIFETIMES OF OPTICALLY ACTIVE 
LEVELS 

It follows from the above analysis that of all the states 
we have found the shortest radiative lifetime (in terms of the 
parameter ka) is exhibited by the levels with I:= 1, which 
we shall call optically active. The positions of these levels are 
described by the equation 

which is obtained from Eq. (42) by substituting F = 1. We 
solve this equation numerically for x ,  = 3.7, x,  = 2.25, 
and x = 1.65 which corresponds to spheres of CuCl in an 
insulating silicate glass matrix.13 Figure 2a shows the depen- 
dences of the position of the four lowest levels on the dimen- 
sionless parameter 9 = fi/2ma2wL, found by solving the 
above equation. We can see that at low values of 8 the depen- 
dence ~ ( 9 )  is linear. This can be demonstrated analytically 
as follows. Since E ( & ~ ,  if 9 4  I, it follows that we need 
retain only those terms in Eq. (45) which contain the large 
parameter &=,/E. This equation then reduces to 
j2 (q, a )  = 0. Hence, we obtain E, = fi2p /2ma2, where p, 
are the roots of a spherical Bessel function j2(x) .  Including 
the first correction in respect of the small parameter 8, we 
now find that the level positions are given by 

At high values of 9 the dependence ~ ( 9 )  is also linear (Fig. 
2a). We can describe it analytically bearing in mind that 
since the inequality ~)b,, is obeyed in this range, then in 
the zeroth approximation we can ignore the longitudinal- 
transverse splitting in the determination of the level posi- 
tions. Assuming that w,, = 0, we find from Eq. (45) that 

In the limit a,, -0, we have q, = q,, so that there are two 
systems of levels 

For finite values of wL, and 9)  1, the expressions for E, 

become 

FIG. 2. Dependence of the positions of the four lowest size-quantization 
levels E, (a) and of the reciprocal of the radiative lifetime T, of these 
levels [in units of ( k a ) ' x & ~ ~ , / ( x  + 2)2] (b) on the radius of a semicon- 
ductor sphere. These calculations were carried out for x  = x , /  
x ,  = 1.65. 
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It is also clear from Fig. 2a that the dependences E,  (8)  for 
all the size quantization levels n have a point of inflec- 
tion at values of 8 for which E, (8)  is close to 
fin, = fi(wll) - w,) = fiwLT/(l + 2/x) [see Eq. (311, 
where wJ1) is the frequency of a surface mode for states with 
the total momentum F = 1. We shall henceforce refer to the 
quantity fiR, as the energy of a surface exciton. It is possible 
to study analytically the behavior of the dependences E, (8)  
in the range I E ,  (8)  - fin, 1 (hLT only in the case of levels 
with high numbers n) 1. We shall do this by rewriting Eq. 
(45) in the form 

We shall show later that the values of 8 = 8, characterized 
by E, (8)  = fin are small when n is large (8, ( 1 when 
n ) 1 ). On the other hand, if E = fifl, , then q, a = 1 / (  1 + 2/ 
x )8  'I2 and q,a = ilq,a( = 2i/(x + 2)8 'I2, so that q,a )  1 
and Iq, a 1 ) 1, which allows us to replace the spherical Bessel 
functions in Eq. (49) with their asymptotic expressions. 
This gives 

(50) 

Equation (50) readily yields the values 

0,=x/ (x+2)  (nn-arctg (2x1 "1'. 

We now expand the right-hand side of this equation near 
E = fin, . Introducing the notation y = (&/fill, - 1 ) [x/ 
48(x + 2)]  'I2, we can reduce Eq. (50) to 

We can now readily show that the dependence y (8)  implicit- 
ly defined by Eq. ( 5  1 )  has a point of inflection at values 

where the cotangent vanishes. We then have y = (2x)-'I2 
and the positions of the levels at the point of inflection are 
described by 

We have thus shown that in the case of levels with high 
numbers a point of inflection appears in the dependence 
E,  (8)  when the energy is close to that of a surface exciton. It 
is clear from Fig. 2a that this does indeed occur for all the 
size-quantization levels, beginning from the ground state. 

It  must be pointed out that the presence of an inflection 
point in the dependence E,  (8)  gives rise to a sharp maxi- 
mum in the dependence r, (8)  describing the radiative 
width of a size-quantization level [see Eq. (43)]. In other 
words, the shortest radiative lifetime is exhibited by exciton 
states in spheres when the size quantization levels are close 
to the energy of a surface exciton. ') This can be illustrated by 
considering the example of levels with high serial numbers. 
Simplifying Eq. (43) with F = 1 in the same way as in the 
derivation of Eq. (49), we obtain 

where 

is the width of a level at the inflection point 6 = 8, and the 
dependence y (8)  is described by Eq. ( 5 1 ) . The second equa- 
tion in Eq. (52) is obtained from Eq. (5 l ) . It follows from 
Eq. (52) that the level width differs considerably from zero 
in a region ]y - (2%) - ' I2 )  - 1, which corresponds to the fol- 
lowing interval of the parameter 8: 16 - 6, I - l / ( m ~ ) ~ ;  the 
corresponding energy interval is IE - fill, ( -fill, /m. The 
calculated dependences of the level width on the parameter 8 
are plotted in Fig. 2b for the four lowest levels. We can see 
that the maxima appear in these dependences at EzKI, for 
all the levels, with the exception of the ground state. These 
maxima become narrower on increase in the serial number of 
the level and the value of the level with the maximum is 
described well by Eq. (53 1. 

5. COMPARISON WITH THE EXPERIMENTAL RESULTS 

The theory developed in the preceding section allows us 
to calculate the form of the exciton luminescence spectrum: 

where r, (a) and E, (a) are the radiative width and the posi- 
tion of the nth size quantization level in a sphere of radius a; 
p ( a )  is the function describing the size distribution of the 
spheres. Equation (54) is derived on the assumption that the 
populations of all the size quantization levels are the same. 
Calculation of the integral in Eq. (54) yields 

where a,,, is the value of the radius at which the argument of 
the 6 function vanishes. The derivative d ~ ,  Ida can be found 
by varying Eq. (42) so as to determine the size quantization 
levels. 

The size distribution of the spheres was considered in 
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FIG. 3. Theoretical luminescence spectra calculated for diffecent average 
radii of microcrystals using Eoq. (56): 1 ) 5 = 56 A; 2) 5 = 62 A; 3) ii = 70 
~ ; 4 ) 5 = 9 5 A ; 5 ) a =  132A. 

Ref. 4. It was found experimentally that it is described satis- 
factorily by the Lifshitz-Slezov distributionI5 obtained by an - - 
analysis of the supercondensation stage of precipitation of a 
phase from a supersaturated solid solution: 

I 3'exZ exp [-I/ (1-2x/3) ] , ~ ( 1 . 5  
(~+3)"~(1.5-x)'" 

PO (x) = 0, x>1.5 
, (56) 

where x = a/;; i5 is the average radius of the spheres depen- 
dent on the supercondensation time t(E a t 'I2), as shown in 
Ref. 15. Equation (56) is an asymptotic expression in the 
limit of long times (In t S  1 ). It is shown in Refs. 16 and 17 
that for finite times the distribution function does not termi- 
nate at a > 1.5E and numerous mechanisms for the termina- 
tion of the "tails" of the distribution function in the range of 
large sizes have been considered. Therefore, in numerical 
calculations based on Eq. (55) we assumed the following 
model distribution function: 

The coefficients a and P were selected from the conditions 
that the functionp (x ) and its derivative be continuous at the 
point x, . The results of a numerical calculation of the lumi- 
nescence spectra are given in Fig. 3 for various values of the 
average radius of the spheres. We can see that the calculated 
curves reproduce qualitatively the main features of the ex- 
perimental spectra: the appearance (beginning from a cer- 
tain average size) of a second maximum and the rise of its 
intensity at the same position as the average size increases. 
We shall now account for this result qualitatively. 

It is shown in Sec. 4 that the radiative lifetime of exci- 
tons at all the excited levels, beginning from the first, has a 
sharp minimum where the position of the size quantization 
level E ,  (a )  coincides with the energy of a surface exciton 

E - 0, I <fiR,. At low values of the average radius (a- 50 I D  
A)  the ground-state energy is of the order of fi2.rr2/2ma2 =: 15 
meV for all the microcrystals, i.e., it is considerably greater 
than fin, = 2.5 meV, so that in this case there are no micro- 
crystals with the levels close to fifl, and the spectrum exhib- 
its one line representing the luminescence of excitons at the 
lowest size-quantization level (curve 1 in Fig. 1 ). As the 
average size 5 increases, microcrystals satisfy this condition 
and the second line appears at the frequency fl, + w ,  
(curve 2).  A further increase in the average size of micro- 
crystals does not affect the position of the new line, but its 
intensity continues to rise (curves 3 and 4) because of an 
increase in the number of microcrystals in which the posi- 
tion of excited size-quantization levels is close to fin, . On the 
other hand, we can see from Fig. 2b that the radiative life- 
time at the ground state begins to rise considerably on in- 
crease in the microcrystal size when the energy of this state 
becomes less than fifl, . Therefore, in the range of large sizes 
the ground size-quantization state makes no contribution to 
the luminescence. 
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