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A variational calculation has been carried out of the level energies E ~ , ,  of nine vibrational- 
rotational states ( J v )  of the mesic molecules of hydrogen isotopes with angular momentum 
J = 1. About 1000 basis functions were used in the calculation, which ensured that the binding 
energies could be determined to within 0.001 eV. For weakly-bound states (J = 1, v = 1) of 
the mesic molecules ddp and dtp, which are of particular interest in muon catalysis, it was 
found that E l l  (ddp) = - 1.9749 f 0.0002 eV and E ,  , (dtp) = - 0.663 f 0.002 eV. 

1. INTRODUCTION 

The binding energies of twenty-two vibrational-rota- 
tional states of the mesic molecules of hydrogen isotopes 
were reported in Ref. 1. They were calculated to within 0.1 
eV in the adiabatic representation of the three-body prob- 
lem.' There is particular interest in the energy levels of the 
mesic molecules ddp and dtp in the J = 1, v = 1 state be- 
cause they determine the resonance mechanism of formation 
of these mesic moleculesbnd are important in calculations 
of the rate of nuclear fusion  reaction^.^ These weakly-bound 
states must be calculated to within 0.001 eV if they are to be 
used in reliable calculations of the rates and kinetics of pro- 
cesses involving muon catalysis, and in the accurate inter- 
pretation of recent experiments.% call was made in Ref. 1 
for an independent confirmation of the calculations reported 
in that paper by methods other than the adiabatic approach, 
and for higher precision. 

This program has been implemented along two lines. 
The first approach involves increasing the precision of algor- 
ithms within the framework of the adiabatic method, and 
was presented in a recent paper.h We note that it was not 
until quite recently that new variational calculations7-"' of 
the energy levels of mesic molecules became available. They 
were found to agree to within the stated precision with calcu- 
lations performed by the adiabatic method, but claimed 
higher precision. 

In order to improve the results reported in Ref. 1, and to 
compare them with those reported in Refs. 6-10, we have 
implemented a variational scheme for the solution of the 
three-body Schroedinger equation in spheroidal coordi- 
nates,*." for which a solution had previously been obtained 
within the framework of the adiabatic method. As already 
noted in Ref. 12, these coordinates reflect most completely 
the symmetry and dynamics of three-particle interactions in 
mesic molecules. They have the further advantage that the 
variational calculations mentioned above7-"' use perimetric 
coordinates, and it is interesting to compare the properties of 
these independent computational schemes. 

The first success in the calculation of the rotational lev- 
els of mesic molecules by the variational method using 
spheroidal coordinates was reported in Ref. 13. In our 
scheme, we use a system of trial functions similar to that 

employed in Ref. 13, but with an extended set of nonlinear 
parameters and significantly better trial functions, so that 
the wave function can be described correctly both in the in- 
teraction and the asymptotic regions. 

The implementation of this variational scheme together 
with the variational-difference methodI4 is the second line of 
approach, which involves the development of independent 
methods of calculating the energy levels of p-mesic mole- 
cules of the hydrogen isotopes. In this paper, we report vari- 
ational calculations of the energy levels of mesic molecules 
of hydrogen isotopes in the J = 1 state, using about 1000 
basis functions. This enabled us to reach a precision of about 
0.001 eV, which meets the current requirements of theory 
and experiment. 

2. SCHROEDINGER EQUATION FOR THE J=O AND J=1 
ROTATIONAL STATES OF MESIC MOLECULES, AND 
CHOICE OF VARIATIONAL WAVE FUNCTIONS 

A mesic molecule is usually understood to be a molecu- 
lar ion consisting of the nuclei of the hydrogen isotopesp, d, 
or t and a negatively charged muon. I s  The Hamiltonian for 
the three particle system is' (e = f i  = m, = 1 ) 

where R is the position vector of nucleus a relative to nucleus 
b, r is the position vector of the muon relative to the midpoint 
of the segment R, M, = Ma Mb /(Ma + Mb ) is the reduced 
mass of the nuclei M a  M , x = (Mb - Ma ) /  
Ma + Mb ), JxR is the distance between the midpoint of the 
segment R and the center of mass of the nuclei, 

is the Hamiltonian of the muon in the field of fixed nuclear 
charges, ra and rb are the distances between the muon and 
the two nuclei, and m, = m,M,/(m, +Ma  ) is the re- 
duced mass of the muon in the mesic atoms (ap) ,  where 
a =p, d, or t. The Hamiltonian shows explicitly the depen- 
dence on the reduced mass of the muon because we are inter- 
ested not in the total energy E of the mesic molecule, but in 
its binding energy - E, = (E + tma )2R,. This energy 
differs from the energy Ea, = - m, Ry of the ground state 
of the mesic atoms (up)  of mass M, )Mb. The following 

41 7 Sov. Phys. JETP 64 (3), September 1986 0038-5646/86/090417-06$04.00 @ 1987 American Institute of Physics 417 



constants are used in our calculations: Ry = 13.6058041 eV, 
Mp=1836.151527, Md=3670.481, M,=5436.918, 
m, = 206.769. 

The Hamiltonian ( 1 ) was obtained in Ref. 16 in the 
representation of the total orbital angular momentum J i n  a 
rotating spheroidal coordinate system {R,r) = {RB@,cvp), 
and is given in an explicit form in Refs. 2 and 11.'' In the 
latter papers, the three-particle Schroedinger equation was 
obtained in the spheroidal coordinate system for a (J + 1)- 
component wave function {F:(~~R ) ), = o,J in the region 
R = ( l < g < w ,  - l < ~ < l , O < R < w ) , w h e r e r n = O , l ,  ..., J 
are the eigenvalues of the projection ofJonto R that label the 
components of the wave function for fixed Jand  total parity 
il = a,, ( - = & 1, which determines the sign of the ro- 
tational state.*) This equation can be used to calculate any 
rotational-vibrational state ( J v )  of mesic molecules. For 
J=O,  il = 1, and J =  + 1, il = - 1, it takes the form 
( e = f i = m a  = 1) 

I l d  a H 0 + -  00 - 
2M R' dR aR 

a a 4 I + - (1 - , ,2 ) - ]  - -- 
all a~ R g2-q2 + R ,  

where3) M = M f l a  is the reduced mass of the nuclei and 
the superscripts ( + ) represent the rotational states 
il = + 1. The binding energy is given by - E, = ( E  + 1/ 
2ma )2Ry. 

Three-dimensional boundary value problems such as 
( 3 )-(4) can be solved in various ways, including the method 
in which a reduction is made to the Kantorovich ordinary 
differential equations" or to the Bubnov-Galerkin and Ray- 
leigh-Ritz algebraic equations. Many variational procedures 
can be reduced in this way and can be used even in the case of 
nonlinear parameters, since these parameters are usually op- 

timized independently of the linear parameters. The first line 
of approach was used in Ref. 1, in which F({vR) was ex- 
panded in terms of a complete set of solutions for the two- 
body problem (2).  In our calculations, we employed a vari- 
ational procedure based on the minimax principle, using 
several sets of nonlinear parameters chosen on the basis of 
our previous experience with the adiabatic basis. Thus, in 
constructing the basis functions, we took into account the 
properties of the T-components, the (g,u) symmetry4 and 
certain known asymptotic properties of the  solution^.^ The 
expansions for the variational a- and T-functions with J = 1 
have the following form: 

2 

8-1 i jk  

(5b) 
i, j ,  k=l ,  2 , .  . .; i>j+l. 

For mesic molecules with identical nuclei ( x  = O), the 
presence of the additional (g,u) symmetry leads to a restric- 
tion on the possible combinations of quantum numbers 
( - 1 ) + I = p for given total nuclear spin I, to a reduction 
in the size of the region R in the variable r l : { O ~ v ~  1, and, 
correspondingly, to a less dense set of basis functions for the 
a- and rr-functions: 

a = t  i j k  

i j k = 1 2  . i>j, 
2 

8-1 ijk 

The basis functions with the first set of nonlinear parameters 
{ a l p ,  y,v,) were used to approximate the asymptotic behav- 
ior of the variational functions for R +O, whereas the second 
set {ag2y,v,) was used for R - a. 

The dynamics of the J = 1, v = 1 weakly-bound state of 
the mesic molecule dtp was correctly taken into account by 
taking the variational a-function as the sum of the g- and u- 
components FA - = FA; + FA; , where 

s=i i jk  

This representation is justified, on the one hand, by the small 
value x(2M)-'=0.01 and, consequently, the approximate 
conservation of (g,u) symmetry, while, on the other hand, it 
ensures that the correct dissociation limit is obtained for the 
dtp mesic molecule decaying into the mesic atom tp and the 
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TABLE I. Calculated binding energies of mesic molecules with angular momentum J = 1. 
.- 

I Variant # 1 
Mesic 

u = o  Total: 200 

I / i ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  Total: 304 

3 2 4  
: 1 ? 1 1 ; 1 3 1 2 1 *  

u - 0  Total: 300 

11 Total: 330 

~ Variant #2 
o l z  

Total: 304 

6 
7 l : l : l : l ; l ;  

Total : 304 

; l ~ l ; l : ~ ; ~ :  
Total: 449 

i l : l ; l : l ; l :  
Total: 500 

Total : 568 

Variant #3  
8 1  

NR l N v J N R ~ N t  I N  

; l : l : l : l ; l ;  
Total : 438 

7 5 4 
7 1 t 1 7 1 4 1 3 1 2  

Total : 449 

5 5 
: l e l s l 2 l ; l i  

Total : 607 

Total: 698 

Total: 844 

nucleus d. We note that the correct origin was used for E,,, in 
the Hamiltonian ( 1) and, as shown in Ref. 2, is asymptoti- 
cally reproduced in (3)  and (4).  

To improve the convergence of the expansions (5)-(71, 
we have thinned out the series of basis functions. This is 
possible because the sequences used in (5)-(7) are not the 
minimum sequences as defined in Ref. 18. A numerical ex- 
periment was used to choose certain sequences of basis func- 
tions in (5)-(7) in order to achieve the most successful a p  
proximation to the required solution. The following sets of 
basis functions were used in our calculations for the a- and 
T-functions, respectively: 

J =  1,7t#O 

The corresponding versions are shown in Table I, where N, , 
N6,  and N,  represent, respectively, the number of basis 
functions in the coordinates R, f ,  and 7, chosen in accor- 
dance with (5) and (6). 

Variant #4 1 Variant # 5  

Total: 607 I : 819 

Total : 819 Total: 1286 

Total: 982 I Total:t495 

3. METHOD OF CALCULATION 

The well-known minimax principle" is implemented in 
our computational scheme. Thus, the approximate values of 
the energy levels corresponding to a particular v in the n- 
dimensional space described by a finite set of n basis func- 
tions j = 1 ,..., n are given by 

E?)= min rnax 
( (Y("), HY(")) ] , v = O , I  ,... , (8)  

,p ,,, .(n) ,a (Ye), Y'") 

where Y'"' is an arbitrary linear combination of basis func- 
tions, which can also depend on the choice of nonlinear pa- 
rameters w, and ,yLn'(w) is the (v + l )-dimensional sub- 
space on the set of basis functions. It is well-known,I9 for a 
fixed set of nonlinear parameters w, that E, < E L"' (w ), and 
this bound continues to hold as additional minimization of 
E in'(@) with respect to the set w is carried out. 

Our computational scheme is implemented as follows. 
With a given set w, we first calculate E Ln'(w ) in accordance 
with (8).  The determination of the coefficients in (5)-(7), 
for which (8)  is satisfied, then reduces to the solution of the 
algebraic eigenvalue problem: 

A (o )  X=AB (o)X, (9)  

The basis functions are normalized to unity. 
The eigenvalue problem (9)  was solved in two ways. In 

the first method, the problem was reduced to the standard 
form.*' The following regularization procedure was em- 
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TABLE 11. Nonlinear parameters used in calculations ( J  = 1 )  

Footnote. The state J = 1, u = 1 has even and odd components for the u-function of the mesic 
molecule dtp. The values of all the parameters are multiplied by the coefficient q = 2m,/m,, 
m c l =  (M, + M , ) - ' + M ; ' .  

ployed. If, for a given set d U ,  the condition 

v I Mesic molecule I r ( PI 

was satisfied, where E is the regularization parameter, the 
columns and rows containing these elements of the matrices 
A and B were deleted and (9) was solved for the lower di- 
mensionality. This procedure was incorporated in an algo- 
rithm for the expansion of the matrix B in accordance with 
the Choleski scheme, which enabled us to obtain a stable 
algorithm that was no less effective than the standard proce- 
dure used in Ref. 20. 

The second method includes the regularization of the 
matrix B: B = B + EE, where E is a unit matrix and E is the 
regularization parameter. The solution of (9)  with the regu- 
larized matrix 6 was performed by inverse iteration. The 

YI I VI I a 1 6, ( YS ( v2 

0 
0 
0 
1 
1 
0 
0 
0 

initial approximation to the eigenvalues were taken from 
Ref. 1, and the approximations converged with the required 
precision after three or four iterations. The efficient Bunch 
algorithm was used in each iteration to solve the set of alge- 
braic equations. The matrices were stored in symmetric 
form, which meant that we could work with matrices of di- 
mensionality 1000 in computer memory. 

The computational error of the inverse iteration meth- 
od was monitored in the course of the solution of the regular- 
ized problem (9)  (with matrices of dimensionality up to 
500) by comparison with a solution of (9)  of known preci- 
sion, obtained by the standard reduction method. This error 
was less than eV when the regularization parameter 
was equal to 10-12. For large dimensionalities ( m  > 500), 
the estimated error in the solution of (9)  was obtained by 
comparing calculations made by the inverse iteration meth- 
od with different values of the regularization parameter 

TABLE 111. Binding energies - 8 ,  (in eV) of the mesic molecules of hydrogen with angular momentum J = 1 .  

1.45 
1.45 
1.45 
1.375 
1.375 
1.45 
1.45 
1.45 

PPCL 
ddCL 
t t CL 
ddCL 
ttCL 
P ~ C L  
PtCL 
dtCL 

3.2 
3.6 
4.4 
3,5 
3.9 
3.7 
3,7 
4.1 
4.0 

4.0 

I 

Present work 

1.35 

0.85 

3.2 
4.0 
4.8 
3.5 
4.6 
3.6 
3.7 
4.3 

u-nene~n. 

1.4 
1.4 
1.4 
1.4 
1.4 
1.4 
1.4 
1.4 
1.4 

1.4 

1.3 
1.6 
3.8 
0.001 
1.4 
1.4 
1.4 
2.2 
0.01 

0.001 

1.3 
1.5 
3.4 
0.01 
1.4 
1.5 
1.4 
2.1 
0.1 

0.1 

Reference I Ed 1 :240 I = I :L?, I V=O pdu / "DL?, 1 V=O "IA I ~ = l  d b  

*Results from Ref. 9; **results from Ref. 6; ***results from Ref. lob. 

4.6 

2.4 

1.1 
1.1 
1,l 
1.0 
1.15 
1.1 
1.1 
1.1 
1.15 

0.85 

1.1 
1.1 
1.1 
1.1 
1.1 
1.1 
1.1 
1.1 
1.2 

1.2 

[ i l  
I 

106,96 
(264) 

[71 107,266 
(286) 

Extrapolation 107.266 

(81 107.2656'3 
(250) 

Extrapolation 107.267 

' 107.26364 
(200) 

107.26533 
(304) 

107.26568 
(438) 

- 

- 

Extrapolation 107.2659 

420 Sov. Phys. JETP 64 (3), September 1986 Vinitskil et a/. 420 

226.01 
(2fi4) 

226.662 
(286) 

226.680 

226.68157 
(250) 

226.683 

226.68106 
(200) 

226.68160 
(304) 

226.68164 
(438) 

- 

- 

226.6817 

289.15 
(264) 

289.12 
(286) 

289.12 

289.13931 
(250) 

289.146 

299.14142 
(200) 

289.14191 
(304) 

289.14195 
(438) 

- 

- 

289.1420 

1.956 ** 
(844) 

1.862 
(364) 

1.87 

1.971 10 *** 
(350) 

1.972*0.001 *** 

1.96933 
(304) 

1.97274 
(449) 

1.97368 
(607) 

1.97431 
(819) 

1.97465 
(1286) 

1.9749*0.0002 

45.24 
(264) 

45.096 
(286) 

45.187 

45.19359 
(250) 

45.22 

45.20093 
(210) 

45.20451 
(304) 

45.20524 
(449) 

45.20552 
(607) 

- 

45.2058 

97.40 
(264) 

97.493 
(440) 

97.493 

97.42990 
(250) 

97.66 

97.4!4232 
(300) 

97.49624 
(500) 

97.49774 
(698) 

- 

- 

97.4990 

0.656 ** 
(844) 

0.623 * 
(500) 

- 

0.60719 *** 
(400) 

0.6554+ 
i0.0150 *** 

0.60304 
(330) 

0.64772 
(568) 

0.65228 
(844: 

0.65371 
(982) 

0.65889 
(i495) 

0.663*0.00? 

99.01 
(264) 

99.119 
(440) 

99.119 

99.10104 
(250) 

99.13 

99.12044 
(:300) 

99.12471 
(500) 

99.12608 
(698) 

- 

- 

99.1271 

232.44 
(264) 

232.436 * 
(300) 

- 

232.42049 
(250) 

2'32.48 

232.47020 
(300) 

232.47142 
(500) 

232.47155 
(698) 

- 

- 

232.4717 



(E = 10-I' and lo-"). The error was then less than 
eV. 

The calculations were performed for a number of sets of 
nonlinear parameters. This was used to find the optimum 
values of these parameters and the minimum values of 
EL"' (a). The optimum values of the nonlinear parameters 
for mesic molecules with J = 1 are listed in Table 11. 
4. RESULTS 

Table I11 lists the calculated binding energies - E,, of 
the mesic molecules of hydrogen isotopes for the ground 
( V  = 0)  and excited ( v  = 1) vibrational states with orbital 
angular momentum J = 1. The table also lists the best results 
of adiabati~' .~ and variational7-lo calculations. The number 
in parentheses under each value of - EX' is the number n of 
basis functions used in the calculation. 

Our results were obtained for a sequence of five increas- 
ing sets of basis functions with n = n,  < n, < ... < n, , 3<s<5, 
which enabled us to follow their convergence. Table I lists 
the necessary information on the sets of basis functions (5)- 
(7)  for each state ( J v ) .  

Let us now consider the extrapolation of the energies 
~ $ 6 )  to n - CZJ . We used the following extrapolation formula, 
which is commonly employed in variational calculations: 

E , , , = E ~ '  ( 10) 
Improved values of the energy E,, and the parameters C, a 
can be found, by three suitably chosen calculations, from the 
available sequence with n = n ,,..., n, , as was done, for exam- 
ple, in Refs. 7 and 10. The same problem can be solved by 
analyzing the entire series of calculations with n = n,, ..., n, 
by the method of least squares. We have used both methods 
and found that they yielded consistent values of E,, . Analy- 
sis of the results listed in Table I11 and calculations based on 
the extrapolation formula ( 10) showed that the improved 
values of E,, were subject to an uncertainty of less than 0.001 
eV. The exception is the weakly-bound state (J = 1, v = 1) 
of the dtp mesic niolecule for which the improved energy 
was determined to within 0.002 eV. 

All the calculations were performed on the ES-1061 
computer, using double precision arithmetic. The most labo- 
rious calculation (n = 1495) was carried out with quadru- 
ple precision and required 12 hours of processor time. One 
variant with the lower figure ofn = 200 took less than 2 min. 
5. DISCUSSION OF RESULTS 

Interest in variational calculations on mesic molecules 
practically ceased after 1976, but was rekindled by the work 
of Demkov and Filinskii." They considered mesic mole- 
cules with J = 1, and constructed three types of variational 
function in perimetric coordinates with nonstandard basis 
elements, namely, Laguerre polynomials, fractional powers, 
and exponentials. The expansion in terms of exponentials 
was extended in Refs. 8 and 10 to the J # O  case. The inten- 
tion of this work was to perform high-precision calculations, 
and this led to the use of a large number of basis functions. 
However, it is known that increasing the number of nonorth- 
ogonal basis functions leads to algebraic systems that are 
more difficult to handle, and improved precision cannot be 
achieved without regularizing  procedure^.^^ 

We also note that, when a large number of basis func- 
tions is used, the results of different variational calculations 
are not very sensitive to their form. This can be seen by com- 
paring the different calculations listed in Table I11 for differ- 
ent sets of basis functions. The quality criterion adopted in 
variational calculations is the depth of the minimum of the 
variational function. Comparisons based on this criterion 
show that the basis functions expressed in terms of different 
coordinates still describe the three-particle wave functions 
with different precision, depending on the particle mass ra- 
tio. In the ddp and dtp mesic molecules, whose weakly- 
bound states are of particular interest, the reduced mass of 
the nuclei is large, and the basis functions employed in our 
calculations in terms of spheroidal coordinates are more op- 
timal. 

We note that the value found for - E,, in the case of the 
mesic molecule dtp (J = 1, v = 1 ) agrees with the result ob- 
tained by the adiabatic approach in Ref. 6. 

We are grateful to N. N. Govorun, M. G. Meshcherya- 
kov, and G. N. Frelov for their support, to L. I. Ponomarev 
for initiating this research and for useful discussions, and to 
G. A. Korobov and T. P. Puzynin for their help. 

"The nuclei a and bare located at the respective foci {{ = 1.1) = - 1) and 
(5 = 1,q = 1) of the spheroidal coordinate systenl r = ({ilq). where 
g = (r, + rb )/R, q = (r. - rb )/R, and p, is the roti~tion angle about 
the major axis of the ellipse. The latter is oriented in the direction 
R = (Re@}, i.e., its orientation in the laboratory system of coordinates 
is given in spherical coordinates by the angles 0 and Q. 

2'Following molecular terminology, we will refer to the components with 
m = 0,l as u and ?r components; o,, = f 1 is the eigen\.alue of the re- 
flection operator in the plane defined by the unit vectors e, and eU,. 

"The operator H 1; can be represented more symmetrically as 

which, as was shown in Ref. 11, gives rise to a symmetric hilinear form in 
the Rayleigh-Ritz variational functional. 

4'The eigenvalues for the operator which inverts the muon coordinates 
r-  - r are given by p= ( g,u) = f 1. 
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