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A calculation is made of the density of the electron levels g(P) in metal particles of small radii 
allowing for the energy band structure. The size dependence of g ( 8 )  makes the Fermi energy 
of a particle dependent on its radius. If the particles are in a medium with a low but finite 
electrical conductivity and the particle sizes vary, then electron transitions take place between 
the particles and these transitions equalize their electrochemical potentials. Mutual charging of 
the particles creates electrostatic interaction forces between them. Since the charge carried by 
each particle depends on the size of all the other particles and on their distances from one 
another, the dependence of the force of interaction between two particles on the distance 
between them differs from the Coulomb law. For the same reason such mutual charging forces 
are of cooperative nature: the force acting on a particle cannot be represented by superposing 
the independent forces of interaction with each of the other particles. A calculation is made of 
the motion of two small spheres in a viscous liquid under the action of mutual charging forces. 

We shall consider a new mechanism for the interaction 
between small metal bodies and the effects associated with it. 
Essentially, one can speak of a new class of electromagnetic 
forces developing between initially electrically neutral parti- 
cles because the medium surrounding them has a finite elec- 
trical conductivity. In terms of the theories describing the 
electromagnetic effects via the permittivity E ,  the existence 
of these forces is due to the finite value of the imaginary part 
of the permittivity E.  These forces are due to the mutual 
charging of particles and, in contrast to the usual systems 
with the Coulomb interaction, the value of the charge car- 
ried by each particle depends on the topology of the system, 
i.e., it depends on the size of the other particles and their 
relative positions. Therefore, the mutual charging forces are 
cooperative in nature. In particular, the force between two 
particles depends on the distance r between them in accor- 
dance with a law which is more complicated than rF2.  More- 
over, the force acting on a given particle cannot be represent- 
ed by a sum of independent binary interactions with each of 
the other particles separately. In general, these interactions 
depend on the velocity of the particles. The interaction 
forces can equally be well regarded as a separate class just 
like the van der Waals forces, which had been thought of 
previously as completely responsible for the interaction 
between small nonmagnetic particles. 

The existence of a new class of forces was first pointed 
out in Refs. 1-3 where it was postulated that the Fermi levels 
of small particles depend on their radius. As a consequence, 
such disperse media should exhibit transport effects tending 
to ensure establishment of a thermodynamic equilibrium 
between particles: there is a tendency for electrochemical 
potentials of the particles to equilibrate. This equilibration 
occurs by the transfer of electrons through a conducting me- 
dium from one particle to another. Consequently, the Cou- 

lomb interaction appears between these particles and this 
interaction decreases with distance much more slowly than 
do the van der Waals forces. The dependence of the mutual 
charging forces on the topology of the system was not point- 
ed out in Refs. 1-3. 

Naturally, the establishment of a thermodynamic equi- 
librium between small particles requires the medium in 
which these particles are located or the substrate on which 
they are deposited to have a high electrical conductivity. The 
very fact that a certain number of carriers are present in a 
medium means that, because of the screening of the field of 
the particles, the interaction between them decreases at the 
longest distances not in accordance with a power law but 
exponentially. We shall consider only distances smaller than 
the screening radius. 

Previous publications have not provided a correct phys- 
ical theory of such forces. The reasons for the dependence of 
the Fermi level on the particle size are given incorrectly in 
Ref. 1 and, therefore, both the physical interpretation of the 
forces and the numerical estimates of the effect are incorrect. 
Even some of the qualitative conclusions reached in Ref. 1 
have been found to be in error. The main fault of the treat- 
ment provided in Ref. 1 is as follows. It is assumed in Ref. 1 
that the Laplace pressure reduces the lattice constant of a 
small particle and therefore increases the electron density 
and the Fermi energy. However, the Laplace pressure con- 
cept is inapplicable to small particles,394 because it is the total 
number of atoms Nin a particle and not the atomic density n 
which is fixed.4 

Since the existence of the Laplace pressure is accepted 
as self-evident in the literature on highly disperse particles, it 
is desirable to explain in detail why this point of view is 
wrong. It would seem that the existence of the Laplace pres- 
sure follows unambiguously from the fact that the surface 
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energy 8, is proportional to the surface area S: 8, = a s ,  
where the surface tension a is assumed to be constant. Then, 
such a system should exhibit a tendency for a reduction in 
the surface, because this reduces $, . The Laplace pressure 
is a manifestation of this tendency. 

However, in fact the surface energy $, is generally ex- 
pressed not in terms of S, but in terms of the number of the 
surface atoms N,, %', = yNs. For example, in the nearest- 
neighbor approximation the interaction energy of an atom 
withz of its nearest neighbors in the interior is - zq, where- 
as on the surface when the number of neighbors of the same 
atom is Az less, the energy is only - (z - Az)q ( q  is the 
energy of the interaction between two atoms). Therefore, for 
such a simple system we have $, = pAzN,. The relation- 
ship $, = as is equivalent to $, = yN, if and only if a 
change in S does not alter the density of atoms n, since then 
we have N, a nS. In particular, this is the situation when the 
shape of a particle changes. However, if the density is affect- 
ed by deformation, then the relationship $, = aSis  invalid. 

We shall illustrate this statement by considering the ex- 
ample of a small particle. The total number of atoms but not 
their density is fixed in this particle. The shape of the particle 
ensuring the minimum value of 8, is sphere-like (strictly 
speaking, this is true only of liquid particles, but by way of 
approximation it can be assumed also for crystalline parti- 
cles). A change in the area S for a fixed particle shape is 
possible only as a result of deformation that does not alter 
Ns. Therefore, the dependence of 8, on the particlq size is 
governed solely by the dependence of y on the interatomic 
distance a. In the nearest-neighbor approximation this dis- 
tance a, corresponds to the maximum of the quantity q, 
since this maximum ensures the minimum value of the total 
energy of the particle (we shall ignore the thermal effects). 
In this approximation the surface energy $, a 7 is a qua- 
dratic function of the small deviation of a from a, and, conse- 
quently, a quadratic function of the change in the surface 
area SS. This means that in the case under discussion we can 
ignore the dependence of 8, on S. 

When an allowance is made for the interaction between 
the next-nearest neighbors, so that the total energy of the 
system depends on several parameters, relaxation of the sur- 
face takes place and a differs from its bulk value. However, 
this change affects only one or two surface layers and does 
not influence most of the particle. In principle, the surface of 
a metal creates Friedel oscillations of the electron density 
and produces similar oscillations of the displacements (they 
appear because of the interaction of electrons with the lat- 
tice). We shall ignore this effect. 

The Laplace formula for the pressure is valid, in accor- 
dance with its thermodynamic derivation under equilibrium 
conditions, only on the boundary between two phases, such 
as the liquid and saturated vapor phases.5 In this case the 
atomic density in each of the phases is constant and a change 
in the area of the surface separating the phases occurs not 
because of deformation, but because of the transfer of atoms 
from one phase to another. Naturally, this also changes N,. 
Clearly, this situation does not occur in the systems we have 
investigated. " 

The real reason for the dependence of the Fermi level on 

the particle size is the direct effect of the boundary of a crys- 
tal on the density of electron levels. This may occur in var- 
ious ways: by quantization of bulk levels, via surface energy 
levels and resonances, and via appearance of double electri- 
cal layers at the b ~ u n d a r y . ~ . ~  The position of the Fermi level 
may depend strongly on the anisotropy introduced by the 
surface: it may depend on the specific crystallographic faces 
bounding a crystal. It also depends on the medium in which a 
particle is 10cated.~ 

An allowance for this fact results not only in quantita- 
tive but also in qualitative differences between the results 
obtained below and those reported in Ref. 1. Firstly, the 
Fermi level does not necessarily increase with diminishing 
particle size. In the presence of surface energy bands or re- 
sonances it may also drop.4 As shown below, it drops also in 
the absence of surface energy bands and resonances, if the 
conduction band occupancy is sufficiently high. Secondly, 
and this is particularly important, the Fermi level is size- 
dependent not only in the case of spherical particles, but in 
the case of thin films. Therefore, forces of electrostatic at- 
traction should appear not only between the particles but 
also between thin films of different dimensions. 

Naturally, the size dependence of the Fermi energy 
should be manifested not only by the forces of interaction 
between small particles, but also by other effects. In particu- 
lar, this dependence alters the work function of small parti- 
cles compared with bulk samples and this has been ignored 
so far. This change in the work function may be comparable 
with the change in the same function due to the image forces, 
which are assumed to be responsible for the size dependence 
of the work function (see, for example, Refs. 7 and 8). 

There are experimental data supporting the reality of 
the mutual charging forces. They include the structure of 
systems of particles deposited on solid substrates: larger 
metal particles are surrounded by a cloud of smaller parti- 
cles separating them from other large  particle^.^ 

Since the maximum charging is strongest between the 
particles which differ most in the size, it is clear that in the 
case of such structures the free energy is less than for a ran- 
dom distribution of particles on a substrate. Moreover, it has 
been found" that the interaction between Ag particles 
which are in the gaseous phase is many orders of magnitude 
stronger than the van der Waals interaction. This may be due 
to the mutual charging of Ag particles via a weakly conduct- 
ing gaseous phase. However, the study reported in Ref. 10 
has shown that there is no enhancement of the interaction 
between nonmetal (carbon) particles. 

The existence of these attraction forces between small 
particles is not just important from the fundamental point of 
view. An allowance for the attraction forces of this kind is 
essential for the normal functioning of practical devices uti- 
lizing small particles. For example, one of the problems in 
practical utilization of magnetic liquids is the suppression of 
the tendency of small particles to coalesce. It is therefore 
desirable to weaken as much as possible the electrostatic in- 
teraction between particles with one another. It follows from 
the above considerations that such suppression can be 
achieved as follows: the dispersion (scatter) of the size of the 
magnetic powder particles should be reduced and the electri- 
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cal conductivity of the liquid containing the particles should 
drop. The application of an electric field to a liquid or along a 
substrate on which metal particles are deposited can be used 
to separate large particles from small ones; since they carry 
opposite charges, they will move to opposite electrodes. The 
sign of the charge carried by large particles (relative to that 
carried by small particles) can provide information on the 
influence of the surface on the electron spectrum. In particu- 
lar, as pointed out above, when the occupancies of the con- 
duction band is low the sign of the charge depends on 
whether there are surface energy bands or resonances. 

Our treatment is organized as follows. In $1 we shall 
consider how the electron Fermi energy depends on the par- 
ticle size. Our new method for calculating the density of 
states in bodies of finite size has made it possible to derive for 
the first time an expression for this dependence which allows 
for the band structure of electron spectrum and which is 
valid for any value of the quasimomentum. We shall use this 
expression to find the contribution made by the kinetic ener- 
gy of electrons to the size-dependent part p,  of the chemical 
potential. We shall show that an increase in the occupancy of 
the conduction band reverses the sign of the size-dependent 
part p ,. In $2 we shall estimate the Coulomb contribution to 
the surface energy due to double layers on the surface. In $3 
we shall consider the cooperative nature of the mutual 
charging forces. In $4 we shall solve the nonlinear stochastic 
equation describing the relative motion of two small metal 
spheres in the viscous liquid, which interact with one an- 
other as a result of the mutual charging forces. 

$1. DEPENDENCE OF THE FERMl ENERGY ON THE SIZE OF 
A METAL BODY 

As pointed out above, the dependence of the Fermi en- 
ergy on the size of a sample is related to a change in the 
density of electron levels due to the presence of a boundary in 
the material. Calculations allowing for the change in the ki- 
netic energy of electrons, carried out using the effective mass 
approximation, are reported in Ref. 4. It is assumed there 
that the following boundary condition is satisfied by the 
wave function on the surface: 

where n is the external normal to the sample. IfA > 0, all the 
electron states correspond to the bulk conduction band. A 
reduction in A gives rise to surface resonances in the electron 
spectrum and when the sign ofA is reversed, a surface energy 
band splits off from the bulk conduction band and moves 
downward. 

I f2  > 0, i.e., in the absence of surface bands, the Fermi 
energy shiftp, in a bounded sample, compared with the Fer- 
mi energy p, of an unbounded sample with the same carrier 
density n, is given by 

where m is the effective mass of an electron; k, is the Fermi 
momentum; V is the volume of the crystal sample, and S is 
the surface area of the sample. These expressions are valid 
for any shape if the crystal is large compared with [A I. 

We can expand the Fermi energy into bulk p, and sur- 
facep, parts, both continuously dependent on n, because the 
density of electron states g ( 8 )  may be expanded similarly 
into bulkg, and surfaceg, parts, which are smooth functions 
of the electron energy k9. The latter circumstance is not tri- 
vial because of quantization of the electron orbits in a crystal 
of finite size. The surface part g,  in Ref. 4 corresponds to the 
correction produced by the first approximation in (kFL ) - I .  

In the next order in this parameter the density of statesg( g ) 
becomes discontinuous. 

The results represented by the system (2)  correspond 
to low concentrations k,a< 1, where a is the lattice con- 
stant. It is not clear a priori to what extent these results are 
applicable to metals characterized by kFa - 1. First of all, it 
is far from self-evident that at high energies the densities of 
states can be expanded in terms of 1/L. The existence of the 
Van Hove singularities of the electron density outside the 
range of the quadratic dependence of the energy on the qua- 
simomentum is sufficient to raise doubts about such an ex- 
pansion. We shall consider the example of an electron spec- 
trum of a special type to show that at k , ~  - 1 there is indeed 
a range of energies in which g(k9) cannot be expanded in 
powers of a/L and, consequently, we cannot introduce the 
surface density of states. However, in any case, such regions 
are exponentially narrow for the spectrum in question and 
are consequently unimportant. Therefore, we shall show in 
fact that there are dispersion laws of electrons which allow 
us to represent the density of states as a sum of bulk and 
surface parts. 

The results of our calculations are of interest also be- 
cause they can be used to find explicitly the structure of 
g, (g)  for arbitrary values of g .  This is a consequence of 
using a new method to calculate g, ( %' ), applied for the first 
time in the present study. 

We shall assume that the crystal is a slab of thickness 
L = (21 + 1 )a along thez axis and has a simple cubic lattice, 
and that only the Bloch integral between the nearest neigh- 
bors differs from zero. The Hamiltonian of such a crystal is 

where a& and a,, are the creation and annihilation opera- 
tors of an electron interacting with an atom labeled (x,y,x) ,  
and 6 is a vector linking the nearest neighbors along the x 
and y axes. The Hamiltonian of Eq. ( 3 )  is diagonalized by 
the transformation 

~ V L  qqp, = - exp (iqra) sin ( p , z ) ,  D 
NL 

Qqpc = - exp (iqra) cos (p.z), D 
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where D is the dimension of the slab in the x and y direction. 
The electron energy is given by the expression 

&,,=2B (cos q,a+cos q,a+ cos pa), p=p., PC. (5)  

The density of electron states can be written (allowing for 
the spin) using the integral representation for the 6 function: 

g V) = 2 x 8  [I-28 (cos pa + cos q p  + cos p.0) 1 
PP 

The summation over q, and q,, is carried out in the 
usual way by replacing it with integration, whereas the sum- 
mation over p, and p, is made using the Euler-Maclaurin 
theorem, which makes it possible to separate automatically 
the bulk and surface parts of the densities of states. Accord- 
ing to Eq. (4), in the case of an arbitrary function f we find 
that if we include terms up to -a/L, we can then write 

Using Eqs. (6) and (7) and the integral representation 
for a Bessel function Jo(x),  we obtain 

CO (8) 
a D2a-l 

g, (8) = go ( 8 )  - J dt C (2Bt) oor 2Bt exp ( S t ) .  
- m 

As is well known, the integral f which occurs in the 
expression for the bulk part of g and go cannot be calculated 
explicitly, but has been tabulated in detail (see, for example, 

Ref. 11 ) . Judging by these data, go( 8 ) should have singu- 
larities near %' = 2 ) B  I. However, the integral occurring 
in the expression for the surface part ofg andg, can be calcu- 
lated exactly12: 

m 

dt lo2 (2Bt) cos 2Bt exp (at) 
- m 

where K(x)  is a complete elliptic integral of the first kind 
and O(x) is a unit step function. 

If (2m g a )  'I2 < 1, which is the condition for the effec- 
tive-mass approximation, the results of Eqs. (8)  and (9)  
reduce to those obtained from more general relationships4 
when A = 0. (This result goes back to Rayleigh.) However, 
compared with the results of Ref. 4, we now have basically 
new features, namely according to Ref. 4 the value of g, is 
independent of energy and is identical with the density of 
states in two-dimensional systems. On the other hand, in our 
treatment g, depends quite strongly on the energy when 
8 2 IB I .  

Evidently, both g, ( %' ) and go( 8 ) are even functions of 
%'. We can easily demonstrate by direct integration ofg, ( 69 ) 
of Eq. (8) for all values of 8 that (as expected) the existence 
of a surface does not alter the total number of states in a 
band. On the other hand, in accordance with the usual ideas 
on the influence of spatial quantization on the density of 
levels in the case of a quadratic dispersion law near the ex- 
trema, the value ofg( %') of Eq. (8) decreases for smaller L. 
Consequently, spatial quantization should increase the den- 
sity of levels well inside the energy band. 

Formally, the surface density of states approaches 
- 00 logarithmically at 8 = f 21B 1, i.e., at singularities of 

go(%'). Naturally, a singularity of this type implies in fact 
that the density g cannot be expanded in terms of 1/L, i.e., 
that it is not possible to divide the density into the bulk and 
surface parts. We can easily show however, that the width of 
the singular region is of the order of 

where 
rn 

i.e., it is exponentially small even for L 5 10a. Therefore, for 
this type of spectrum we can introduce the surface part of the 
density of states g, ( %' ), which is a smooth function of 69. It 
is natural to expect that the same is true also of the other 
types of spectra. The form of the argument of the exponen- 
tial function in Eq. ( 10) suggests that the numerical factor in 
front of L /a of some spectra may be considerably smaller, 
giving rise to a minimum in the density of states induced by 
the surface. 

If g, (%'), as in the case under discussion, is a smooth 
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function of 8 ,  then the shift of the Fermi energy of electrons 
due to the existence of a surface is given by the expression 

Since a logarithmic singularity g ,  ( 8) is integrable, then for 
all values ofp, the quantity p, is a continuous function ofp, 
and, consequently, also of the density n. However, the de- 
pendences of p, and p, on n are quite different. We shall 
carry out numerical calculations in order to determine them. 

It follows from the even nature of the function g, ( 8 ) 
that the size-dependent part ( 1 1 ) of the chemical potential 
changes its sign at 8 = 0, i.e., when the band is half-filled. 
The negative sign ofp, is easily understood from qualitative 
considerations. When the occupancy is high, we can replace 
electrons with holes, whose energies measured from the 
band maximum 61B I differ in sign from the electron ener- 
gies. These holes behave as ordinary particles, i.e., when the 
dispersion law is quadratic, the size-dependent part of the 
Fermi energy is positive. This is why the size-dependent part 
of the electron Fermi energy is negative. The fact that the 
change in the sign ofp , occurs when the band is half-filled is 
a consequence of a simple cosine dispersion law ( 5 ) . If-as is 
true of the majority of cases-this energy band is asymme- 
tric relative to 69 = 0, then the sign of p, changes for any 
other occupancy. 

The negative value of p, corresponds to the negative 
contribution made by electrons to the surface energy of a 
crystal. As pointed out in Ref. 4, where this effect is not due 
to orbit quantization, but is due to the surface energy bands 
and resonances, this does not imply that a crystal is unstable 
since the surface energy as a whole may be positive due to the 
contribution of the crystal lattice. 

$2. ELECTROSTATIC CONTRIBUTION TO THE 
RENORMALIZATION OF THE CHEMICAL POTENTIAL 

The shift of the chemical potential due to a change in 
the electron kinetic energy should be accompanied by a shift 
due to the formation of a surface double layer. 

This layer is due to an excess or a deficiency of the elec- 
tron density on the surface of a crystal compared with the ion 
charge density. For example, ifR = 0 in Eq. ( 1 ), the electron 
density in the first surface layer vanishes and a positive 
charge appears there; this charge is compensated by an ex- 
cess of the electron density. On the other hand, in the limit 
R + oo an excess of the electron density forms in the surface 
layer and it is compensated by a deficiency of the density in 
the next layers. However, as is well known, any variability in 
the distribution of the electron density increases the electro- 
static energy of the system, which gives rise to a Coulomb 
contribution to the surface energy. 

A calculation was carried out, assuming high electron 
densities e2/a g p .  When this condition is obeyed such a cal- 
culation makes it possible to estimate the contribution of the 
electrostatic interaction in the first order of perturbation 
theory, because nonanalyticity of this interaction is mani- 
fested only in higher orders of perturbation theory. Since in 
this case there are no problems with the singularity ofg( 8 ), 

we shall consider only the case when k,a 4 1 and R = 0, so 
that the calculations can be carried out in closed form. 

The charge density p is expressed in terms of $,, of Eq. 
(4) and in terms of the average ion density n, each ion as- 
sumed (for the sake of simplicity) to carry a single charge: 

where f,, is the Fermi distribution function of electrons at 
T = 0; k, = (2mp) ' I 2 ;  the coordinate z, now regarded as 
continuous, is shifted so that the slab is located in the region 
0 < z < L; 0 is the electron spin. 

Solving the one-dimensional Poisson equation with the 
right-hand side of Eq. ( 12) and transforming the solution as 
a result of integration by parts, we find that the Coulomb 
energy of the system is 

Substituting Eq. ( 12) into Eq. ( 13) we obtain 

where n, is an integer lying closest to Lk,/r on the low 
number side and $(z) is the logarithmic derivative of the 
gamma function (see Ref. 13). At high values of Lk, the 
asymptote is $'(z)  z 1/z.14 Therefore, Eq. ( 14) includes 
both the bulk and surface contributions to the Coulomb en- 
ergy. The Coulomb correction to the chemical potential Ape 
is obtained by differentiating Eq. (14) with respect to the 
total number of electrons N. We then use its relationship 
with k, obtained in Ref. 4: 

Equations ( 14) and (15) yield 

~ p , =  (e2kp/3) ( ~ 1 2 )  [ I f  0 . 3 / k ~ L l ,  (16) 

where k, is written in the zeroth approximation with respect 
to k,L. An estimate of Ape is obtained by extrapolation of 
Eq. ( 16) to k, - l/a. 

The Coulomb surface correction to the chemical poten- 
tial [represented by the second term in Eq. ( 16) 1 increases 
its value. In reality, for metals this correction is of the same 
order of magnitude as the kinetic correction p, of Eq. ( 11 ), 
wherep, is the bulk chemical potential. It follows from the 
consideration presented in Ref. 4 that the above results be- 
come valid for bodies of any shape ifL is replaced with V / S .  

The expression for the total shift of the chemical poten- 
tial due to the finite size of a sample can be represented in the 
form 
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$3. MUTUAL CHARGING FORCES 

The appearance of an attractive force between two met- 
al particles of radii L ,  and L, is a consequence of the transfer 
of charge from one of them to the other; this occurs because 
for fixed positions of the particles, their electrochemical po- 
tentials should be identical. This force differs from zero if L ,  
and L, are not equal. As in the case of a capacitor connected 
to a circuit with a fixed external emf, the particle charges 
depend on the distance between them. 

A specific feature of the mutual charging forces is mani- 
fested particularly clearly in collective systems of fine dis- 
perse particles: the force of the interaction between any pair 
of particles depends not only on their radii and on their rela- 
tive positions, but also on the geometric dimensions of the 
other particles. Therefore, these forces are essentially non- 
additive and not only their magnitude but also their sign 
depend on the other particles. In fact, in the presence of 
several particles the charge carried by each of them consists 
of the charges transferred to the particle from all the others. 
The force of the interaction between them is determined, 
however, by the total charges. Consequently, we can have 
(for example) a force between two particles of the same size 
if the system of particles contains other particles of different 
sizes. However, since the charges on these particles are iden- 
tical, this is not an attractive but a repulsive force. 

We shall illustrate this analysis by considering the inter- 
action of the above kind in a collective system composed of 
particles of radii Lii located at distances of rij from one 
another when these distances exceed the radii. 

The total energy of such a system is described by the 
expression 

where q, , qi ,  and pi represent respectively the charge, the 
electrostatic potential, and the Fermi energy of electrons of 
an ith particle, related to one another by the charge conser- 
vation condition 

and by the equality of the electrochemical potentials of the 
particles 

The right-hand side of the above equation is a consequence 
ofEqs. (11) and (16). 

To lowest order in the expansion with respect to L /r,,, 
we can assume (see Ref. 15) that 

where E is the permittivity of the medium. 
We shall now give the solution of the system ( 19)-(21) 

for the case of three particles, which already manifests the 
cooperative nature of the interaction between the particles 
(the charge of a given particle depends directly on all three 
distances between the particles and on the radii of all of 
them) : 

etc. the particles are located has a significant conductivity for 
In the limit rl3,rl2,r2,+ a, Eq. (22) becomes just a finite time. Such a situation can be created when pho- 

(23) 
toconductivity is excited by a light pulse. 

A different situation is also possible: if the conductivity 

Using Eqs. 
totic expression 
1 and 2: 

( 18)-(23), we obtain the following asymp- 
for the force of interaction between particles 

It follows from Eq. (24) that if L, = L,, but L, #L,, 
there is indeed an attraction between particles 1 and 2, which 
is proportional to (L, - L,),' whereas if L l  = L, but 
L,#L,, the force between these two particles is repulsive 
and is proportional to (L, - L,)., 

Inclusion of terms of higher order in rii in Eq. (22) 
gives rise to a dependence of F,, on r,,, which is very differ- 
ent from the Coulomb law. 

It should be noted that we can realize experimentally a 
situation in which a charge of each particle can be regarded 
as fixed. This can be ensured simply if the medium in which 

of the medium is very low, then the charge varies with time, 
but its thermodynamic equilibrium value is not achieved for 
a given particle configuration. This situation will be consid- 
ered in the next section. 

$4. MOTION OF SMALL CHARGED SPHERES IN A VISCOUS 
LIQUID 

The mutual attraction of fine particles causes them to 
tend to coagulate. We shall consider the motion of two parti- 
cles in a viscous liquid due to their mutual attraction forces. 
The influence of other particles on their motion will be ig- 
nored, but the particle charge will not be assumed to be in a 
thermodynamic equilibrium for a given distribution (in oth- 
er words, we shall not assume that the charge follows adiaba- 
tically the particle positions). If we postulate that the mo- 
tion of particles is overdamped, the relative coordinate r can 
be described by the Langevin equation1% 
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where 

M is the reduced mass of the particles; 7 is the dynamic 
viscosity of the liquid. For simplicity, the coefficient P in Eq. 
(25) is assumed to be the same for both particles. Here 
MA, ( t )  is a fluctuating force due to collisions of a particle 
with the molecules in the liquid. Whenever possible, we shall 
assume that only forces acting at the same moment in time 
are correlated, i.e., that the correlation function is given by 
the expression" 

(Ai  ( t )  A j  ( t ' )  > =2B$ (t-t') 6ij, B,=PksT/Mi, (26) 

where k ,  is the Boltzmann constant. However, it is some- 
times necessary to allow for a finite correlation time to of the 
forces. 

The symbol F( t )  represents the force of the electrostat- 
ic interaction between two particles and when their charge 
f q(t)  is time-dependent. The magnitude of this charge is 
readily found in the limit when the resistance of the bound- 
ary layer between metal particles and the medium is much 
less than the resistance of the medium between the charges. 
In this case the current between the particles is proportional 
to the difference between the electrochemical potentials, i.e., 
if we use Eq. (21 ) and assume that r)L,,L,, we obtain the 
expression 

where 

andp is the electrical resistivity of the medium (the expres- 
sion for R is taken from Ref. 15). It is known that the finite 
value of R in the limit r-, oo is a consequence of the infinite 
dimensions of the medium: an increase in the distance 
between the small spheres is balanced by an increase in the 
area intersected by the lines of flow of the current. Thus, in 
reality Eq. (28) is valid if r is much greater than L ,  or L,, but 
small compared with the dimensions of the system. 

It is clear from Eqs. (27) and (28) that at large dis- 
tances r the charge varies with time in accordance with the 
law 

where rM is the Maxwellian relaxation time. The initial time 
is selected to be that when the particles approach each other 
to a distance such that Eq. (28) is valid. It is clear from Eq. 
(29) that the nonequilibrium nature of the charge should be 
allowed for only if T, is large compared with the coagula- 
tion time t,. If t, - 1 min, thenp must exceed 101° n.cm. 

The rest of the analysis will be made in the adiabatic 
limit rM 4 t, using the Coulomb expression for F( t )  in Eq. 
(25) where the particle charges are assumed to be f q( co ) 
[Eq. (2911. 

The nonlinear stochastic differential equation (25) is 
solved by matching the solutions for short and long dis- 
tances. A criterion of whether a given distance is short or 
long is the ratio of the amplitude of the random force to the 
force of attraction. The matching is carried out at a distance 
rj , which satisfies the condition 

where the angular brackets represent averaging over fluctu- 
ations. 

At large distances we can consider the attraction force 
as a perturbation and it then follows from Eq. (25) that 

1 1 t 

where R is the distance between the particles at the initial 
moment. Expanding Eq. (3 1 ) in the fluctuations and aver- 
aging, we obtain allowing for Eq. (26): 

In the case of short distances we can regard the fluctuat- 
ing term in Eq. (25) as a perturbation. Once again, using an 
asymptotic expression for F, we obtain 

r=ro+rl+r2, 

where 
1 

The constants C and t, are found from the condition 
(30) and from the equality at t = t/ of Eqs. (32) and (33) : 

When these constants are found, it becomes possible to 
determine the time t, in which the particles reach one an- 
other [ ( r ( t ) )  = 01: 
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tIf we assume that, for example, E = 3, q = 50 
gvcm-'asec-' (as in the case of kerosene), that the density 
is 7 g/cm"as in the case of Ni), and also that L ,  = 10-%m, 
L, = 1.5X 10-"m, R = low5 cm, to = 10-l3 sec, and 
T = 300 K, we find that the particle collision time t ,  is nearly 
inversely proportional to the potential p. For p-0.1 V, we 
find that - 1-10 sec. 

The authors are grateful to Yu. M. Kagan and M. A. 
Anisimov for discussing the results. 
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