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We consider the motion of a nonrelativistic electron in the field of two strong monochromatic 
light waves propagating counter to each other. The wave function of the electron is obtained by 
using a quasiclassical approximation and perturbation theory. An expression is obtained for 
the gain of a weak test wave by using such wave functions. 

INTRODUCTION two electromagnetic waves, respectively; p, = w,t - k,r, 

The motion of an electron in the field of a monochro- P2 = - k2r(wl,02 are respectively the frequencies of the 

rnatic light wave is described by the well-known volkov first and second electromagnetic waves, and k,  and k, are the 

function. Exact solutions of the relativistic wave equations wave these waves); m is the electron mass. 

were obtained in Refs. 1 and 2 for the motion of an electron We seek the solution of Eq. ( 1 ) in the form 

in certain cases of plane-wave fields. The motion of an elec- 
tron in the field of two light waves propagating counter to 
each other (standing wave), however, cannot be solved ex- 
actly. 

Electron diffraction by a standing wave was considered 
by perturbation theory in Ref. 3. Perturbation theory was 
likewise used in Ref. 4 to investigate the modulation of a 
beam of relativistic electrons. 

We consider in the present paper a quasiclassical ap- 
proximation for the description of the motion of a nonrelati- 
vistic electron in the field of pump waves. The wave func- 
tions of the nonrelativistic electrons in the field of pump 
waves (standing wave) are obtained using a quasiclassical 
approximation. The corrections to these wave functions, ne- 
cessitated by the rescattering effect (the electron absorbs a 
photo from one wave and gives it up to the other by induced 
emission) are obtained by perturbation theory. The electron 
energy is not altered by the rescattering, but the momentum 
is changed by an amount p' = p + 2fik, where p' and p are 
the electron momenta in the initial and final states, respec- 
tively, while k is the pump-wave momentum. The electron- 
momentum change can be accompanied by emission in the 
IR band. Using the wave functions derived, we obtain the 
gain of a weak test wave in this frequency band. We show 
that the gain is an optimum if the angle 0 between p and k is 
close to n/2. 

GENERAL RELATIONS 

where V is the normalization volume. 
Herep and E are the momentum and kinetic energy of 

the electron: 

Substitution of relations (2) ,  (3 ) , and (4)  in ( 1 ) leads 
to an equation for Y,,, ( r , t ) :  

We can leave out of (5)  the terms 

kl[dS1(cpi)/d~lI, kz[dSz(cpz)ldqzI, 

e(Al+Az)/c, m-'klk2[dS~(rpt)ldvlIdS~(cp~)ldcpz~ 

The Schrodinger equation for an electron in the field of (eAlkzlmc) [dSZ(cpZ) I d ~ z l r  (eA2kilmc)dS~(cpl)ld~1, 
two strong electromagnetic waves is of the form if the inequalities" cp cos O$e$,72, (i = 1,2) and v/c< 1. 

ti2 a'4' (r, t )  = Equation (5)  takes then the form 
iti 

at 2m 
AY (r, t) 

A2 dY ,nt (r, t )  - i A 
i A 

e d t  2m m AYtnt(r, t)- -pYYan,(r, t )  
+ih- [A1(cpl)+A2(~2) IVY (r, t )  

mc e2 
+ z A i ( ~ ~ ) A z ( ~ z ) y , n l ( r .  t). ( 6 )  

eZ + ----[AIL ((PI) +AZ2 (92) I Y (r, t )  
2mc2 We consider for the sake of argument linearly polarized 

electromagnetic waves 
e2 

I- , A1 (v+) A, (92) Y (r, t )  , ( 1 )  
nzc- A l ( ~ l ) = A l  sin cpl, ( 7 )  

where A, (p,) and A,(p,) are the vector potentials of the Az(cpz) =A2 sin cpz. (8 )  
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Substituting (7)  and (8)  in (6),  we get 

eZ + - A~A2[cos(cpl-cp2) - cos(cpl+cpz) ]yr,i(r, t ) .  (9)  2mc2 
It is natural to seek the solution of (9)  in the form 

Y,,, (r, t) = Y  $ (r, t )  exp[ is, (r, t )  /A], (10) 

We shall solve (18) by perturbation theory. We represent 
u ( 2 )  in the form 

where, if the inequalities pc)egi72, (i = 1,2), we have the 
following equations for S, (r,t) and Yj:) (r,t) : 

where u,(z) satisfies the equation 

and u, ( 2 )  the equation 
P e2A ,A2 +-VS,(r , t ) -7;-  cos (cpl+cpZ) 
m ,mc- 

(11) 

d Y ,A:' (r, t) P ( 0 )  ifi -- = - -- " AY::~ (r,t)-ih-Vlint (91) 
d t 2m m e2A1A2 

=- cos zu,  (z) . 
(Ac) ' (k2-kl) ' e2AlA2 +-- cos(cp1-cp2) YE: (r, t) 

2mc2 The solutions of ( 19') and ( 19" ) are 
It follows from the forms of ( 11 ) and ( 12) that the solutions 
of these equations should depend on cp, + cp, and cp, - cp,, 
respectively. Neglecting the first, second, and third terms in 
the right-hand side of ( 1 1 ), we obtain the solution e2 Al A2 sin z 

u,(z)= - 
2mcr[Av(kz-kt) +A(ol-0,) ] e2AiA2 

Ss(r3 t )=  2mc2(w,+ol) sin (cp1+cp2). 

Neglect of the first, second, and third terms in relation ( 11 ) 
is valid subject to the inequalities 

To obtain (20) it was necessary to meet the conditions 

We seek the solution of ( 12) by introducing first a new vari- 
able z = p, - p,; we can then rewrite this equation in the 
form 

A2(kz-k,) d2Y i!!: (2) dY 2: (2) + ih[ol-02+v(kz-ki) I 
2m dz' dz 

ezAIAz -- cos z Y :,": (2) =o 
2mc2 

The last condition of (20') is violated as fi-0. 
Taking (29) and (20) into account, we have 

(z)=l-ie2AIA2{A[01-o,+v(k2-k,) ]?mc2)-I sin z. 

(20") 

- ezAiA2 
COS Z Y  i!! (2) =o, 

(Ac) (k2-kt)' (15) 
Substituting ( lo ) ,  (13), and (20") in (2)  and taking (3 )  
and (4) into account, we obtain the wave function of the 
nonrelativistic electron in the field of two strong electromag- 
netic waves at an arbitrary arrangement of the vectors k,, k,, 
and p. We shall, however, be interested hereafter only in a 
situation in which k, and k, are collinear and form a stand- 
ing wave. 

In this case the wave function takes the form 

where v is the initial velocity of the electron. 
We eliminate from ( 15) the term with the first deriva- 

tive with respect to z, by making the change of variables 

Y (2) =P (z) u (2). (16) 

where 
( 0 )  Y,=Y, {I-a2AiA2(A[m1-m2+,(k2-k,) 12mr2)-I sin n ) .  

(21) 

where Yp are basis functions defined by the relation We have for u (z) the equation 
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e2Ai2 eAzp e2A2? + id- sin 2 ~ - i  --- cos cpz-i cpz 8mc2Aol mc'hoz 411zc'tio)? 

eZAaZ e2AIAz '+ i- sin 2qz+i 
8rnc2hwz 2rncZh ( o l  +WZ) 

sin (p,+.pz)] . 

It can be easily shown by direct calculation that the YP satis- 
fy the orthogonality relation (if k ,  and k,  are collinear or  
form a standing wave) 

where Yy is obtained from Yy by replacing the exponents p 
by p'. The expression (22) for the wave function of the non- 
relativistic electron coincides in the case of two collinear 
electromagnetic waves with the wave function obtained in 
Ref. 1 in the nonrelativistic limit. 

We define the field of the amplified electromagnetic 
wave by the relation 

A,(r, t )  =As sin (o,t-ksr), (23) 

where o, is the frequency of the amplified wave and k, is its 
wave vector. The processes investigated in this paper are 
charcterized by an element of an S matrix for which the 
expressions take, in first-order perturbation theory in the 
test-wave electromagnetic field, the form 

Sf,=- i j  Y;(r,f)PWc(r, f)drdt, (24) 

The 5'-matrix element is, with allowance for relations (22) 
and (25), 

j [ i  * o,) t+i (F F x , ) ~ ]  s,, = -- exp - 
2mcV h 

X exp [i e A 1 ( ~ ' - P ) ~ o s ( ~ i t - k , r )  
mcAcol 

X. 
e2AIAz (v-v') (kz-kl) dr dt 

2mcZA{[ol-ol+v (kz-kl) I ) "  

(the + and - signs pertain to emission and absorption, 
respectively). 

We use the known relation 
+m 

erp [iB sin r ]  = I .  ( B )  eil". 

The expression for the S-matrix element is then 

(28) 
Integration with respect to r  and tin (28) leads to the follow- 
ing expression for the S-matrix element: 

The situation optimal for the considered effect is that of 
two electromagnetic waves that form a standing electromag- 
netic wave, andk,lA,. It follows then, since the electromag- 
netic field is transverse, that the arguments of the Bessel 
functions vanish, so that a nonzero contribution is made by 
the Bessel functions with n ,  = n, = 0. TheS-matrix element 
takes the form 

From the energy and momentum conservation laws in- 
herent in the delta functions of (30), we obtain an expression 
for the test-wave frequency at which amplification is possi- 
ble 

0 3 = 2  (v/c) o1 cos 0, (31) 

where 0 is the angle between the vectors p and k ,  (O<O<.rr/ 
2). Knowing the S-matrix element we can obtain the total 
probabilities of the induced emission and absorption pro- 
cesses. The total probabilities must be averaged over the ini- 
tial energy distribution f(E) of the electrons in the beam. We 
assume that the function f(E) is normalized to unity, i.e., 
Jf(E)dE = 1, and that the function f(E) has a width 
AE4E. 

We write then the expression for the emission and ab- 
sorption differential probabilities in the form 

dp' d We,.= ) s::'~' 1 ' ------ C'I ( E )  dE.  
(2n) ' (32) 

Substituting (30) in (32) and integrating the result 
with respect to dp', we get 
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x (A)' v cos 6 I*(%+ h u , ) ~ ( E ) ~ E ,  

(--L)' ,3(?- 
v cos 0 

a,) f ( ~ )  d ~ .  

We assume next that p is directed along A,. The S functions 
in (33) can be represented in the form 

6 (E-E, ,A - 6 (E-E, , , )  PC 
6 (EJ-E*os)=* - I BEr/dE-1 1 'hal cos 0 , (34) 

where E,,, = Eo + SE is the energy of the electrons that emit 
or absorb a photon of a given frequency a,: 

mc2 h03 
E - ( )  SE=-, SE<AE, (35) 

8cos'e 0 2 cos" 

where AE is the width of the distribution function. 
Integrating with respect to d E  in (33) and using (34), 

we obtain for the difference between the total probabilities 
for emission and absorption of a photon of frequency a,: 

In the derivation of (36) we used the approximate equality 

f(E,)-f (Ea)=2SEdjldE, (37)  

the derivative df /dE is taken at the point E = Eo. 
The gain of the electromagnetic wave is determined in 

the linear regime by the relation 

where Z?, is the amplitude of the electromagnetic field inten- 
sity of the amplified wave and j is the electron-current den- 
sity. 

THE GAIN 

Substituting in (38) the expression for A W"' from 
(36), we get 

(39) 
where ro is the classical electron radius. Relation (39) was 
obtained by using (35). We make one remark. Expression 
(39) for the gain is valid if AE /E > l /a , t  ( t  is the interaction 
time). Further estimates show that this criterion is valid. In 
the case of the inverse condition AE /E < 1/a ,t, however, the 
spontaneous-emission line is determined by the homogen- 
eous width connected with the finite region of the interaction 
between the electrons and the field. The formal transition 
from df /dE to homogeneous broadening is analogous to that 
in Ref. 5. 

If the distribution function width is AE)ih3/2 cos2 8, 
we havedf /dE= 1/( AE) 2. Taking this fact into account, the 
expression for the gain can be written in the form 

where 8, is the amplitude of the electric field strength. 
The expression for the gain was obtained subject to va- 

lidity of relations (20). These relations are violated in the 
classical limit h, - 0. 

CONCLUSION 

The foregoing result can be interpreted as follows. Non- 
relativisitc electrons interacting with a standing electromag- 
netic wave can absorb photons from one wave and transfer 
them to another. This rescattering changes the electron en- 
ergy by an amount of the order of the recoil energy 2fik.v, 
and the energy of the quantum emitted in the recoil process 
can be of the same order. 

We present a numerical example. We estimate the gain 
in the case of an amplified wavelength A3 = 50 pm. We 
choose the electron-beam parameters to be: j = 30 A/cm2, 
(AE/E) = lo-" v/c c0.66,  and d (the beam diame- 
ter) = 1 mm. 

Let the standing pump wave be produced by a CO, laser 
with the following parameters: /2 ' = 10.6pm, Eo (energy in 
the pulse) = 1 kJ, and pulse duration At = 10 ns. In this case 
cos 8 = 0.15 and the gain G "' calculated from Eq. (40) is 
found to be unity. 

It can be easily verified that the aid of the above param- 
eters that in our case AE/E> l /a , t ,  therefore the decisive 
factor is the inhomogeneous broadening which takes into 
account the initial energy distribution of the electrons in the 
beam. One remark is in order. 

The gain was obtained in the single-particle approxima- 
tion. For this approximation to be valid it is necessary (see, 
e.g., Ref. 6 )  to satisfy the relation 

It is easily seen that the condition (41 ) with our parameters 
is met. 

The authors thank I. P. Eremeev and S. S. Yakimov for 
interest in the work. 

'These criteria follow from the form obtained for I,,,,, see (10) and 
(20"). 
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