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It is shown that the existence of vortex structures in a viscous liquid can be explained within 
the framework of the concept of solitary dissipative vortices. A minimal model is proposed in 
which the structural elements of the theory are the Burgers and Sullivan vortices. The vortex- 
vortex interaction dynamics is studied. It is shown that the vortices can arrange themselves in 
ensembles and form periodic structures (lattices). The evolution of a dissipative lattice is of a 
self-similar nature, and asymptotically goes over into the regime of rigid-body rotations. A 
selection rule, according to which a triangular lattice is energetically the most advantageous 
lattice, is formulated. The results obtained are valid for finite circular lattices of sufficiently 
large size. It is shown that such circular lattices form a sequence through which a limiting 
transition to an infinite lattice can be realized if the size is increased. The dispersion law for the 
vibrations in a dissipative lattice is found. It is found that only damped vibrations occur in a 
triangular lattice, and that there exists an upper wavelength limit A, such that vibrations with 
A>A, do not occur. 

INTRODUCTION 

A classical example of self-organization is the forma- 
tion of ordered spatial structures in a convectively unstable 
liquid at sufficiently large Rayleigh numbers.' This phenom- 
enon can be explained within the framework of the typical- 
in synergetics-wave concept of a dominant mode (order 
parameter) .' Quite recently, a similar phenomenon in the 
form of highly ordered vortex structures (lattices and rings) 
was discovered in the course of an investigation of convec- 
tion in a rotating l i q ~ i d . ~ , ~  And although a number of the 
results obtained in this experiment at high angular velocities 
admit of an interpretation on the basis of the Chandrasekhar 
wave t h e ~ r y , ~  the wave concept cannot explain the observed 
linear angular-velocity dependence of the vortex number in 
the region of low angular velocities. A similar dependence 
had earlier been found by Hopfinger and his coworkers6 in 
an experiment in which intense vortices were excited in a 
rotating liquid by very small-scale turbulence produced by a 
vibrating lattice. 

It turns out that this universality can be explained with- 
in the framework of an alternative (to the wave) concept of 
solitary dissipative vortices. The existence of the latter is 
indicated also by the appearance in a number of experiments 
of irregular vortex  structure^^."^ and the observation of ele- 
mentary interaction processes between the individual vorti- 
ces in the course of a transition from a regular to an irregular 
l a t t i ~ e . ~  

The role of such fundamental vortex objects can be 
played by the theoretically best-understood solitary dissipa- 
tive stationary vortices, first described by Burgers9." and 
Sullivan." These vortices are further distinguished by the 
fact that they are translationally invariant. The principal 
mechanism underlying the maintenance of dissipative vorti- 
ces in the steady state is the balance of the viscous diffusion 
and the radial flow at each level. 

In the present paper the reason for the interest in such 
vortex objects is that they can serve as structure elements in 
the study of collective effects: acts of interaction, formation 
of ordered structures, etc. 

A general approach to such problems is through adia- 
batic perturbation theory under the assumption that the 
characteristic dimensions of the vortices are small compared 
to the characteristic distance between them. In this ap- 
proach the structure of the vortices is computed in the lowest 
order of the theory, while the nature of their evolution is 
computed in the next approximations. Variants of this the- 
ory have been employed in the construction of s o l i t ~ n , ' ~  su- 
perconductivity,13 and quantum field14 theories. 

Let us emphasize that the dynamical systems consid- 
ered in the paper reflect a number of general properties char- 
acteristic of open dissipative systems of the hydrodynamic 
type, and, consequently, are largely system-independent. It 
is therefore to be hoped that dissipative vortices will turn out 
to be useful outside hydrodynamics, just as ordinary vortex 
filaments turned out to be important objects of investigation 
in the theories of superfluidity, superconductivity, and mag- 
netized plasmas. 

1. CHOICE OF MODEL; DISSIPATIVE VORTICES 

Let us consider the motion of a viscous incompressible 
liquid in the half space z)0 with a rigid lower boundary 
z = 0 in the case when this motion is described by the Na- 
vier-Stokes equation: 

u +  ( u V  ) u+wd,u=- V P f  ~ A u ,  (1.1) 

zilSuV W+ wd,w=-8 ,Pf  ~ A w ,  (1.2) 

Vu+d,w=O, w l,,,=O. (1.3) 

Here u and w are respectively the horizontal and vertical 
components of the velocity, P i s  the kinematic pressure, i.e., 
the usual liquid pressure divided by the density, and 9 is the 
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coefficient of viscosity. Let us note that here and in what 
follows all the vector quantities lie in the horizontal plane 
x = (x,y 1. 

We shall study the special class of flows for which the 
horizontal velocity component u does not depend on the ver- 
tical coordinate z. For such flows we find directly from the 
incompressibility equation and the boundary condition 
(1.3) that 

where D is the divergence of the two-dimensional u field. 
Substituting the representation for the vertical velocity into 
the equations of motion ( 1.1) and ( 1.2), and separating the 
variables, we obtain the system of equations 

Here c  is the separation parameter andp = P - cz2/2 is that 
part of the total pressure which does not depend on z. 

Since it is convenient to construct the subsequent the- 
ory in terms of D and the vorticity field w = curl u, let us 
rewrite Eq. ( 1.5) in the form 

This vortex-evolution equation differs from the analogous 
equation obtained in the case of a two-dimensional incom- 
pressible liquid only by the Dw term, which describes the 
effect of the stretching of the vortex tubes by the vertical 
currents. 

As shown in Refs. 9-1 1, Eqs. ( 1.6) and ( 1.7) admit of 
solutions in the form of stationary, localized, axisymmetric, 
and dissipative vortices. The first type-the Burges vortex- 
is described by the expressions 

where tc and a = c ' I2 /2  > 0 are free parameters characteriz- 
ing respectively the intensity and dimension of the vortex n 
and the vertical unit vector. The second type-the Sullivan 
vortex-is described by the expressions 

(1.9) 
Here we have used the notation: 

X t 

FIG. 1. Radial profiles for the Sullivan vortex: a )  the divergence D in units 
of 2a and the radial component u of the velocity in units of ( 2 0 9 )  "'; b)  
the tangential component u of the velocity in units of x ( 2 a 8 )  " 2 / 4 ~ 9  and 
the vorticity o in units of x a / 2 ~ i t ;  everywherep is in units of ( a / 2 9 )  I!'. 

presence of a cylindrical core at whose walls the radial com- 
ponent of the velocity changes sign. Outside the core the 
motion of the liquid is qualitatively the same as in the 
Burgers vortex, but inside it the liquid rises in the vicinity of 
the walls of the core and subsides in the central part. For the 
radius of the core we have the estimatep, = 1.68(29 /a) ' I 2 ;  

the nature of the flow and the corresponding profiles for the 
Sullivan vortex are depicted in Figs. 1 and 2. 

Let us emphasize that, of all the known hydrodynamic 
models possessing steady-state localized dissipative vortex 

It is not difficult to see from a comparison of ( 1.8) and FIG. 2 .  Motion of the liquid in a dissipative Sullivan vortex: a )  top view; 
b )  side view [p and z are in units of ( a / 2 9 ) 1 / 2 ] .  The dashed line corre- ( that the vortex possesses a sponds to the cylindrical surface at which the radial velocity changes sign. 

structure than the Burgers vortex. This manifests itself in the The horizontal flow structure was computed with x / 4 1 ~ 9  = 90. 
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solutions, the present model is minimal in the set of requisite 
properties. Similar solutions have been obtained for more 
complicated models with allowance for the thermal conduc- 
tivity and buoyancy of the l i q ~ i d . ' ~ . ' ~  

2. EQUATIONS OF MOTION OF AN ENSEMBLE OF 
DISSIPATIVE VORTICES 

Let us construct the equations describing the dynamics 
of an ensemble of weakly interacting dissipative vortices, 
choosing as the structure element of the theory the Sullivan 
vortex (1.9). 

To begin with, let us explicitly separate out in the diver- 
gence field the uniform-divergence background 2a. Further, 
taking account of the translational-invariance properties of 
Eqs. ( 1.6) and ( 1.7), we represent the divergence and vorti- 
city fields for an ensemble of N vortices localized at different 
points x, = (x, ,y, ) in space in the form 

(2.1) 
Here S and 6 are deformation corrections due to the interac- 
tion of the vortices. 

In order to obtain the corresponding representation for 
the velocity, let us assume that the uniform-divergence back- 
ground 2a is the collective result of independent contribu- 
tions from all the dissipative vortices. In this case, as is easy 
to show, we have for the uniform-divergence velocity com- 
ponent u,, which satisfies the condition Vu, = - 2a, the 
expression 

N 

with the condition 
N 

Ey.=a. 
n=l 

where the y, , like the x ,  , are free parameters of the theory. 
Thus, the resultant velocity field can be represented in 

the following form: 

Here v is a correction to the velocity field (Vv = - S and 
curl v = 6) and u,, the contribution to the velocity field 
from the nth dissipative vortex, is given in accordance with 
( 1.9) by the expression 

(2.5) 
We shall assume that the characteristic dissipative-vortex 
dimension o = (29  / a )  ' I 2  is much smaller than I, the charac- 
teristic dissipative-vortex separation. Then we have the esti- 
mate 

which guarantees that the vortex-vortex interaction is weak. 
We shall construct the asymptotic theory in terms of this 
parameter. 

Neglecting the exponentially small terms of the order of 
exp( - E - ~ ) ,  let US write out the asymptotic representa- 
tions, useful in the vicinity of the nth vortex, for the u, D, and 
o fields: 

u=un-a (x-x,) +Vn+Un+v, 

where V, and U, have the meaning of velocities induced at 
the location of the nth vortex by all the remaining vortices, 
and are given by the expressions 

Here and below a summation sign with a prime indicates 
that the term with the number m = n is omitted in the sum- 
mation. 

Let us substitute (2.7) into the basic equations (1.6) 
and ( 1.7), assuming the free parameters x ,  and x ,  to be time 
dependent, and let us make the substitution x - x, +x, 
which is equivalent to our going over the moving reference 
system fixed to the center of the nth vortex. As a result, after 
the mutual cancellation of the terms describing the nth un- 
deformed vortex, we are left with the following system of 
equations for the deformations: 

which we shall solve with the initial condition V I , = ~  = 0, 
which indicates the absence of deformation corrections at 
the initial moment of time. 

Equations (2.9) and (2.10) describe the nonlinear re- 
sponse of the corrections to the effective forces that deter- 
mine the corresponding inhomogeneous terms. Taking ac- 
count of the radial symmetry of the linearized homogeneous 
problem, we choose as an orthogonal basis the system of 
functions exp(ikp), where e, is the polar angle and 
k = 1,2, ... . Then the following expansion is valid: 
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where the expansion coefficients q, depend on the time im- 
plicitly through the vortex coordinates x ,  and y,. 

Since thew, and d, are localized on the scale a = (26  / 
a )  ' I 2  and thez,, have a characteristic scale of I, it can easily 
be verified that the formal series (2.1 1) is at the same time a 
perturbation expansion in the small parameter E. This cir- 
cumstance allows us, if we seek the solutions for S, 5, and v in 
the form 

Vk [;I = 2.rkq [;;I + C.C., 

k=0 

to immediately draw the conclusion that the k th angular 
mode is excited only in k th order perturbation theory, and is 
of a localized nature. The hierarchy in the generation of the 
deformation modes allows us to greatly simplify the problem 
if we limit ourselves to the first approximation of the theory. 

Thus, retaining the terms of up to first order in E in 
(2.13), we find from (2.9) and (2.10) that 

A 

where qo = (Re go, Im go) and L,  is a linear stability opera- 
tor for a solitary vortex. 

The choice of a solitary dissipative vortex as the struc- 
ture element in the asymptotic theory being developed here 
implicitly presupposes its stability. There is at present no 
direct proof of this fact, which is ba2ed on an analysis of the 
spectral properties of the operator L ,  . Nevertheless, Foster 
and Duck's" numerical analysis of the stability of the dissi- 
pative Long vortexI8 can serve as an indirect indication of 
the stability of the vortices in question, at least against two- 
dimensional perturbations. A 

If, as assumed, the operator L, is stable, then the only 
dangerous effect is the secular grow/th of the zero-modes, i.e., 
the eigenfunctions of the operator L, that correspond to the 
zero eigenvalue. The explicit form of the zero-modes canAbe 
determined without specifying the form of the operator L, . 
In the case when the exact solutions and symmetry groups of 
the basic steady-state equations are known, the zero-modes 
are obtained by differentiating the solutions with respect to 
the group parameters. '3~'4,19 Using the fact that Eqs. ( 1.6) 
and ( 1.7) are invariant under the group of similarity trans- 
formations of the vorticity field and the translation group 
with group parameters x, and x , ,  and the fact that they 
possess exact solutions, namely, the solutions ( 1.9), we find 
the corresponding set of zero-modes: (Vd, ,  Vw, ), (0, w,/  
x,  1. 

Since the right-hand side of (2.14) is, by construction, a 
linear combination of the zero-modes, the condition for the 
nonoccurrence of deformation corrections reduces to the re- 
quirement that 

From (2.12) and (2.16) we finally obtain the equations of 
motion for an ensemble of dissipative Sullivan vortices: 

Equations (2.17) have a simple physical meaning, and de- 
scribe the motion of each of the vortices under the action of 
velocities induced by the remaining vortices. Furthermore, 
the first term on the right-hand side, a term which describes 
the mutual repulsion (Re ,u = 6 9  > 0)  and the rotation of 
the vortices, is effective at small scales, while the second, 
which describes the attraction (Zy, = a > 0)  , is effective at 
large scales. 

As a qualitative analysis of (2.9) and (2.10) shows, the 
procedure for eliminating the zero-modes in the next orders 
of the perturbation theory leads to corrections only in Eq. 
(2.16), which determines the vortex trajectories, the equa- 
tion (2.15) for the intensities being satisfied exactly in all 
orders in E. And what is more, it can be shown that the cor- 
rections in (2.16) occur in the perturbation theory orders 
(in E) not lower than the fifth, and that they are due to the 
resonant interaction of the second and third harmonics. This 
shows how the deformation of the vortices affects their tra- 
jectories in the course of their evolution. 

The consistent use of the zero-mode elimination meth- 
od requires knowledge of all the eigenfunctions and eigen- 
values of both the direct and the adjoint stability operator if 
we do not limit ourselves to the first approximation. In par- 
ticular, knowledge of the adjoint zero-modes is required for 
the elucidation of the fundamental structure of the equations 
describing the vortex trajectories. 

It is relatively easy to find the adjoint zero-modes for 
the Burgers vortices, the evolution of which is described by 
Eq. (2.10) with d ,  = 0,S = 0, and w, and u, determined in 
accordance with ( 1.8). In this case the zero-modes w, and 
Vw, correspond to the adjoint zero-modes 1 and x, which, as 
can easily be verified, form an orthogonal basis. Successively 
multiplying (2.10) by the adjoint zero-modes, and integrat- 
ing over x, we find the equations 

Here V, and U, are given as before by the formulas (2.8), 
but we must in this case set 6 = 0 in the expression for U,. 
The structure of the second equation in (2.18) shows that it 
has the meaning of a vortex-momentum conservation law, 
and shows that the trajectory of a Burgers vortex is a nonlin- 
ear functional of specific hydrodynamic fields. 

We can, by limiting ourselves to the first approxima- 
tion, easily obtain from (2.18) an equation describing an 
ensemble of dissipative Burgers vortices. The equation thus 
obtained then differs from (2.17) only by the formal require- 
ment that 6 = 0 in the definition of p,, which implies the 
absence of mutual repulsion between the Burgers vortices at 
small scales. Such a characteristic leads to a situation in 
which, as a result ofthe attraction, all the vortices in the long 
run dissolve. For this reason, there exists no stationary con- 
figuration composed of two or more Burgers vortices. 

Below we shall analyze the equations (2.17) for the case 
in which Re p, = 6 6  #O. This case corresponds to the Sulli- 
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van vortices. The transition to the Burgers vortices can be 
effected in the final answers through passage to the 8+0 
limit. Let us note that in this case the radiusp, of the core of a 
Sullivan vortex tends to zero, and that this core degeneracy 
allows us in the description of the collective effects of the 
Sullivan vortices to go over to the Burgers vortices, whose 
evolution, unlike their structure, does not depend on the vis- 
cosity. 

3. INTERACTION BETWEEN TWO DISSIPATIVE VORTICES 

In order to form an idea about the nature of the interac- 
tion between dissipative vortices, let us consider the equa- 
tion of motion (2.17) for two Sullivan vortices: 

Let us introduce the following new coordinates: 
z = z ,  - z2andZ=  (z,p: +z2p:)/(pl +p2)*,  whichre- 
spectively describe the relative motion of the vortices and the 
motion of their "center of gravity." Then from (3.1) it fol- 
lows that 

wherea = y, + y2,p  =p, +p2 ,  andA = (y ,p2  - y,p,)/  
p. Integrating, to start with, the first equation in (3.2), we 
find the relative motion. In terms of 5 = 1zI2 and 9 = arg z, 
we obtain 

Here we have adopted the notation 

Let us emphasize that go>{,. For the Sullivan vortices this 
inequality reflects the presence of a core, while for the 
Burgers vortices it is satisfied automatically, since gc = 0 
when 9 = 0. 

Using (3.3) and (3.4), we find from the second equa- 
tion in (3.2) the law governing the motion of the center of 
gravity: 

where F, is the Appel hypergeometric function of two vari- 
ables, Zo = Z 1, = ,  , and zo = g A'2eiBo. The law governing the 
absolute motion can be obtained from the obvious relations 

z,=Z+(pt/p)'x, z,==Z-( pi/p)'z. (3.6) 

According to (3.3) -(3.6), the dissipative Sullivan vortices 
move along spirals and come closer together in the course of 
the evolution, asymptotically approaching, as t-. 00, the re- 
gime 

FIG. 3. Evolution of two dissipative vortices. The initial positions of the 
vortices are marked by sign x. The trajectories were computed with the 
parameters: 8 = 10W2 cm2/sec; y, = 2 X  lo-' sec-I; y, = 6X lo-' 
sec-I, x , / 2 ~  = - 0.6 cm2/sec; and x , / 2 ~  = 0.9 cm2/sec. 

z, =Z,f (pz/p) ' E e l h  exp {i(0,+ 2Aat) ), 

z,=Z,-(p,/p) *~, 'he~p{ i (0 ,+2hat) ) ,  

0,=0,+h ln(Ec/50), (3.7) 
which is revolution with angular velocity 2ail along concen- 
tric circles of radii g )p /p 1 about a stationary center Z, : 

A' I Eo-Ec 
Z.=ZI r=l  .=Z.+ lo--P (I ,  - - - ih, I f iA;  - ). 

2aA 2  E o  

Here F is the Gauss hypergeometric function. Typical be- 
havior of the trajectories is depicted in Fig. 3. 

As follows from (3.8), for il $0 the displacement of the 
center of gravity is finite, while foril = 0, which corresponds 
to a vortex pair (x,  = - x,), the displacement is infinite. In 
the latter case (3.5) can be expressed in terms of elementary 
functions: 

where g( t )  is given by the formula (3.3). 
The corresponding solutions for the Burgers vortices 

can be obtained from the solutions ( 3.3) and (3.4) through 
passage to the 9 -0  limit. The result will be 

(3.11) 
Here p = Im p/2ac0 and r ( a , x )  is the incomplete gamma 
function. The resulting displacement of the center of gravity 
will be given by the expression (3.11) without the second 
term in the square brackets (it vanishes for t -  w ). 
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4. VORTEX LATTICES 

As has already been noted in the Introduction, vortices 
can order themselves in lattices. In the case of a finite simple 
lattice having a symmetric shape, and composed of identical 
vortices, with pm = p = 69  - ilc/27~, the equations of mo- 
tion (2.17) reduce to form 

M N 

Here 2w, and 2w, are the lattice constants and M and N ( k )  
are fixed by the lattice shape and dimensions. In essence, 
(4.2) constitutes a requirement that the lattice maintain its 
crystal properties in the course of the evolution. This as- 
sumption is justified for the internal points of vortex crystals 
that are sufficiently large, so that the effect of the boundary 
 deformation^^^ on these points can be neglected. 

For such an internal point z,, , i.e., one sufficiently far 
from the boundary, we have the asymptotic relation 

This relation can be rigorously proved if take account of the 
mutual concellation of the contributions from vortices sym- 
metrically located with respect to the point z,,. As a result, 
the dominant contribution to the sum is made by the remain- 
ing vortices located far from z,, , and in the limit of an infi- 
nite lattice (4.3) is an identity. 

Let us make in the integral (4.3 ) the change of variables 

which corresponds to a transition from an oblique-angled 
(x,y) coordinate system to a Cartesian (x',yf) system. We 
obtain for the right member of (4.3) the expression 

The domain G of the integration is determined by the shape 
ofthe vortex crystal. It is well known that, when G is a circle, 

ax' dy' 
, = n ~ m n ' .  

zmn-zt-iy 

Using (4.2)-(4.5), we find that (4.1) is satisfied for any m 
and n if 

Equations (4.6) conserve the quantity r = w2/w,, 
which characterizes the shape of the unit cell, and, when this 
circumstance is taken into account, they reduce to the 
simpler form 

whereji = ~ p / 4  Im(r ) .  Since (4.7) coincides with the first 
equation in (3.2), the evolution of the lattice has the same 
character as the relative motion of two vortices. 

Consequently, Burgers-vortex lattices collapse accord- 

ing to the law (3.10). Only Sullivan-vortex lattices go over 
asymptotically, as t-  a, into a stationary regime of rigid- 
body rotation with angular velocity R. The unit-cell area 
4 Im(wrw,) then assumes the limiting value S. It follows 
directly from (4.6) that, in the stationary regime, 

from which we obtain 

The first expression in the Feynman f ~ r m u l a , ~ '  which relates 
the angular velocity with the vortex density g = 1/S, while 
the second indicates the absence of mass flow. Indeed, the 
specific mass flow rate, i.e., the flow rate per unit cell is given 
by the quantity 

1 = 2 a ~ +  J d dr, 

where, in accordance with ( 1.91, the first term takes account 
of the contribution to the total flow rate from the uniform- 
divergence component of the velocity field, while the second 
takes account of the contribution from the local velocity- 
field component. Evaluating the integral, we obtain 

from which the condition J = 0 for zero flow rate furnishes 
the second expression in (4.9). 

Like vortex lattices in an ideal liquid, stationary noncir- 
culating lattices constructed from identical dissipative vorti- 
ces are inequivalent in the sense that their specific energy 
characteristics depend on the type of l a t t i~e .~ '  This circum- 
stance allows us to solve the problem of the choice of the 
lattice on the basis of energy principles. Furthermore, it 
turns out that, in the stationary-rotation regime, the flows 
induced by ideal and dissipative lattices with the same lattice 
constant are similar in terms of the complex velocity. And if 
the vortex intensity in an ideal lattice is, without loss of gen- 
erality, assumed to be equal to 2a, then the similarity param- 
eter is equal top .  

Further, let us limit ourselves to the consideration of 
infinite lattices. According to Sec. 2, the system of equations 
(4.1 ) describes potential flow associated with the complex 
velocity 

We can, by using the representation 

for the Weierstrass function,23 carry out the summation on 
the right-hand side of (4.10) explicitly. We obtain 

where a = - Z'z;?, and is determined only by the type of 
lattice. Notice that a = 0 only for a square (7 = i) or a trian- 
gular (r = ei""3) lattice. 

Let us consider the regime of rigid-body rotation. In a 
reference system rotating with angular velocity R we obtain 
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for the velocity v, after taking account of the formula (4.8) 
the expression 

v,'=v*+iQz'=y[bo(z) -ngz*]; (4.12) 

here <,(z) = { ( z )  + a z  is a designation introduced for con- 
venience of comparison with Ref. 22. 

Comparing (4.12) with the analogous expression, 
( 12), in Ref. 22, we easily see that the two expressions differ 
only because of the presence of the factor p in (4.12). This 
equivalence allows us to generalize the results obtained in 
Refs. 22 and 24 to the case of dissipative lattices. The lattice- 
selection rule formulated in Ref. 22 holds here, since the 
condition a = 0 is, as before, a necessary condition for the 
specific energy, as a function of the parameter 7, to have an 
extremum for a fixed unit-cell area. Of the square and trian- 
gular lattices satisfying this condition, the triangular lattice 
is energetically the more advantageous lattice. 

To analyze its stability, let us derive the equations of 
motion for weak perturbations in a dissipative, noncirculat- 
ing lattice. Using the similarity principle formulated above, 
we can suitably generalize Eq. ( 12) in Ref. 24, an equation 
which describes small oscillations in an ideal lattice in a ro- 
tating reference system. As a result we obtain 

Here c = {c,,) denotes the displacements of the vortices in 
the rotating reference system, and the explicit form and 
spectral properties of the operator A are given in Ref. 24, 
where it is shown that the eigenvector c,, 
= exp{i(mq, + n d )  corresponds to the eigenvalue 

Note that k = .rr- ' (w,q - a,$)  is the spectral parameter, 
and that the perturbation {c,,) can be considered to be a 
circularly polarized plane wave with wavelength iS/k. 

It is easy to reduce Eq. (4.13) to the real form 

Let us seek solutions in the form c - esr. The dispersion equa- 
tion for the vibrational spectrum in a dissipative lattice is 

whence 

6=-ng Re p*[ 1 ByJZ- (ng Im I L ) ~ ] ' ~ .  (4.17) 

Thus, the dissipative lattice is stable if IB I <n-g. And 
what is more, for n-gJIm p/p (<  (B 1 <n-g a regime of pure 
damping develops, while for IB I < rg / Im  p/p I we have a re- 
gime of damped oscillations. In the opposite case, i.e., when 
lB / > n-g, the lattice is unstable. 

A comparison with ideal latticesz4 shows that, other 
things being equal, any stable situation for ideal lattices will 
be all the more stable for dissipative lattices, and, conversely, 
any unstable situations turns out to be even more unstable. 
From this standpoint a triangular dissipative lattice (like an 
ideal triangular lattice) is stable. But it should be noted that 
a dissipative triangular lattice, unlike the ideal lattice, can- 

not support undamped oscillations, which disappear alto- 
gether in the long-wave approximation, since a pure damp- 
ing regime arises when 0 < I k I < Ik,l. The limit k, at which 
the oscillatory regime is cut off is given by the equation 
IB(k,) I = ~ g l  Im p/p I, and depends on the ratio 9 /x. For 
9 /X 4 1 andgk 4 1, we find, using the asymptotic represen- 
tationZ4 IB l 2  = ( ~ g ) ' ( l  - rglk IZ), that 

Furthermore, we emphasize that the norm 
():lc,, 1 2 )  'I2 of weak perturbations in a dissipative triangu- 
lar lattice decreases like e""" whereas in the ideal lattice it 
increases (albeit slowly) like ln1/'(txg/2). 

CONCLUSION 

As is well known, the presence of sources of vertical 
currents and angular momentum in a viscous liquid is a uni- 
versal condition for the formation of intense localized vorti- 

In the present paper we have shown that the ordered 
and disordered flow regimes in such open dissipative sys- 
tems can be described within the framework of a minimal 
model having as its structure elements the solitary dissipa- 
tive Burgers and Sullivan vortices. In such an approach the 
question of the formation of the sources themselves and of 
the specific dependences of the free parameters x,  y, and a of 
the theory on the external controlling parameters of an ex- 
periment remains open. It is clear that, to answer this ques- 
tion, we must construct more complicated models that will 
contain the minimal model as a component. Besides this, the 
structural element itself may be more complicated and dissi- 
pative vortices that take account of, for example, the mag- 
netic, heat-conducting, and other properties of the medium 
are entirely possible. 

In conclusion we express our gratitude to G. S. Golitsyn 
for suggesting the theme of the investigation and for con- 
stant interest in the work. The authors are also grateful to B. 
M. Bubnov and V. M. Ponomarev for useful discussions and 
advice. 
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