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The completeness of the dynamical description of magnetic substances with spins S >  1/2 is 
discussed. It is shown that the minimum number of dynamical variables (and, consequently, of 
equations for them) necessary to consider all the interactions allowed by the magnitude of the 
spin adequately is equal to 4s. A set of four equations that furnish a self-consistent description 
of the dynamics of an S = 1 magnetic material is explicitly derived on the basis of the single- 
site coherent states for the SU( 3 )  Lie group. Physical situations are considered whose most 
important feature is not the orientational motion of the magnetization vector, but the 
dynamics of the quadrupole degrees of freedom, which constitute an important element of the 
total dynamics. Solutions are specifically obtained for: 1 ) a linearized quadrupole wave 
describing the oscillations of the magnetization modulus and the quadrupole-tensor axes, 2) a 
domain wall whose magnetization modulus varies continuously in the absence of spin rotation 
as it moves in an external field, and 3) a magnetic vortex with a two-dimensional order 
parameter that vanishes on the axis. The solutions found are essentially quantum-mechanical 
and do not arise in the semiclassical approach. In the static limit the set of equations obtained 
describes a self-consistent ground state, and also solves the problem of the diagonalization of 
an arbitrary single-site Hamiltonian for S = 1. 

1.  INTRODUCTION 

The solution of the Landau-Lifshitz equation (LLE) ' 
has in the last few years allowed significant progress to be 
made in the understanding of the nonlinear dynamics of 
magnetically ordered crystals (see, for example, the reviews 
in Refs. 2 and 3).  This equation furnishes a self-consistent 
description of the orientational dynamics of a magnetization 
vector s ( r )  satisfying the condition Is(r) 1 = const, and is, 
strictly speaking, valid for spin systems with4 S = 1/2. The 
LLE yields reasonable results for arbitrary S values as well 
when the relativistic interactions are weak compared to the 
exchange interactions,' and we can approximate them by 
effective anisotropy fields. However, even in this limiting 
case a more exact description often becomes necessary. With 
that end in view nonmodel theories of linear magnetization- 
vector dynamics that use only symmetry arguments were 

At the same time a number of examples are known in 
which the fields and interactions of higher multipole order, 
which stem from incompletely quenched orbital motion, are 
comparable to, or even much stronger than, the magnetic 
field and the bilinear exchange. The static and resonance 
properties of such crystals are quite pronounced, and in 
many respects both differ qualitatively from the analogous 
properties of slightly anisotropic magnetic materials and de- 
pend essentially on the specific magnitude of the spins of the 
magnetic ions. In certain cases there are especially striking 
differences between the properties of systems with inte- 
gra19-' ' and half-integral".I2 spins, and the acoustic (mag- 
non) branches actually interact with the optical branches of 
comparable energy, the number of the latter being also de- 
pendent on S. These and many other characteristicsI3 are a 
consequence of the competition among the contribution to 

the ground state and the elementary excitation spectrum 
from those interactions of different natures which cannot be 
reduced just to effective fields, i.e., to functions of only the 
magnetization. Equally justified allowance for all the com- 
peting interactions, irrespective of their natures, can be 
made naturally on the basis of quantum theory. In this case 
we can, with the aid of a small number of parameters of an 
appropriately chosen model, quite satisfactorily explain a 
large amount of experimental data on such highly anisotrop- 
ic magnetic materials as for instance CoF, (Ref. 12). Thus 
far this theory appears mostly worked out,9-" but the meth- 
ods that have been developed for it are not suited for the 
description of highly excited inhomogeneous states, i.e., for 
the typical problems of nonlinear dynamics. 

For the investigation of nonlinear problems, it is desir- 
able to have for the dynamics a description similar to the 
LLE, i.e., equations of motion that are as physically clear 
(which makes it much easier to work with them) and as well 
justified from the standpoint of microtheory as the LLE for 
S = 1/2. This implies first and foremost that their complete- 
ness, i.e., that they be able to incorporate any interactions 
allowed by the magnitude of the spins, as well as the self- 
consistency of the interspin interaction when exact 
allowance is made for the single-site interactions, which is in 
accord with the idea underlying the quantum approach. " A 
key question here is the question of the number of dynamical 
variables necessary for a complete description. The answer 
to it can be obtained by expanding an arbitrary spin state in 
terms of some complete basis, e.g., 

-S 

Y ( t )  = a&f ( t )  1 S ,  M). (1)  
M - 6  

We can, taking account of the normalization condition and 
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the arbitrariness in the choice of the general phase in ( 1 ), see 
from this that the evolution of the state is governed by the 4S 
independent real parameters entering into the coefficients 
a,. It is natural to choose as more convenient dynamical 
variables 4S independent quantities from the set of 
4S(S + 1 ) mean-over the state ( 1 )-operators constitut- 
ing the SU(2S + 1) Lie algebra (e.g., the irreducible ten- 
sors Ok,q, k = 1, ..., 2s) .  These simple arguments indicate, in 
particular, the fundamental character of the difficulties that 
arise in the phenomenological description of highly aniso- 
tropic magnetic substances on the basis of functions of the 
three magnetization-vector components: even for S = 1 the 
minimum number of dynamical variables is equal to four. 
Let us emphasize that here (and below) the topic under dis- 
cussion is "the minimally complete" description of the dy- 
namics, i.e., a description with the aid of pure states, the 
region of applicability of which is precisely the region of 
greatest interest to us: it is precisely at T(< T, that the quan- 
tum effects caused by the freezing out of additional (nondi- 
pole) degrees of freedom most dramatically manifest them- 
selves. The elucidation of the properties of these degrees of 
freedom and their effect on the dynamics of the spin system 
is the main aim of the present paper.2' 

In the present paper we investigate the S = 1 case, 
which is the simplest case for which we can go beyond the 
LLE. In Sec. 2 we explicitly derive and discuss a set of four 
equations that completely describe the dynamics of an arbi- 
trary magnetic material with S = 1. In Sec. 3 we consider 
examples of nondipole dynamics: a quadrupole wave and a 
domain boundary in a biaxial ferromagnet, as well as the 
magnetic vortex with a variable modulus s ( r ) .  The results 
are discussed in Sec. 4. 

2. SPIN DYNAMICS EQUATIONS FOR S= 1 

Keeping in mind the self-consistent description of the 
dynamics of a spin system, we first consider the description 
of the state of an isolated spin at the site n. In the S = 1 case 
let us choose as the complete set of operators of the SU( 3) 
Lie algebra the three components of the spin S I and the five 
independent components of the symmetric tensor 

We shall seek the four independent dynamical variables and 
the equations for them by going over into each site's proper 
moving coordinate system (MCS): 

which we define by the following conditions for the averages 
(...),=(*:,I...I*:): 

(here and below the Greek indices pertain only to the MCS: 
a , P  = {,77, f ,  and their subscript n will.be dropped : a =a , ,  
{={,, etc.). 

The first two conditions in (3) specify the form of the 
function with which the averaging is carried out up to an 
arbitrary phase: 

while the third ensures the reality of its coefficients. There 
then remains only one free parameter, namely, the param- 
eter g,, which can be directly related to the average spin 
length s, = ( S  2 ), and the quadrupole moment q, 
= ( ~ 2 5 -  ~ y ) :  

for the remaining average quantities we have the identities 

Thus, it is natural to choose as the four independent vari- 
ables describing the state of the spin at the site n one of the 
quantities (g, , s, , q, ) and the three parameters of the uni- 
tary transformation R, that effect the transition into the 
proper MCS. If we represent the transformation R, by three 
Euler rotations (which is convenient in specific calcula- 
tions), then two angles (p, ,a, ) specify, as usual, the orien- 
tation of the spin (s, ),, while the third angle (y, ) describes 
the rotation of the quadrupole moment about this vector. 
This rotation, which is not a real rotation in the semiclassical 
description, is, as will be seen below, an important element of 
the dynamics of an anisotropic magnetic material. 

We shall derive the dynamical equations for these vari- 
ables from the equations of motion (in the MCS) for the 
operators 0 :, = S z, Q z@ averaged over the state (4) : 

d 
iti - <On'>0 = < [on1, & n ' + i f i ~ n - l ~ n l  )o, 

dt  
( 7 )  

where 

m 

and %'A, X;, are respectively the single-site- and pair-in- 
teraction operators in the MCS, Using the relations (3)- 
(6),  we arrive, after some  calculation^,^' at the required sys- 
tem of equations: 

~,,-2q,ii,~'=O, (9a) 

[The remaining four equations can be obtained from (9a)- 
(9d) and (3)-(6). ] Here the = 6; are the components 
of the angular velocity in the MCS: 

dOns=d.6., sin yn-drp, sin I?, cos y,, (10) 

d@,'=d6, cos yn+drp, sin I?, sin y,, 

while 

are the effective magnetic and quadrupole fields, which can 
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be expressed in terms of the constants of the Hamiltonian of 
the general (for S = 1 ) form: 

ir 
nm 

and the parameters of the transformation R ,  : 

where u$ (p ,  8 ,  y)  is the well-known transformation matrix 
for the vector 

Let us discuss the physical meaning and some charac- 
teristics of the above system of equations. It is shown in the 
Appendix that the equations (9a)-(9d) priovide for the spin 
motion a natural'adiabatic description that differs from the 
usual adiabatic appro~imat ion~~ in that, under the appropri- 
ate initial condition q, (to) = T, (to)$;, the other eigen- 
functions of the operator, %'Aeff do not contribute to the evo- 
luation of $, ( t ) .  For typical problems of the dynamics of 
magnetically ordered crystals the fulfillment of this condi- 
tion is guaranteed by the fact that the equations (9a)-(9d) 
which determine the parameters of the transformation 
T, ( t ) ,  describe in the static limit a self-consistent equilibri- 
um state that can be considered to be the initial condition at 
t o - +  - co for both the nonlocalized and localized solutions. 
It can be directly verified that the state 
$, = T, I 1 ) , = R ,  $A possesses all the properties of a gener- 
alized coherent state,23 corresponding in our case to the dy- 
namical SU(3) symmetry group. This state corresponds to a 
point in the four-dimensional factor space SU( 3 ) /H, where 
the stationary subgroup H of the state $A = 11) consists of 
unitary rotations with generators Q y, S i, St - 2Q r, SY, 
- 29:. It is also easy to verify that, in the MCS, the func- 

tion (4)  minimizes the uncertainty relations for the sets of 
three operators (S i , S :, S f ), (Q  F, Q i6 - Q :'7, S f  ) etc. 
The relation between the T, and R, transformations of the 
function $, , $A, and $; is given in the Appendix. Naturally, 
T, can be parametrized in any other way, but the selection of 
space rotations gives the equations transparent physical 
meaning, as was done above in the derivation of (9a)-( 9d). 

[We note that the transformation T, does not com- 
pletely diagonalize */, but distinguishes only one eigen- 
vector, the evolution of which is described by Eqs. (9a)- 
(9d). But the solution of this system of four equations re- 
duces the problem of the final diagonalization to the reduc- 
tion of a 2 x 2 matrix, which is easily carried out by means of 
two successive rotations about the vector $; with the genera- 
tors St  - 2QF and SY, - 2 9  r. Note that in the case of the 
static problem the equilibrium state is determined by a 
smaller number of parameters (see Ref. 10) 3'. ] 

We can get some idea about the deviation of Eqs. (9a)- 
(9d) from the LLE and about the nature of the dynamics of 
S =  1 spins by analyzing the terms due to the bilinear ex- 
change. Going over in the difference equations to the contin- 
uum description, limiting ourselves, as usual, to expansion 
terms of up to the second derivatives in the coordinates, and 
introducing the fields (s,, p,, 8 , ,  y, - (s, p, 9, y )  
= [ ~ ( r ) ,  ...I, we obtain 

where 

8 6 i j  

If there is a center of inversion, the expression in the second 
brackets vanishes, and the one in the third brackets can, 
when the crystal contains two axes or symmetry planes, be 
reduced to the simpler form 

where J ' is the so-called inhomogeneous-exchange constant: 
2J6 <J1<J0.  

The meaning of each term in (14) and (15) is clear 
from its structure. The fact that the majority of these terms 
enter only into one or two pairs of equations, namely, (9a), 
(9b) or (9c), (9d), is especially noteworthy. In particular, 
the principal (isotropic) part sJo of the homogeneous ex- 
change occurs only in (9b), and this applies also to the last 
terms in the second and third brackets in ( 14), whereas the 
penultimate terms in them are contained only in (9c) and 
(9d). (The anisotropy field sj$ and the purely orientational 
part of the inhomogeneous exchange are identical to the cor- 
responding terms in the LLE. ) These differences are some of 
the consequences of the fundamentally different natures of 
the two types of motion that are involved in magnetic dy- 
namics, and are, in the general case, coupled to each other. 
In certain situations, however, the degrees of freedom corre- 
sponding to them turn out to be independent, or else only one 
of them actually exists. Thus, in the limit of weak quadru- 
pole interactions, i.e., for 2 y-0,  we find from (9a) and 
(9b) that q, -0, s, -+ 1, ands, -0; the angle y, can then be 
chosen so that the pair (9c) and (9d) go over into the LLE, 
describing only the orientational dynamics-the important 
dynamics in this case-of a magnetization vector with con- 
stant modulus. Of greatest interest to us is the other case, in 
which for one reason or another it is just the orientational 
spin motion that does not occur or is of secondary impor- 
tance, and the dominant motion is the one described by Eqs. 
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(9a) and (9b). The remaining part of the paper is devoted to 
the analysis of these equations and the motion correspond- 
ing to them. 

3. THE QUADRUPOLE SPIN DYNAMICS OF A 
FERROMAGNET 

In the present section we shall consider certain situa- 
tions in which the dominant role is played by the pair of 
equations (9a) and (9b), i.e., situations that are, in a sense, 
opposite to those that can at least qualitatively be described 
with the aid of the LLE. We shall consider two such possibi- 
lities in the particular case of a biaxial ferromagnet with a 
single-ion anisotropy (SA) : 

in the ground state of which (when A > B and H = 0)  the 
spins have length s, = so = ( 1 - b 2, 'I2, where b = B /J0,9 
and are oriented along Z .  As follows from the explicit form 
of Eqs. (9a)-(9d), in the absence of spin motion connected 
with deviations of the orientation of the spins from this axis 
(or for small amplitudes of such deviations) the motion de- 
scribed by the first pair, 

Ain+2Bq, sin 2yn=0, (17a) 

can be considered to be independent. The physical meaning 
of these equations is quite clear. In them the magnetization 
s, acts like an essentially quadrupole dynamical variable; its 
variation is determined by the angle y, of rotation of the 
quadrupole moment about the Z axis, and the rate of this 
rotation is in turn given by the deviation of the magnetiza- 
tion [or the quantity q, = ( 1 - s; ) ' I2]  from the equilibri- 
um state. 

Quadrupole wave 

The simplest example of such a motion is the linearized 
quadrupole wave, which, as will be shown below, corre- 
sponds to the exchange branch in the elementary excitation 
spectrum of a ferromagnet with S = 1, just as a spin wave 
corresponds to the acoustic (magnon) branch. By differenti- 
ating ( 17a) with respect to the time we go over to the second- 
order equation 

hi+4B2sn+4Bq. (z J.s.+,+H) cos 2y,=0, ( 18) 
a 

where cos 2y, is defined in ( 17a). We shall seek the solution 
in the form 

where S is the homogeneous steady-state solution to the sys- 
tem ( l7a)  and (17b):Sn = y, = O,s, =I. Linearizing (18) 
with respect to s, - F under the condition that 
u4?j2 = 1 - S 2, we find the dispersion relation 

tio (k) =2J0[ (b/ij)'-bijI'(k) ]'", 

b 6 

For the angle y, we have 

In weak fields h = H /Jo 

and 

tto (k) =2Jo[ ( l + ~ h ) ~ - b ~ ( l - ~ h ) r ( k )  (22) 

where x = l/so.= ( 1 + x,, ) 'I2. 

This dispersion relation can be obtained on the basis of 
the microscopic theory .(see Ref. 9) by expanding ( 16) in 
terms of the basis operators jp, ), (p, 1: 

.3$* = z [2(l+hR)Jo]Bn+Bn 

Here we have written out only the operators, 
B, = Ip,), (p21 and B ,+ = Ip,), (pol, that are essential to 
excitations of the type in question, and are responsible for 
the transitions between the states Ip,),cosgll) 
+ s ing l - I ) ,  Ip2= -s ing l l )+cosgl - - I ) ,  where 

cos 2g = S. The Hamiltonian (23) describes the optical (ex- 
change) branch of the excitation spectrum of the ferromag- 
net, a branch which is also called the longitudinal branch, 
and is associated with the collective tunneling of the spins 
between the states I 1) and I - I) ,  which does not require the 
surmounting of an orientational barrier of height - A .  This 
branch interacts only with a longitudinal variable field, and 
has, when A > J,, an activation energy smaller than the gap 
in the spectrum of the acoustic magnons, so that it can be 
excited independently of the latter excitations both reson- 
antly and thermally. When the dispersion relations in the 
two approaches coincide, the nature of the excitations is 
more clearly revealed in the description of the dynamics with 
the aid of coherent states, and, what is most important, in the 
present approach no difficulties arise in the investigation of 
essentially nonlinear problems. 

The domain wall 

Another situation in which only the first pair of equa- 
tions, i.e., Eqs. (9a) and (9b), need to be considered arises in 
the analysis of the domain wall (DW) structure in the model 
( 16) with A - B > Jo. Indeed, the width A = a [Jo/ 
(A - B)]'I2 of a Bloch- or NCel-type DW decreases with 
increasing anisotropy (in the process of spins inside the wall 
"~ho r t en"~~) ,  and the rotation of the magnetization be- 
comes energetically disadvantageous at A - B > Jo (i.e., 
when A < a ) ,  so that Eqs. (9c) and (9d) can again be ig- 
nored. In order to investigate the structure and dynamics of 
the DW in this case, let us go over in (18) to the continuum 
description, and introduce the dimensionless variables 
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2 = 2'/'x/a and r = 2 (B /Jo) 'l2t /fi, as well as the relaxation 
term a'b - 1/2s, cos 2 y [in Eq. ( 17b) to it will correspond the 
term a1J0 sin 2yn ] : 

An analysis shows,25 the free (H = 0, a' = 0 )  DW motion 
corresponding to the boundary conditions s (  f 00 ) = so 
is possible at velocities u < u, = b ' I2  [u = Vfi(2BJ&') - ' I 2  

is the dimensionless velocity 1. Furthermore, the DW width 
is equal to A, = 2a(1 - b)-It2 at u = 0, and tends to the 
finite limit Ak = a2'l2 as u - uk , whence we obtain the con- 
dition of applicability of the continuum approximation: 
1 - b ( 1, u ( uk . We have up to and including terms of sec- 
ond order in w2 = u2/u; the solution 

0 b -- = - Arsh { sso } + arcsin s, (25 ) 
( 1 - W )  so (I-st)'"-b 

u dsldt u soZ 
sin 2y = - 5%- 

uk ( i - ~ ~ ) ' ! ~  uk i+b ch(soE) ' (26) 

which describes a moving DW ({ = 2 - ur )  having a mag- 
netization (25) that varies in magnitude, and accompanying 
its localized quadrupole-moment rotation wave (26), the 
amplitude of which vanishes at u = 0 (dynamical soliton). 
By taking account of the fact that b-q 5 1, we can give a 
slightly less exact solution for s: 

Notice that the expression (25) with w replaced by u is the 
exact solution to the simplified equation 

The rest energy of such a DW, Eo = 2-'/Z~0(arcsin so 
- bs,) =.2'/'J&/3 for so( 1, is much smaller than the DW 

energy in the Ising model with s, = const. 
Let us consider the DW motion in an external field. 

Neglecting, for simplicity sake, the longitudinal susceptibil- 
ity (21), we find the acceleration of a particle of massz5 
mo=  (2 ' / 2 f i 2~Gi /6a~ ) ,  having the DW coordinate 
xo = vt: 

(in dimensionless quantities du/dr = 3bh /s: ) . 
In the presence of dissipation, i.e., for a' #0, the motion 

stabilizes at some velocity V,. ( H ) ,  which we can determine 
from the condition d E  /dr = 0. Computing the energy of the 
crystal, and using Eqs. (17a) and (17b), we have 

whence, taking account of the fact that a/& 
= - v+~(~BJ,) - I t Z a  /ax, we find 

v,, (H) = 3.2"aBH (or u,, (h)  = T,  
Jofi~02a' 

3 b " z h ) .  (29) 
So a 

Allowance for the discreteness of the lattice leads to the ap- 
pearance of an additional periodic potential with barrier 
height AE = JO[b - 3/2(2b 2)2/3]. 

Magnetic vortex 

Let us consider one more example of the situation in 
which the variability of the modulus of s, essentially 
changes the nature of the solution; specifically, let us discuss 
the structure of a vortex in an easy-plane ferromagnetic with 
a single-ion anisotropy: 

As is well in the model with Is1 = const the vor- 
tex-energy minimum is attained when the magnetization at 
the vortex core leaves the plane. This departure, which has 
been substantiated for weakly anisotropic crystals, occurs in 
the case of strong single-ion anisotropy only when S is half- 
integral. Let us, without dwelling at length on the analysis, 
note that in the present case the magnetization does not, on 
account of the Kramers theorem, vanish anywhere, and that 
in the limit when D )  Jo all the changes in the modulus of s, 
can be taken into account in the simple model withSef = 1/ 
2, an anisotropic g factor (g, /g,, = S + 1/2), and an aniso- 
tropic exchange [ JL / J I I  = (S + 1/2)'/p]. 

The situation is entirely different in the case of integral 
S. Let us illustrate this for S = 1. As we saw in the preceding 
example, the magnitudes, of the magnetization is the result 
of the competition between the effective field acting on the 
spin and the single-ion tensor component perpendicular to 
this field, and should vanish wherever the field vanishes. 
This conclusion is valid for any models with S = 1, and in 
the appropriate generalizations for any integral S. In partic- 
ular, for the model (30) the nontrivial solution s, = s, # O  
to the homogeneous problem is energetically advantageous 
only when d = D /(2Jo) < 1: s, = ( 1 - d ')'/ '  (Ref. 10); 
for d > 1 the ground state is a singlet. At the same time, for 
spins oriented along the Z axis the relations, = 1 holds for 
any d (irrespective of what causes the orientation). Return- 
ing to the problem of the vortex, we can say that the state in 
which the magnetization remains in the XY plane and de- 
creases as the distance to the vortex center decreases [i.e., 
the state in which 9 = 7r/2 and s ( r )  -0 as r-0] is admissi- 
ble in the S = 1 case,4' leaves the gradient energy finite, and, 
more importantly, is energetically more advantageous than 
the state with 9 ( 0 )  = 0 or 7~ and s (0)  = 1 in some region of 
the parameters (e.g., when d 5 1 and s, ( 1 ); in this case the 
transition from one type of vortex to another when the pa- 
rameter d is varied should clearly be a first-order transition. 

Let us find this solution. Going over in (9a)-(9d) to 
the continuum description, and setting the polar angle 
9 = r/2, we obtain from (9c) and (9d) the equations 

fir$ sin y+Joa2 cos y['/,sAq+( Vs) (Vq) 1 =0, 
(31) 
- 7  

-fi$ cos y+Joa2 sin y ['/,sAcp+ ( Vs) ( Vcp) ] =0, 

whence 4, = 0, i.e., the vortex is "frozen-in." This conclu- 
sion does not change when allowance is made for an external 
field in theXYplane, so that the vortex motion should still be 
accompanied by the orientation of the spins along the Z axis. 

For the static problem we obtain from (9a) and (9b) 
the equation 
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Let us seek the solution for a vortex in the form 
(Vs).(Vq,) =0,  s = s ( r ) .  Then q,=q,(R), and from (31) 
we have q, = vR + q,,, where r and R are the cylindrical co- 
ordinates of a point in the plane. Next, going over to the 
variablesp = s, r/a and a = s/s, , we obtain for a( p )  the 
equation: 

Being interested in the s, 4 1 case, we shall consider the 
asymptotic solutions in the vicinity of the vortex axis and at 
the periphery. 

Asp -0, (33) goes over into the Bessel equation, and 

where r, = 2a (v!) ""s; I is the characteristic scale: the vor- 
tex-core radius, which, for s, 4 I ,  can be much greater than 
the interatomic distance a. 

For p - w the solution has the form 

[In the case of the ordinary vortex, the orientational in- 
homogeneity decreases more rapidly: 9 = 77/2 - c'e - ' /r'12 
(Refs. 2 and 26) .] The vortex energy is equal to 

wherep, = Rs, /a, R is the vortex radius, andp' is a quanti- 
ty of the order of the vortex-core radius, as which it is reason- 
able to choose the distance to the point where the functions 
a, anda, arematched (forv = l ,pl  = 2'12, andforv = 2, 
p' = 2). 

Let us, in conclusion of this section, emphasize that the 
solutions obtained above-the quadrupole wave, the DW, 
and the vortex-are due to the possibility of the contraction 
of the spin in the pure state (i.e., at T = O), and are thus 
essentially quantum effects, of which those (the DW, the 
vortex) in which s ( r )  vanishes are admissible only in the 
case of integral S. This, of course, does not exclude the possi- 
bility that similar objects exist as a result of the purely statis- 
tical shrinkage of the mean moment, a process which usually 
occurs28 as T- T, (a special case is theX-Y model, for which 
the vanishing of the moment on the vortex axis also occurs 
purely statistically at T-0). In all such cases the magnitude 
of the spins does not play any role. 

4. CONCLUSION 

The need to consider the possibility of the variation of 
the magnetization modulus has been repeatedly pointed out 
in the literature. As has been shown above, the magnetiza- 
tion modulus does not in itself constitute a new dynamical 
degree of freedom, and is even not a pure vector variable: its 
sities of the quadrupole fields and interactions. Without 
allowance for the latter in a theory that operates only with 
functions of the magnetization vector, the magnitude of the 
elasticity can act only as a relaxation ~ a r a i b l e . ~ ~  In the gen- 

eral case all the degrees of freedom, the number of which is 
determined by the magnitude of the spins, participate in the 
dynamics; we can eliminate some of them from the analysis 
by replacing the multipole interactions with effective anisot- 
ropy fields only under the assumption that these interactions 
are weak. The system of equations (9a)-(9d) obtained here 
allowed us to take account of all the necessary dynamical 
degrees of freedom of a magnetic material for the simplest 
(S = 1 ) case that permits us to go beyond the purely orienta- 
tional dynamics described by the LLE. The examples dis- 
cussed above, in which the dominant role is played by the 
pair of equations (9a) and (9b), besides being of interest in 
their own right, allow us to get some idea about that aspect of 
the dynamics of magnetically ordered crystals with spins 
S >  1/2 which usually remains in the shadow, although it 
exerts a significant influence on all the observable properties 
of anisotropic spin systems. The method of self-consistent 
coherent states, which is used in the present paper for the 
S = 1 case, allows us to obtain a complete description of the 
dynamics and statics for any S, adequately (and equitably) 
taking account of all the admissible interactions. Here there 
is no need to express the spin operators in terms of Bose or 
other convenient operators, and there does not arise the 
problem of taking account of the so-called kinematic inter- 
action-a pathological problem in the case of a highly excit- 
ed spin system. Unfortunately, as S increases above unity 
(and also as T increases from zero), the number of dynami- 
cal equations increases rapidly, and the difficulties entailed 
in their solution or analysis increase even more rapidly. But 
there is reason to expect that the most important characteris- 
tics of the behavior of a highly anisotropic magnetic material 
with spin S> 1 that fall outside the limits of "competence" of 
the magnetization vector can at least qualitiatively be under- 
stood in an investigation with Eqs. (9a)-(9d). Perhaps an 
approach that has the generality of the phenomenological 
theory, and at the same time allows us to take account of the 
new nonvector degrees of freedom will also turn out to be 
useful. 

The author is greateful to V. G.  Bar'yakhtar, B. A. 
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well as A. F. Prikhot'ko for constant and stimulating interest 
in the work. 

APPENDIX 

As can be seen from ( 7 )  and (8) ,  the single-site Hamil- 
tonian %,, (or %A) is time-dependent even if the total 
Hamiltonian 2? does not vary in time. The expansion, cus- 
tomarily used in such cases,22 of the wave function Y(t)  in 
terms of the solutions to the quasistationary equation 
[%,, ( t )  - E, ,~ ( t )  ]q~,,,~ ( t )  = 0 requires that the fields enter- 
ing into %,, vary slowly and no motion arise in the zeroth 
(adiabatic) approximation: d (q,,,,, 10, /q,,,, )/dt = 0. We 
can get rid of these deficiencies by going over with the aid of a 
4s-parameter unitary transformation Tn ( t )  to the proper 
representation Y, ( t )  = exp[ - ip ( t )  TI, ( t )  $:, in which 
$:: does not depend on t .  In the new representation the equa- 
tions of motion have the form 
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and are, for a given $", equations for the parameters of 
T,, ( t ) .  In view of the arbitrariness in 0 A ,  the function $: 
should be one of the eigenstates of the operator "' = L%': 
+ i f i ~ ;  IT, that correspond to the energy E = f i  ( t )  . The 

choice of a specific function $: is determined by the initial 
conditions; by expanding in terms of the eigenfunctions of 
%; ", we can show that the subsequent evolution of the 
solution to the complete Schrodinger equation is governed 
only by this function $:, and that it is, in this sense, adiaba- 
tic. 

In the S = 1 case the function $: can be chosen unique- 
ly: $: = I I ) .  Separating out in T,, ( t )  the part that is con- 
nected only with space rotations, we have 

and Eq. (A. 1 ) in the new coordinate system has the form 

where 

so that $A is an eigenfunction of (A.3). The coincidence of 
$; with the function (4)  and the coincidence of the new 
coordinate system with the MCS defined by the conditions 
(3)  follow from the fact that the equations (A.2) are equiva- 
lent to Eqs. (9a)-(9d), a fact which can be verified directly, 
e.g., 

"The principal approximation made in the derivation of the LLEI8 con- 
sists in the transition from the (S;)'-type singel-site operators to the 
magnetization functions [Sx ( r ) l 2 ,  a process which corresponds to the 
semiclassical uncoupling process ( (St ) 2 )  - (S; )'. 

"The description of the dynamics of a magnetic material with the aid of 
the density matrix does not constitute a difficulty formally. But for the 
problem formulated it is not more informative, and yet requires the con- 
sideration of the complete set of 4S(S + 1 ) variables connected by 2 s  
relations (in the absence of relaxation), which is not a simple problem 
even for an ensemble of noninteracting S = 1  spin^.'^.^^ For S = 1/2 
both approaches lead to the vector LLE with the single relation 
Is1 = const. 

"The method o_f preliminary partial diagonalization of the single-site 
Hamiltonian Rn allowed us earlier to find the analytic solutions to the 
self-consistent problem for ferromagnets and antiferromagnets possess- 
ing a symmetry plane.y,'O The direct diagonalization for S = 1, on the 
other hand, requires the solution of the complete set of six equations. 
This is a much more difficult problem, and has as yet not been solved 
analytically even in the real-matrix case, which requires only three rota- 
tions.17 
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