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A study is made of the temperature dependence of the coefficient representing penetration of a 
weakly asymmetric semiclassical potential barrier by a string. At low temperatures the barrier 
is overcome by tunneling, at the temperature To-F this mechanism changes to tunnel- 
activated, and at T> T, -F ' I2 the motion across the barrier results from activation processes 
( F  is the asymmetry parameter of the barrier, which obeys F g  1 ). Determination of the 
optimal paths of a string in imaginary time is analogous to the problem of the shape of a 
critical nucleus in the theory of phase transitions. Equations are derived for the boundaries of a 
nucleus allowing for the interaction of boundaries with one another and expressions describing 
the change of regimes near To and T, are obtained. The influence of an hf field on the 
tunneling of a string at zero temperature is investigated. 

1. INTRODUCTION t ionas/& = - 1/T (Ref. 1). 
Calculation of the probabilities of tunnel-activated de- The Lagrangian of a string is 

cay of metastable states has been the subject of many papers. - 
In a fairly general form this problem was first investigated by I,= j [-(A) P +"(-) ay 
Lifshitz and Kagan,' who extended the concept of quantum- - m 2 dt 2 d x  
mechanical tunneling to a system with macroscopic degrees 
of freedom. A similar problem was also solved by Iordanskii Y 
and ~inkel'shte'in~ for a more specific situation. 

+ U ~ ~ ( ~ ) - F U ~ - - U ~ E ] ~ X .  a 

The present paper deals with decay of a metastable state 
of a string in a potential barrier. This model is of direct rel- 
evance to dislocations in a crystal, in which the velocity of 
tunnel-activated motion was investigated in detail by Petuk- 
hov and Pokr~vskii,~ and to the motion of charged density 
waves in a Peierls in~ula tor .~  The tunneling of a string at zero 
temperature is analogous to the quantum formation of nu- 
clei in phase  transition^.',^,^ The same mechanism resuIts in 
decay of metastable v a ~ u u m . ~  At finite temperatures the rate 
of decay increases because of thermal activation. 

Our aim will be to determine in detail the temperature 
dependence of the coefficient representing the penetration of 
a string across a potential barrier. We shall assume the asym- 
metry of the potential to be weak, which makes it possible to 
solve the problem completely by employing the macroscopic 
approach in which a nucleus of a new phase with large di- 
mensions is described only by the position of its boundary. 
We shall derive an equation for the position of the boundary 
of a nucleus allowing for the interaction with adjacent boun- 
daries. 

The penetration coefficient is known to be described 
with exponential accuracy by the following expression: 

which corresponds to the maximum, as a function of the 
energy E, of the product of the Gibbs factor exp ( - E/T) and 
of the tunnel factor exp [ - S ( E )  1, where S(E)  is the action 
for subbarrier motion. The energy E is defined by the equa- 

Here, U(z) is a symmetric function of the order of unity with 
minima at the points z = + 1 and shown by the dashed 
curve in Fig. 1. The continuous curve represents the poten- 
tial V(z) = U(z) - Fz - E. The constant energy shift E is 
introduced in order to reduce to zero the potential at the 
bottom of the initial valley. Usually potentials of the form 
U(z) = (1 -z212/2 and U(z) = cos2(n-z/2) are used. The 
quantity U, sets the height of the potential barrier; since F is 
finite, the degeneracy of the energy minima is lifted. Here 
y(x,r) should be the solution of the classical equation of 
motion for an imaginary time r, governed by the condition 
that the moments in time ( 1/2) T correspond to the turning 
points of the path. Retaining the notation x and T, we shall 
measure these quantities in units of 

FIG. 1. Cross section of  the potential relief V(z). The dashed curve is the 
unperturbed potential U(z). 
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and the temperature Tin unitsof 1/r0. Then, the penetration 
coefficient becomes 

D=exp [ -2a2(xp)  " A ] ,  

where 

Here, we have introduced z = y/a. 
We can see that the semiclassical action is proportional 

to V/w % 1, where-as deduced from the relationships in Eq. 
( 1 )-we have w a T; ' and Vis proportional to the energy of 
a kink: Vaa(xUo) ' I 2 .  The equation for the classical path 
z(x,r) is obtained by variation of the action (2) and is of the 
form 

subject to the boundary condition 

We are thus faced with a fairly complicated problem requir- 
ing the solution of a nonlinear equation in partial derivatives 
in a limited region. The present paper is concerned with the 
situation in which the neighboring minima have similar en- 
ergies, which corresponds to the condition F4 1. Consistent 
use of a small parameter F makes it possible to calculate the 
temperature dependence of the action A (  T,F) throughout 
the temperature range investigated. It is remarkable that in 
this situation it is possible to identify some fine details of the 
behavior of this solution in the x r  plane. 

The present paper is organized as follows. In Sec. 2 we 
shall consider the solution at zero temperature, character- 
ized by a radial symmetry relative to the origin of the coordi- 
nates. In this case we have z = 1 in a circle with large radius 
of the order to 1/F, outside this circle we have z = - 1, and 
the thickness of the transition layer between these two re- 
gions is of order unity. In Sec. 3 we shall discuss tempera- 
tures T > To - F, when the initial circle no longer fits a band 
of width 1/Tin the x r  plane. In this case a nucleus is bound- 
ed by two arcs of the initial circle intersecting at points 
r = 5 1/2T. The action A is now a universal function of the 
ratio T/Fand the barrier is overcome by tunnel activation. 
The interaction of boundaries of a nucleus, resulting in 
changes of their curvature, is discussed in Sec. 4. An equa- 
tion is derived for the shape of the boundary of a nucleus. 
The transition from the tunnel to the tunnel-activated re- 
gime near the temperature To is discussed in detail in Sec. 5. 
Section 6 deals with the high-temperature limitT, 4 T-F ' I 2  

and it is shown that at T >  T, -F ' I 2  the barrier is overcome 
by purely activation process. The influence of an hf field on 
the tunneling of a string at zero temperature is considered in 
Sec. 7. 

2. TUNNELING AT ZERO TEMPERATURE 

At T = 0 we have to seek the solution of Eq. (3)  in the 
form of a centrally symmetric function which automatically 
satisfies the boundary condition (4).  In polar coordinates, 
Eq. (3) becomes 

The situation resembles the problem of finding a nucleus for 
first-order phase transition. The condition F4 1 corresponds 
to a small difference between the specific energies of two 
phases. Consequently, the function z(r)  should describe a 
thin-walled large-radius nucleus. The problem can therefore 
be tackled in two stages: finding of the structure of the 
boundary and determination of the radius of a nucleus R. 
Ignoring the right-hand side of Eq. (5), we obtain the equa- 
tion 

which describes the structure of the boundary. Allowance 
for the right-hand side of Eq. (5)  then makes it possible to 
find the radius R of a nucleus. We shall initially consider the 
specific case when the linez(x,r) = 0 can be regarded as the 
boundary of a nucleus. The structure of the boundary is giv- 
en by the first integral of Eq. (6)  : 

The radius of a nucleus can be found if we multiply Eq. 
(5)  by dzddr and integrate with respect to r from zero to 
infinity. Then, the integral of the left-hand side vanishes and 
on the right-hand side we can substitute r = R and take it 
outside the integral. The result is then 

where a is a number of order unity and is governed by the 
nature of potential: 

In the same approximation we find that the action of 
Eq. (2) 

The dependence of zo on r is shown schematically in Fig. 2. 
In contrast to the tunneling of a particle, the penetra- 

tion of a string across a barrier is entirely due to lifting of the 
degeneracy between the potential energy minima (Fig. 1 ) 
because F is finite. The point is this: the reduction in the 
energy of a string because of the formation of two kinks 
crossing a barrier of order unity should be compensated by 
the energy increase RF- 1 because part of a string of length 
2R drops to the lower minimum. 

3. TUNNEL-ACTIVATED REGIME 

As shown above, in the limit of low temperatures a nu- 
cleus is a circle of radius a/F. The influence of the boundary 
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FIG. 2. Radial dependence of the function I, at zero temperature. 

condition (4) on the shape of a nucleus can be ignored as 
long as the straight line r = 1/2T lies sufficiently far from 
the circular boundary. At a temperature 

this straight line touches the boundary of the circle and at 
higher temperatures the circular solution becomes invalid. 
In this case the passage of a string across a barrier is deter- 
mined by the simultaneous action of the tunneling and acti- 
vation mechanisms. We shall calculate later the dependence 
A(T,F) using the macroscopic approach based on the fact 
that the thickness of the boundary of a nucleus is consider- 
ably less than its size. Variation ofz along the normal n to the 
boundary is described implicitly by an expression which fol- 
lows from Eq. ( 7 )  : 

Using this expression to integrate with respect to n in the 
equation for the action (2) ,  we obtain a functional which 
contains only the shape of the boundarys: 

where 1 and S are the length of the boundary and the area of 
the nucleus (Fig. 3). If the boundary is described by the 
curve ~ ( r ) ,  then the action of Eq. ( 1 1 ) can be written in the 
f ~ r m ~ - ~  

1/2T 

The condition for an extremum of the action ( 12) shows that 
the boundary of a nucleus is still an arc of a circle of radius 
a / F .  This arc approaches normally the axis x at r = 0 and 
the height of the arc is 1/2T (Fig. 3), which fixes the length 
of the arc I. An extremum of the action ( 11) corresponds to 
the minimum area of the nucleus when the two arcs join at 
7 = 1/2T. This gives'' 

In limiting cases we obtain 

FIG. 3. Shape of the boundary of nucleus [curve z ( x , r )  = 0] in the tun- 
nel-activated regime. 

where the first formula gives the small tunnel-activation cor- 
rection to the tunneling probability. On the other hand, the 
main term in the second formula corresponds to the activa- 
tion mechanism and the correction is due to the tunneling. 

The expressions (9)  and (13) cover the full tempera- 
ture interval and are matched at To = F/2a.  The use of the 
macroscopic approximation postulates a small curvature of 
the boundary and is therefore known to be inapplicable at 
the point where the boundary is a sharp bend (Fig. 3).  The 
vicinity of this bend makes a relatively small contribution to 
the action so that Eqs. (9)  and ( 13) are valid far from the 
point T = To. Determination of the action in the vicinity of 
this point requires a more detailed study of the shape of the 
boundary of a nucleus. The result is a formula which reduces 
to Eqs. (9)  and ( 14) as we move away from To. 

An approach of the same type is suitable for considering 
the high-temperature regime when the boundaries of a nu- 
cleus approach so closely that the interaction between them 
becomes important and the tunnel correction to the activa- 
tion law differs from that given by Eq. (15). 

4. INTERACT ION OF THE BOUNDARIES OF A NUCLEUS 

In this section we treat in a consistent manner the prob- 
lem of determination of the shape of a nucleus on the as- 
sumption that the asymmetry parameter is small, F(1. In 
this situation we can use the macroscopic analysis when a 
nucleus is represented by the position of the boundary 
x = X(T)  determined by the condition z(x,r) = 0 and the 
boundary thickness is considerably less than typical dimen- 
sions of the nucleus. The problem can therefore be divided 
into two parts: determination of the structure of the bound- 
ary in a narrow nonlinear region and derivation of the equa- 
tion forx(t) .  

The boundary of a nucleus can be described by its radius 
of curvature R ( p ) ,  where p is the angle between the normal 
to the boundary and the r axis. When the angle p is specified, 
the position of a point on the boundary is known and we shall 
denote the shift along the normal to the boundary by n. In 
accordance with this definition, the family of curves 
n = const is set of evolvents of the same curve. In terms of 
the coordinates n and p ,  Eq. ( 3 ) becomes 
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This equation contains small parameters F and 1/R.  In ze- 
roth order with respect to these parameters the solution of 
Eq. ( 16) is determined by the quadrature of Eq. ( 7 ) .  In next 
order we have z = z, + z ,  and the small correction z,, linear 
F and 1/R, is found from the equation 

a2zi -- 1 dz,  
U1l(z,) z,=- -- - F .  

d n2 R(cp) dn 

We shall need the solution of this equation which is finite 
inside the nucleus and grows exponentially in the external 
region. We shall assume that z, = - 1 + $ and then the 
asymptotic behavior of $ for n ) 1 is obtained from Eq. ( 17): 

where the second term originates from z,. The number a is 
defined above, and the other quantities are given by 

At absolute zero ( T  = 0 )  the boundary satisfies the 
condition (4) and shifts to infinity and the radius of curva- 
ture of the boundary of a nucleus is given by Eq. ( 8 ) ,  which 
corresponds to the vanishing of the coefficient of the increas- 
ing exponential function. The function rC, obeys a linear equa- 
tion 

A$-y29=0. 

the boundary conditions for which (rC, and at n = 0 )  
can be seen, on the basis of Eq. ( 181, to be governed by R and 
F. 

A nucleus can be regarded as symmetric relative to the 
r = 1/2T line. The shape of a nucleus should then be select- 
ed so that the increasing and decreasing solutions deter- 
mined near the boundary by Eq. (18) are matched to the 
corresponding asymptote at the next boundary. In the case 
of practical importance for us it is sufficient to consider parts 
of boundaries close to two parallel lines. In particular, at 
high temperatures T%F the boundaries of a nucleus are al- 
most parallel to the T axis. Ignoring terms of the order of 

we find that the distance along the normal from the bound- 
ary to the T axis can be replaced by the projection of the 
normal along the x axis. Matching of the increasing and de- 
creasing solutions of the type given by Eq. ( 18) then gives an 
equation for x ( T )  : 

where an allowance is made for the fact that in the adopted 
approximation we have 1/R = - d 'x/d?. The boundary 
condition for Eq. ( 2 0 )  is 

Equation ( 2 0 )  is valid throughout the full range of T from 
zero to 1/2T. In accordance with the condition ( 1 9 ) ,  the 
range of validity of Eq. ( 2 0 )  is given by the inequality 

When the distance between the boundaries is large, Eq. 
( 2 0 )  defines a line of constant curvature F / a .  This equation 
also has a solution corresponding to parallel boundaries sep- 
arated by a distance 

When temperature is increased, x(  1 /2T)  increased and 
x ( 0 )  decreases, tending to x l l .  If the temperature obeys 
T 4  [F/ln( 1/F)  ] 'IZ, then if we ignore the right-hand side of 
Eq. ( 2 0 )  we obtain the following expression describing the 
interaction between the boundaries: 

which represents the initial part of a circle. If the boundaries 
approach one another, we can ignore the term F / a  in Eq. 
( 2 0 ) .  This gives 

Equations ( 2 2 )  and ( 2 3 )  are matched in the common range 
of validity, the existence of which follows from the inequali- 
ty xII  ( ~ ( 0 ) .  At ~ ( 0 )  and x (  1 /2T) ,  we find that Eqs. ( 2 2 )  
and ( 2 3 )  yield 

It is clear from the above solution that the boundary has 
no sharp bends and approaches normally the straight lines 
T = 0 ,  1/2T. The boundary consists of two symmetrically 
located smooth curves (Fig. 4b) separated from one another 
by the distance 2x( 1 /2T) ,  which subject to the selected re- 
striction given by Eq. (21 ) is largecompared with unity. Our 

FIG. 4. Interacting boundaries of a nucleus: a)  in the vicinity of To; b) in 
the vicinity of T, . 
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results thus show that the macroscopic approach is applica- 
ble to determination of the shape of the whole nucleus when 
the boundaries intersect at a small angle if the interaction 
between them is ignored. 

In the other limiting case of temperatures close to To 
such noninteracting boundaries intersect at an angle close to 
.rr (Fig. 4a). In the vicinity of this point we can apply a simi- 
lar analysis. An equation analogous to Eq. (20) is 

It is valid near the vertex of a nucleus (Fig. 4a) and describes 
the transformation of its boundary into a circle as we move 
away from the point T = 1/2T. Equation (24) is valid from 
T = 0 right up to temperatures defined by the inequality 
O<T-  TO&TO. 

At intermediate temperatures T 2  To, when the solution 
exhibits bifurcation (transition from Fig. 4a to Fig. 4b), the 
boundaries of a nucleus at a point T = 1/2T approach each 
other to a distance of order unity and the macroscopic ap- 
proximation is invalid. 

5. CHANGES OF REGIMES NEAR T= To 

If we ignore the interaction between the boundaries, we 
find that the action A(T,F) is described by different func- 
tions for TG To [see Eq. (9)  1 and for T> To [see Eq. ( 14) I .  
In fact, a singularity at the point T = To disappears when we 
allow for the interaction between the boundaries of a nu- 
cleus. 

The energy integral of Eq. (24) is 

which away from r = 1/2T gives the unperturbed shape of 
the boundary. The contribution to the action by a curved 
part of the boundary can easily be restored by writing the 
Lagrangian corresponding to the energy of Eq. (25) so that 
away from the point T = 1/2T it reduces to the integrand in 
Eq. (12) when x is replaced with 7. For T close to 1/2T the 
Lagrangian is 

Calculating the action subject to Eq. (25), we obtain 

a 2 ( ayF ) " [ 4 a Y z  (Ti2T0 ( F )  ) A = - + -  - f 

F r  
1. (26) 

where the following corrected temperature is introduced 
[compare with Eq. ( 10) ] : 

The function f is defined as follows: 
a 

f ( p )  = J [ O  (x-x,)  ( X - ~ ~ - ~ ) ' " - Z ~ " ]  dx, p-x, + In x,, 
0 

and in the limiting cases this function becomes 

It therefore follows that Eq. (26) is matched to Eq. 
(14) above the temperature To and it reduces to Eq. ( 9 )  at 
low temperatures. The width of the transition region is 

I T-To(F)  I -F2. 

6. TRANSITION TO THE ACTIVATION REGIME 

We have studied above the transition from the purely 
tunnel crossing of a barrier to the tunnel-activated mecha- 
nism and we have obtained Eqs. (9 ) ,  ( 13), and (26) for the 
action. At higher temperatures the size of a nucleus de- 
creases. Exactly as in the vicinity of the temperature To, 
there is an increase in the relative contribution to the action 
associated with the interaction between the boundaries of a 
nucleus. The shape of the boundaries is then given by Eqs. 
(22) and (23). 

Adopting, as before, the Lagrangian corresponding to 
the equation of motion (20), we find that the action is de- 
scribed by 

FX P2y F epZy2 - --. - e-27" + - 1x1-] dr. 
a 2a 2ay F 

The constant term in the Lagrangian ensures that the mini- 
mum value of the potential energy vanishes. The final 
expression for the action is 

where the implicit function @ (q )  is given by the relationship 

Here, x, and x, are zeros of the radicand. The value of Tc is 
given by Tc = .rr-' (yF/2a)  ' I 2 .  The asymptotic forms of the 
function @ are 

The first limiting case corresponds to matching with Eq. 
( 15 ) in the region Tc & T< Tc . At temperatures close to Tc , 
when Tc - T& T, , and also at all temperatures above Tc , we 
obtain 

from which it follows that at temperatures T >  T, the over- 
coming of a barrier is a pure activation process. 
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Therefore, Eqs. (13), (26), and (27) describe the ac- 
tion A ( T,F) at all temperatures. 

7. TUNNELING UNDER THE INFLUENCE OF AN 
ALTERNATING FIELD 

We shall assume that in addition to a static field F there 
is also a small alternating component F, cos Rt and we shall 
assume that the absolute temperature is zero. As before, we 
shall discuss the semiclassical situation when the penetra- 
tion coefficient can be represented in the form 

D=exp(-A,+A, cos Pt), 

where the correction to the action A should be small com- 
pared with A,, but large compared with unity. We can find 
A ,  by a method developed in Refs. 11 and 12. Following 
these methods, we find that A, is given by 

iF, 
A, = - 5 dt 5 dxr, (r ,  t) cos ( P t i p )  . (28) 

2 c - m  

Here, zo(x,t) is the solution of Eq. (10) where 
n = (x2 - t 2, ' I 2  - a/F. The contour Cat zero temperature 
follows the imaginary axis and is closed in a distant region of 
the left- and half-space. The integral over the whole contour 
is finite although the contribution by the imaginary axis di- 
verges. The constant phase e, in Eq. (28) is selected from the 
condition that A ,  should be maximal. 

We shall consider only the potential 

where zo(x,t) = tanh[ (x2 - t 2,  ' I2  - 2/3F]. When consid- 
ered as a function of t, this solution has poles at points t , ,  
which are described by the following expression for low val- 
ues of x: 

where k is an integer. Integrating Eq. (28) with respect to 
time by the method of residues, we can see that in the limit 

% F the values x - (OF) - ' I2 are important and this justi- 
fies the expansion (29). Summing with respect to k from 
zero to infinity, we obtain the following expression for A ,  : 

A .  = nF, (z) " exp (29/3F) 
3QF sin(nQ/2) " 

Two features of this result should be noted. The field F, is 
exponentially enhanced because the tunnel motion time un- 
der the barrier is proportional to l/Fand it is long compared 
with the field period l/R. The resonance denominator is 
related to the motion of a string in the classical region where 
in our units the frequency of small oscillations is w = 2. 

It is important to note that A, is calculated allowing 
implicitly for the structure of the boundary of a nucleus, 
since the integral (28) is governed by characteristic features 

of the function zo in the complex time plane. The use of the 
effective Lagrangian of the one-dimensional problem ( 12) 
when a nucleus is described only by the shape of its boundary 
x(T), gives the same exponential dependence as the above 
equation but it cannot used to reproduce the resonance de- 
nominator of this equation. This macroscopic approach to 
the solution of the time-dependent problem was used in 
Ref. 7. 

8. CONCLUSIONS 

The problem of overcoming of a barrier by a string is 
much more difficult than the one-particle problem because 
an extremal path is described by a partial differential equa- 
tion. A considerable simplification of the problem occurs in 
the case of a weakly asymmetric potential when a nucleus is 
large compared with the thickness of its walls. As shown 
above, the use of the fact that the asymmetry of the potential 
is weak ( F 4  1 ) allows us to calculate the penetration coeffi- 
cient at all temperatures. When temperature is T-F, the 
tunneling chages tothe tunnel-activated mechanism and at 
T >  T, - F " ~  the barrier is overcome by activation alone. 
The temperature dependences are described by universal 
functions of temperature, of the asymmetry parameter F, 
and of three parameters a , p ,  and y governed by the shape of 
the unperturbed potential barrier. This answer is in a sense 
simpler than for the tunneling of a single particle, when the 
temperature dependence of the penetration coefficient is not 
universal but is governed by the actual shape of the barrier. 

The authors are grateful to Yu. M. Kagan and V. L. 
Pokrovskii for valuable discussions. 
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