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Periodic solutions of the Leggett-Takagi equations for the superfluid B-phase of 3He in the 
collisionless region are obtained and their stability is investigated. In contrast to 
hydrodynamics, a new stable mode is produced when the quasiparticle spin deviates greatly 
from the condensate spin. The damping of the magnetization precession is investigated in the 
region w r >  1. Interpolation equations in the intermediate region or- 1 are also obtained. 

1. INTRODUCTION 

Pulsed NMR methods have been greatly improved of 
late and permit highly accurate measurements of the periods 
and relaxation times of periodic motions of magnetization. It 
is clear therefore that such periodic solutions play a major 
role in the general solution of spin-dynamics equations. 

The nonlinear equations that describe the spin dynam- 
ics of the B-phase of 'He have in fact been solved by now for 
the region w r  < 1 corresponding to the hydrodynamic limit 
(here r is the quasiparticle effective relaxation time and w is 
a certain characteristic precession frequency that is equal, 
for different modes, either to the dipole frequency R or to the 
Larmor frequency w,  ). In view of the condition w r  < 1, the 
magnetization produced by the quasiparticles deviates little 
from equilibrium at the given value of the condensate mag- 
netization, so the deviation of the superfluid component 
from the normal decreases with the total magnetization. 

The motion of magnetization in superfluid %e is char- 
acterized by several frequency scales, viz., the Larmor fre- 
quency w,  = y H  ( y  is the gyromagnetic ratio of the 'He 
nuclei) and the dipole frequencies R. Fomin' was able, in 
view of the presence of an additional integral of the motion, 
to obtain all the periodic solutions of the equations of the 'He 
B-phase spin dynamics in the hydrodynamic region, at arbi- 
trary ratio ofw, and R, and to investigate their stability and 
damping. In the strong-field limit w,  & R one of the solu- 
tions goes over into the known asymptotic law for the preces- 
sion frequency that is significantly dependent on the devi- 
ation angle of the order ~a ramete r . ' .~  This dependence 
agrees with experiment4 In the opposite case the motion of 
the magnetization is determined mainly by the dipole forces. 
An exact periodic solution of the spin dynamic equations at 
w ,  = 0, called the WP mode, has long been This 
mode is also readily observed in experiment.' 

The effective time r that describes the equalization of 
the magnetizations of the quasiparticles and of the conden- 
sate and enters in the Leggett-Takagi equation is equal, as 
shown in Refs. 8-10, to the effective quasiparticle collision 
time r, which is given at T <  T ,  by 

where v,, is the density of states on the Fermi surface, ( W,  ) is 

the averaged scattering probability amplitude, A is the size 
of the superfluid gap, and n,, and n are the densities of the 
quasiparticles and 'He atoms. The expression in the square 
brackets is a number of the order of unity, and the tempera- 
ture dependence of r is determined mainly by n, , ,  which 
decreases exponentially with temperature: 

n,,=v,(ZnAT) 

Thus, when the temperature is lowered or the magnetic 
field is decreased, we land in the region w r  > 1. This region 
can be actually reached in experiment. Thus, extrapolating 
(1 )  to the region T -  T,, we find that r -  10 - 'son the melt- 
ing curves, and for fields on the order of several hundred 
oersted we have w r -  lo-.'. However, even at T / T ,  -0.5 we 
obtain w r -  1 and we go from the hydrodynamic to the colli- 
sionless region. This raises the question of describing motion 
of this kind. Strictly speaking, in the region w r  > 1 the quasi- 
particles should be described by a distribution function, and 
the form of this function should be obtained by solving the 
Boltzmann equation. I At strong deviations from equilibri- 
um, however, such a description becomes too complicated. 
A simplified interpolation theory, in which the hydrody- 
namic and collisionless regions can be described in a unified 
manner, was developed by Leggett and Takagi." Their 
equations were developed in the spirit of the Mandel shtam- 
Leontovich second-viscosity theory'' and describe the de- 
viations of one variable from equilibrium. Such equations 
should, at any rate, describe more or less correctly the mo- 
tion of the magnetization in the high-frequency region. For 
stationary periodic solutions, which are of experimental in- 
terest, this description should lead also to correct quantita- 
tive results. The degree of accuracy of the Leggett-Takagi 
equations is discussed in greater detail in Ref. 12. 

In the present paper, in analogy with the procedure of 
Ref. 1, solutions of the Leggett-Takagi equations are ob- 
tained in the collisionless region, the damping and stability 
of the resultant equations are discussed, and interpolation 
equations are derived for the region w r  - 1. The periodic 
solutions in this region are determined by the joint action of 
Zeeman, dipole, and Fermi-liquid forces. Up to now, theo- 
retical investigations at arbitrary values of w r  were made 
only of continuous resonance''.'' and of nonlinear longitu- 
dinal resonance.".I4 It is therefore of very great interest to 
compare the predictions of the theory developed in the pres- 
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ent paper with new experimental data (especially for NMR 
relaxation), for up to now the experiments were performed 
mainly in regions not too far from the critical temperature. 
The connection between the known hydrodynamic solutions 
of the WP-mode type and of precession in strong magnetic 
fields, only the one hand, and our solutions, on the other, is 
therefore discussed in detail. Extensions are also made to the 
limiting regions w, $ f l  and w, -0, where the solutions have 
a simple physical meaning. 

2. EQUATIONS OF MOTION 

The equations of motion of the spin dynamics of super- 
fluid 3He were derived by Leggett and Takagi by both a mac- 
roscopic and a microscopic analysis.I2 They take the form: 

S= y [SH] + R ,  (2)  

Here S and S, denote the total spin and the spin of the super- 
fluid component per unit volume of 3He (the superfluid 
component is defined as that part S, of the magnetization 
which is due to the change of form of the elementary-excita- 
tion spectrum, while the normal component S, = S - S, is 
the magnetization due to the change of quasiparticle occupa- 
tion numbers), x,, (x,, ) are the susceptibilities of the su- 
perfluid (normal) components. We present for reference the 
values ofx,, andx,, calculated in the weak-coupling theory 
without allowance for the Fermi-liquid corrections (see Ref. 
12): 

m 

sech x=llch X ,  ( 6 )  

where E : = A2 + e2 andx,, = +y2fi2v; is the susceptibility 
of a normal Fermi liquid. In addition, we introduce the total 
susceptibility X, = xfl + xso. The quasiparticle susceptibi- 
lities tend exponentially to zero as T-0, while the suscepti- 
bility of the superfluid component tends to 2xn,/3. 

In the equations of motion (2)-(4),  the order param- 
eter d($) was written in vector representation, the vector d 
being a function2f the direction fi in momentum space. The 
rotat io~ matrix R ,  , which transforms the momentum space 
$ into d, is common to all p and is characterized by the rota- 
tion direction n and by the rotation angle 0 in such a way that 

R, in (2)  is the moment of the dipole-dipole forces, and is 
expressed in terms of the dipole energy U by the relation 

The dipole energy in 3He-B depends only on the angle 8: 

U z 8 I 5 g D  (COS @+'/&) (9)  

The terms in the curly brackets in (3)  and (4)  refer to the 
effective magnetic field, which is the sum of the external 
magnetic field H and the molecular field y(z,/4,yn, )S  (z, is 
the Fermi-liquid interaction constant). 

If the last term of (3)  is disregarded, Eqs. (2)-(4) be- 
come a Hamilton system with a Hamiltonian 

A process that is irreversible and leads to energy dissipation 
upon spin relaxation is the equalization of the magnetization 
of the quasiparticles in the condensate on account of colli- 
sions between them (it continues until S, = A S is reached). 
This process is characterized by the effective quasiparticle 
collision time r [Eq. ( 1 ) ] and is the third term in the right- 
hand side of ( 3 ) .  The coefficient R is uniquely determined by 
the requirement that the dissipative function W be positive 
for the given Hamiltonian ( 10) : 

and is given by A = x,, /x,. 
It is more convenient to change to dimensionless equa- 

tions. To this end we multiply (2)  by z,,y2/4~,, and (3)  by 
y2/xpo; we introduce the redefined condensate spin 
G = YZSp/Xpo, the redefined total spin S = S' = (z,y2/ 
4xno)S, and the dipole frequency f12 = 3gg,/~,,. After 
these operations, Eqs. (2)-(4) become explicitly dependent 
only on two parameters: 

As a result, our initial set of equations (2)-(4), the energy 
( lo) ,  and the dissipative function ( 11 ) are transformed into 

S= [SH ]+ pRd, (12) 

d= [vd] , 
v=S+G-yH, 

We have introduced here the notation 

~1=4~~oxoI~oy~xno, pz=xoxPol'C~~~Po. 

Retaining only the second and third terms in the right-hand 
side of ( 13) and substituting them in ( 14) and ( 15) we ob- 
tain the system ( 1 )-(3) of Ref. 1. It was shown there that if 
y - 0, the system becomes Hamiltonian and has a set of peri- 
odic solutions. We shall investigate the opposite case 7- w 

1219 Sov. Phys. JETP 64 (6),  December 1986 A. V. Markelov 1219 



and show that the system ( 12)-( 15) also has periodic solu- 
tions. 

It will be convenient for this purpose to parametrize the 
order parameters by the Euler angles a, P, and y defined by 
the usual relation 

R(n, 0) =a (a, B, r )=BZ(a)  BY(B) f i ~ ( r ) ~  (18 )  

where R, (a)  is the matrix of rotation about the z axis 
through and angle a. We direct the i axis opposite to H, so 
that at equilibrium S is directed along the f axis. The unit 
vectors of the moving coordinate system, which is rigidly 
connected with the vectors d, by 8, f j ,  c. This coordinate 
system rotates about the immobile2,J, i with angular veloc- 
ity v (Ref. 15) :  

v,=u+y cos 1, vt=u cos p+y, vp=@. ( 1 9 )  

We have represented here the angular velocity by_ the com- 
ponents along the axes 2 and 2 and along the axisp which is 
perpendicular to the it plane. It will be found that the sys- 
tem ( 12)-( 15) of interest to us takes the simplest form pre- 
cisely in terms of components along these unit vectors 2, (, 
and p. First, using ( 19) ,  we obtain three equations for the 
motion of the order parameter a, p, y, expressed in terms of 
the angles and the spin components. We project next the 
equations of motion of the spin variables ( 12)  and ( 13), 
obtaining thus six more equations. We need for this purpose 
the relations between the different parametrizations of the 
order parameter: 

a. = ---- 1 e i j h a j k  (a, P, 7) 9 2 sin 0 

1+2 cos 0=cos p+cos @+cos p cos (D, ( 2 1 )  

where @ = a + y. The last relation (21 ) means that the di- 
pole energy (9)  depends only on the sum of the angles a and 
Y: 

Since the axestandbare mobile, it is necessary to add to the 
resultant equations terms that take the unit-vector rotations 
into account. We ultimately obtain a closed system of nine 
nonlinear equations that can be solved in terms of the deriva- 
tives 

1 
(G,-Gc cos fi+S,-Sc cos p), (23 )  

sin2 B 

au 1 
Sc=-F - + - (S6 (G,-Gc sin p) - Go (8,-Sc cos p) ), a 0  slnp 

( 2 7 )  

x(S,-Sc cos B+G,-Gc cos b), ( 2 8 )  

dU 1 G,=--+- 
dcD sin p {So (Gz cos P-Gc) - Go (S, cos P-S,) 1 

1 +- i 
sin p (GcSz-ScGZ) - - (Ge-~~tSfi). 

'c 
( 3 1 )  

The next-to-last terms in (29)-(3 1 )  describe Fermi-liquid 
effects, and the last ones describe the influence of the dissipa- 
tion. Adding ( 2 6 )  to ( 3 0 )  multiplied by ( - ,u ), we note that 
the quantity P = S, - ,usc is conserved if dissipation is ne- 
glected. This will be used in Sec. 4  when we consider the 
damping of the magnetization precession. 

3. PERIODIC SOLUTIONS 

We neglect dissipation in this section by letting T+ W ;  

the right-hand side of the system (23) - (3  1  ) does not depend 
explicitly on the variable a, and we seek therefore solutions 
in the form 

u=const, 
@=@=Sz=Sr=SE=dz=&r=C&. ( 3 2 )  

This type of periodic solutions corresponds to the type con- 
sidered in Ref. 1  for the hydrodynamic region. The quantity 
a is a cyclic coordinate, increases linearly with time, and 
describes the rotation of the order parameter about the 2 
axis. Since @ = 0, we have here also j = - d .  

The vanishing of the right-hand sides of ( 2 6 )  and ( 3 0 )  
yields 

~ U / d @ = - 8 / 1 , P 2 ( ~ ~ ~  0+ '/,)sin @(i+cos p) =0, ( 3 3 )  

from which we get four possibilities: 

I) cos0=-'I,, 11) @=O, 111) @=n, IV) cos p=-1. 

From ( 2 4 )  we obtain directly G, = - S,; substituting 
this relation in ( 2 7 )  and ( 2 9 )  we find they require either 

SB=GB=O, ( 3 4 )  

G,-Gc cos P=SZ cos F-S,, G, cos p-GC=SL-S, cos p. 
( 3 5 )  

Relations (35 ) ,  however, are compatible only in the special 
case cos2 p =  1. The condition cos 0 = 1  yields P = 0 and 
nlJi, but it follows then from ( 8 )  that two mutually perpen- 
dicular vectors add up to zero, which is impossible. If on the 
other hand cos p = - 1, then also cos 8 = - 1, and this is 
the condition that the dipole energy U be an extremum, 
therefore R, = 0. The solution describes rotation of the or- 
der parameter with an angular velocity parallel to the 2 axis 
and equal to v, = S, + G, - yH. This, however, corre- 
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sponds to a maximum dipole energy, and the solution con- 
sidered is expected to be unstable. This argument applies 
also to case IV. 

Thus, Eq. (34) is valid for all the solutions I-IV, mean- 
ing that the vectors S and G do not leave the z l  plane. The 
three remaining independent equations (25), (28), and 
( 3  1 ) contain five variables S, , SC, G,, GC, and 0 ,  and deter- 
mine therefore a two-parameter family ofsolutions. It will be 
convenient to use as the parameters the quantities p and S, . 
Let us consider in detail the cases obtained in the above 
cases. 

Case I. In this case the dipole energy reaches an abso- 
lute minimum, since we have from (22) also 

There is no moment of the dipole forces, and the magnetiza- 
tion motion is determined only by the magnetic fields. Equa- 
tions (25 ), (28),  and (3 l ) yield in this case 

GC+G,SSt+S,=(1+c~s p) UL, (36) 
(S, cos !-St) (Sz-St cos P+Gz-Gc cos p)=0, (37 

( G ,  cos p-G6) (S,-St cos P+G,-Gt cos p) 

+sin2 p(GES,-G,Ss) =O. (38) 

This system has three nontrivial solutions: 

Ia)  &=SZ cos p, Gg=G, cos p, S,+G,=oL. (39) 
This solution corresponds to equilibrium magnetization, 
when the spins of both the condensate and the quasiparticles 
"point" in the direction of the magnetic field along thez axis. 
Substitution of the solution (39) in (23) yields for the 
precession rate, as expected, a = 0. The two independent 
quantitiesfi and S, determine completely the remaining SC,  
G, , and Gc . The angle f l  can take on according to (2  1 ) val- 
ues from 0 to 0, = arccos( - d ) .  If relaxation is disregard- 
ed, S, can assume arbitrary values. A change o fp  from 0 to 
0, corresponds to a change of n, from 1 to 0. In fact, just as 
in hydrodynamics,' 

sin @ I 
n, = - (l+cos P)= [$(z + cos P)]*. (40) 

2 sin 0 

This is the Larmor precession. The spins of the quasi- 
particles and of the condensate are parallel, directed along 
the 5 axis, and rotate with equal velocity a = - w, . A solu- 
tion is again obtained only at O ~ f l  <6, , and goes over as w, 
-0 into the trivial solution S = G = 0, which corresponds 
to equilibrium. 

This is a new solution and does not exist in the hydrodynam- 
ic limit. It describes the mutual rotation of the quasiparticle 
and condensate spins with identical frequency a = w, + S, 
about the immobile total spin SIJi.  The spin of the conden- 
sate is directed along the l axis. The precession frequency is 
higher than the Larmor frequency (since z, is negative). In 
the spirit of the molecular-field theory, the solution can be 
understood as Larmor precession of each of the magnetiza- 

tion components in the sum of the external field and of the 
effective Fermi-liquid field produced by the magnetization 
itself. The region in which a solution exists is also restricted 
to the angle interval O<P GO,. A mode can be excited if the 
spins can be "moved apart," for example by applying exter- 
nal nonmagnetic forces to the order parameter and by the 
same token causing the condensate spin to oscillate via the 
spin-orbit coupling. 

Case 11. From @ = 0 and (2  1 ) we find that 
cos 0 = cos fl and 

aU/ap=-4/,5S12 (4 cos p + l )  sin p. (43 

In this case (25 ) , (28 1, and ( 3 1 ) are transformed into 

(8, cos p-Sc) (SZ-Sc cos P+G,-Gc cos fi) 

+6/i6pS12 (4 cos P+1) sinP P=O, (45) 

(Gz cos p-GE) (8,-SF cos p+Gz-Gt cos p) 
+ (GcS,-ScG,)sin2 P+Vi,QZ(4 cos P+l) sin' p=0. (46) 

From (44)-(46) and (23) we can obtain useful intermedi- 
ate relations between the spin components and the angular 
velocity of the rotation: 

Sz+G,=oL+dr (I-cos P) , St+Gc=oL- (U+UL) (l-cos b). 
(47) 

Expressing ultimately Sc, G,, and Gg in terms ofS, andP we 
obtain from (44)-(46) and (23) a third-order dispersion 
equation for the angular velocity of the precession: 

- 

( ~ ~ + ~ L ) ~ U - S ~ ( U + U L )  61+'/i5Q2(4 COS b+1) (dl+ WL) 
+ p cos /3.4/i5S12 (4  cos p+i) a=O. (48) 

A third-order equation can be solved in terms of radicals, but 
the corresponding Cardano formula is too cumbersome, and 
we shall not write out the solution in explicit form. It is of 
interest, however, to investigate the equation in the limiting 
cases Ww, 4 1 and w, -0. 

Let R/w, 4 1. In the zeroth approximation in n/w, the 
solutions of the system (44)-(47) go over into the already 
investigated case I. In first-order approximation in Ww, 
the frequencies and the spin components will acquire correc- 
tions that are small to the extent that R/w, is small. We are 
interested only in the frequency corrections. The corrections 
to the spin components are important only when dissipation 
is considered and are taken into account in Sec. 4. 

In case IIa the precession frequency is much lower than 
the Larmor frequency: 

The relations between the spins are given by solution Ia 
(39).  The reason the precession frequency is low is that the 
Zeeman moment is almost completely offset by the moment 
R, of the dipole forces. The angle between the z axis is small 
to the extent that (R/w, ) 2Sfl is small, where Sfl = 0 - 6,. 
The Zeeman moment - R2Sfi is, thus, of the same order as 
the dipole moment. In our case, the Larmor-precession fre- 
quency shift depends, besides on the angle 6 ,  on a second 
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variable, viz., the spin in the direction of the 2 axis. The 
equilibrium condition [Eq.  ( 5 6 )  below], however, fixes the 
value of G, and we arrive at relation (27) of Ref. 1.  The 
susceptibility x,, turned out here to be modified by the Fer- 
mi-liquid interaction. 

In case IIb the precession frequency is somewhat higher 
than the Larmor frequency 

The spins S  and G make small angles of the order of (a /  
w ,  I26fl with the axis, and the relations between the spins 
in zeroth order are given by the Ib solution ( 4 1  ). The correc- 
tion to the Larmor frequency is determined by two quanti- 
ties,fl and Sc. In hydrodynamics, however, Sc is fixed by the 
equilibrium condition ( 5 6 ) ,  and the solution ( 5 0 )  yields the 
equation first proposed by Brinkman and Smith.* All the 
Fermi-liquid corrections reduce in this case to a replacement 
of the susceptibility x,, in R by the total susceptibility 
xo( 1 + zoxo/4xnO -I. 

In case IIc, which goes over into the solution Ic, we 
obtain for f l  < 8 ,  the following equation for the precession 
frequency: 

The vector S makes now an angle - ( R / w ,  )2Sfl with the i 
axis, and G  an angle ( R / w ,  )2Sfl with the 2. axis. The mo- 
ment - R26P of the dipole forces accelerates the spin of the 
condensate. The latter in turn rotates the quasiparticle spin 
via the Fermi-liquid interaction. In view of the proximity of 
S  to the 2 axis, the torque acting on S  is small and is of the 
order of R2Sfl. I t  is easily seen that, as in the two preceding 
cases, the Fermi-liquid corrections to the precession-fre- 
quency shift [the last term in the curly brackets of ( 5 1 )  ] 
reduce, when the equilibrium values of Gc and S, from ( 5 6 )  
are substituted, to a redefinition of the susceptibilities. 

Let now w,  = 0. A solution for this case has long been 
known in hydrodynamics as the WP-mode.'' In the colli- 
sionless region at w ,  = 0, one of the solutions of ( 4 8 )  is 
trivial, a = 0 ,  and for the remaining two we get 

A ~ - S , A + V / , , ( I + ~  cos P ) Q 2 ( 4  cos p+l)  =o. ( 5 2 )  

At f l>  8  there are always two real solutions of this 
equation, which go over for 6f l  > S , / R ,  if Fermi-liquid cor- 
rections are disregarded, into a solution of the WP-mode 
type,I6 and at small angles Sfl < S , / R  they yield in one case 
tr = p  112 and in the other a = S,. The first of these corre- 

sponds to solutions IIa and IIb, and the second to IIc in 
strong magnetic fields w,  >*a. In hydrodynamics, the com- 
ponents of S  along the axes f and2 are equal. In  our case this 
role is assumed by the quantity ( S  + G ) .  From ( 4 8 )  we have 

It is ofinterest to trace the connection between our solu- 
tion and the solution in the hydrodynamic region. In the 
latter the solution is parametrized by one variable, in con- 

trast to our two. We must therefore impose an equilibrium 
condition, i.e., a relation between the parameters S, and fl. 
For hydrodynamics it is known from Eqs. ( 2 3 ) - ( 2 5 )  of Ref. 
1 that 

S,=2/ ,5p COS P Q ( 4  cos @ + l ) l k ,  

and this reduces ( 5 2 )  to the known law for the WP mode 
[see, e.g., Eq. ( 2 6 )  of Ref. 1 1. 

All the considered solutions IIa and IIc exist in the an- 
gle region f l  > 8,. It appears that certain solutions survive 
also in the region f l  < 8 ,  , but are unstable and of no physical 
interest. 

Case 111. cos = - 1 ,  so that from ( 2 1 )  we have 
cos 8  = - 1; U is independent of the anglep and reaches a 
maximu: R, = 0. The solutions of the system are then the 
same as in case I: 

Since U has a maximum, however, the solutions are unstable 
and will not be considered in detail. 

Case IV. cos fl = 1; the solutions are also unstable, see 
the discussion of relations ( 3 5 ) .  

4. DAMPING OF MAGNETIZATION PRECESSION 

We recognize now that the relaxation time is finite. 
There are no relaxation terms in Eqs. ( 2 3 ) - ( 2 8 ) ,  so that the 
cases ( I ) - ( IV)  considered satisfy these equations. The solu- 
tions of the last three equations ( 2 9 ) - ( 3 1 ) ,  however, are 
altered when account is taken of the relaxation terms. Equa- 
tions ( 2 9 )  and ( 3  l ) can be preserved by redefining the quan- 
titiesSD and GD [they are small to the extent that ( W T )  I is 
small]. It was noted at the end of Sec. 2  that in the absence of 
dissipation the quantity P = S, - pGc is an integral of the 
motion. When dissipation is taken into account, the quantity 
P, and with it also other spin components S,, S;, G,, and Gc 
are no longer conserved and the solutions are no longer 
strictly periodic. If, however, the dissipation is small 
( W T $  1 ) the motion is almost periodic, with a frequency that 
varies slowly in time. This frequency is the quantity actually 
measured, and we shall seek the law that governs its change 
by relaxation. In contrast to the hydrodynamic case (see 
Ref. l ) ,  ours is a two-parameter solution space. Therefore, 
to describe the motion for a two-parameter family we must 
have two equations of motion. I t  is convenient to use those 
equations that have a time derivative in the left-hand side 
and only terms proportional to T '  in the right-hand side. 
Corrections accurate to T '  need therefore not be taken into 
account in the periodic solutions, for this would be an exag- 
geration of the accuracy. One of the equations we need is for 
P, and the other is the energy conservation law 
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The equilibrium condition is that the right-hand side be 
zero, i.e., 

We consider the different cases. 
Case Ia. In hydrodynamics, there is no relaxation at all 

in case I, and the magnetizations of the condensate and of the 
quasiparticles become equalized in the collisionless region. 
At equilibrium we have in this case 

G , ~ p , S Z o = p l o L /  ( I+pt) ,  (%a) 

and the angle takes on arbitrary values in the interval 
O<fl<0,. In the presence of relaxation, only one parameter 
S, changes, so that only Eq. (55) is needed (it does not 
contain the variable 0 ) .  Expanding the energy and dissipa- 
tion up to terms quadratic in the deviation SS, = S, - S: 
from equilibrium, we obtain 

Since the energy conservation law contains the ratio p,/ 
p ,  = p, the damping rate is expressed, as it should be accord- 
ing to thedynamic equations (24)-(31), only in terms of the 
quantitiesp, p , ,  and 7. Substituting (57) in (55), we get 

The effective relaxation time, given by (58), depends on 
the temperature via the susceptibilities~,, andx, (2).  In the 
region T< T, of greatest interest to us, however, the suscep- 
tibilities x,, and X, approach exponentially constant values, 
and vary in the region T- T, within the limits of the suscep- 
tibilities themselves. To obtain numerical values of the effec- 
tive relaxation times in cases when the susceptibilities do not 
enter in the form of the difference (x, - xpO ) or x,,-in the 
denominator, we shall use their values at T =  0; x,, 
= X  , - - 3 x,, . We set the Fermi-liquid interaction constant 

equal to z, = - 3 and have then p =p,-'  = 0.5. For the 
characteristic relaxation time we obtain from (58) re, - T. 

Case Ib. In this case the left-hand side of (55) contains 
terms that are linear in the deviation from equilibrium, given 
bv 

and the right-hand side contains only quadratic terms. Thus, 
in the linear approximation we obtain from (55) 

and substituting Ss, = 6Sc in (54), we get the exponential 
relaxation of the ( th  spin component, in a form similar to 
(58): 

I+p t as, -exp{- p--). i + p  'c 

The effective relaxation time of this mode is T,, -7 [see the 
discussion of Eq. ( 58 ) 1. 

Case Ic. Whereas for cases Ia and Ib the set of nondissi- 
pative solutions lies on a line through the entire two-param- 
eter family of solutions, in case Ic the region of nondissipa- 
tive solutions is a point on the (8, S,) plane, with 
coordinates 

lLi0~ G<=plS? = - i3-0. ( 5 6 ~ )  
1+p, ' 

From (54) we have directly in the linear approxima- 
tion, for the case of longitudinal relaxation, 

which leads in analogy with (58) to exponential relaxation 
in theformSSccexp( - t / r ) .  

To calculate the transverse relaxation we must resort to 
(55). We write down only those parts of the energy and 
dissipation which are due to the deviation of fl from zero: 

It is easy to verify that the angleflalso relaxes exponen- 
tially likep cc exp( - t /T). We emphasize that all the relaxa- 
tion processes considered in cases Ia-Ic alter various spin 
components, but are not accompanied by changes of the 
precession frequency. 

We proceed to discuss the relaxation mechanisms when 
the order parameter is deflected by more than the Leggett 
angle. It is convenient to separate two regions-weak and 
strong fields. 

We begin with the case of strong fields: fl/w, < 1. 
Case IIa. The end result of the relaxation in this case is a 

state of type Ia with angle f l  = 0,. Relaxation in cases I1 is 
for two-parameter families but it turns out to be described by 
two greatly differing times. At first, after a time -7, the 
system relaxes according to Eq. (54), in analogy with case 
la, to a quasiequilibrium state 

and then tends slowly, with (62) preserved, to Sfl-0. We 
calculate the time of this process. We express for this pur- 
pose SS,, SSc, and SG, from the system (44)-(46), in lead- 
ing order in the small fl/w,, in terms of the deviation from 
the Leggett angle Sfl = f l  - 0,. We use next (62) and sub- 
stitute everything in ( 16) and ( 17). For E we obtain in lead- 
ing order in n/w, simply the dipole energy, while for W we 
obtain the terms proportional to (n2/wL ),: 

1 E=- 
2 pip(1-ppi) Q26P2, 

Equation (55) gives the relaxation rate of the angle p, 
and with it also of the precession frequency: 
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Using the numerical values ofp andp ,  [see the discus- 
sion of Eq. (52) for case la],  we easily estimate the value of 
the effective relaxation time T,, of the considered solution. It 
must be recognized here that the expression for the observed 
dipole frequency R must contain the total susceptibilty X, 
with account taken of the Fermi-liquid corrections, and not 
xpO as in (64). In addition, we retain the explicit dependence 
of the coefficient of T on the condensate susceptibility x,,, 
since it has a singularity at T- T,. The foregoing operations 
yield 

T,, % T-this confirms the assumption that the effective re- 
laxation is slow, and justifies the use of the Leggett-Takagi 
equations. Our equation (64) for the variation of the angle0 
in the collisionless region is matched well to the hydrody- 
namic result (35) in Ref. 1-see Eq. (79) below. 

Case IIb. In this case the final nondissipative state is 
Larmor precession with an order-parameter deflection angle 
p= 8, (case Ib). The subdivision of the relaxation times is 
found to be valid in this case, too. At first, after a time - 7, 
the system goes out ofthe equilibrium state (62),  and relaxes 
next slowly to p= 8,. In analogy with case IIa, we express 
SS,, SSL, SG, from the system (44)-(46), in the leading 
order of smallness of R/wL, in terms of the deviation 60. 
The main contribution to the expression for the energy E is 
made by the term linear in S/? and connected with the Zee- 
man energy, while Wwill contain terms SS a (R2/oL )2S0: 

It is clear right away from these expressions that the 
equations for the precession damping will yield a power-law 
variation of the precession frequency. The solution of Eq. 
(55) for the declination angle SP reaches asymptotically 

The rate of change of the frequency can be easily recal- 
culated using Eq. (50). It turns out to be even slower than in 
the case IIa, since it contains the additional small factor (R/  
w, ) 2 .  The numerical estimates described in detail in the esti- 
mate of (64) yield an effective relaxation time 

The power-law form of (66) agrees with the hydrodynamic 
result. This makes it easy to interpolate the result (66) to the 
intermediate region wLr- 1 [see Eq. (80) below]. For the 
present we assess, from physical considerations, the ranges 
of validity of Eqs. (66) and (53) obtained in various ap- 
proximations. 

Indeed, if the quasiparticles are dragged by the conden- 
sate via relaxation processes (the last term in the right-hand 

side of ( 13) is large compared with the first), the hydrody- 
namic approach is valid, but if they are dragged mainly via 
Fermi-liquid interaction, our results are applicable. For so- 
lution IIb we have Sw a R26/?/w,, the difference between 
the total spin and the condensate spin 7 = G - S in hydro- 
dynamics is 7, cc rR2S/?, while in the collisionless region we 
have 7, a wL $ ( I )  is the angle between S and G);  from ( 1 3 ) ,  
in turn, we have 0: $ a R2S/?. With all taken into account, 
we find that the condition 7, <7, under which our Eqs. 
(62) and (66) are valid leads to w,r> 1. Thus, in strong 
magnetic field the relaxation time r (see the Introduction) 
must be compared with the Larmor-precession frequency. 
Precession relaxation of this type was experimentally inves- 
tigated in Refs. 18 and 19. The experiments, however, were 
performed in the main at temperatures not too far from T,, 
and the data for lower temperatures are patently insufficient. 
The conclusions that follow our solutions and concern the 
experiments directly will be discussed in greater detail in the 
Appendix. 

Case IIc. Here0 = 8. is not a singular point for preces- 
sion damping, and relaxation goes on to 0 =  0, in accor- 
dance with Eqs. (60) and (61 ) for the case I,. 

We investigate next the motion of the magnetization 
when wL = 0 ( WP mode). The complete equilibrium state is 
described by the equations 

Just as in strong magnetic fields, the system tends ini- 
tially, over a tine -7, to quasiequilibrium [Eq. (62)]  and 
next relaxes in a quasiequilibrium manner to a complete 
equilibrium state. In our case it is convenient in this case to 
express the energy increment and the dissipation (16) and 
( 17) in terms of the variable Sc accurate to terms of second 
order of smallness: 

The equations are valid for both solutions of (52). The spin 
Sc, and with it the frequency, attenuates exponentially: 

For temperatures T 4  T,,  just as described for the case IIa, 
we find numerically that the effective relaxation time T,, 

a [ 12(xo - xpO ) ] - IT .  In this region, the difference 
(xo - ,ypO turns out to be small compared with x0 itself, 
therefore re, for the WP mode is also found to be much 
longer than T. This justifies in turn the use of the Leggett- 
Takagi phenomenological equations for the WP mode in the 
collisionless region. 

The relation (68) differs substantially from that ob- 
tained in the hydrodynamic region. The reason can be easily 
seen from physical considerations. In fact, in hydrodyna- 
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mics we have (see, e.g., Refs. 1 and 12) for the precession 
frequencies the estimates w a Sfl ' I2  and S a Sfl 'I2, while Eq. 
(13) gives qarwSaSf l .  This yields E a S 2 a S p ,  
W a  712 a Sfl 2, and from the energy-conservation law we ob- 
tain 6 6  a t - ' . In our collisionless case such estimates lead to 
~ a S f l ' / ~ ,  S ~ a S f l " ~ ,  wSaS2$, i.e., $a 1, and hence 
7 a $Sa Sfl 'I2.  I t  is easily seen that in this case E oc S a 6 0  
and also W a  v2 a a/?, and for the relaxation law we obtain 
the exponential Sfl a exp( - t / T )  . From similar consider- 
ations we easily estimate the ranges of validity of the hydro- 
dynamic solution for the WP r n ~ d e ' ~ . ' ~  and of our solution 
(68). Indeed, in hydrodynamics we should get in order of 
magnitude7 <S, but (13) gives7 a r02Sfl, whileSm flfl 'I2. 

Ultimately Sfl < (dl) -2-the hydrodynamics region. At 
temperatures close to T,, the value of r f l  is certainly less 
than unity, but T increases exponentially when the tempera- 
ture is lowered (see the Introduction), and we obtain &? - 1 
already at T/T, -0.3. Thus, at T/T, <0.3 the angle range 
SO> ( T R ) - ~ ,  in which the exponential relaxation (68) 
should be observable, becomes experimentally accessible. 

5. STABILITY OF SOLUTIONS 

Only stable solutions can actually be excited in experi- 
ment. It is therefore important to investigate the stability of 
the obtained modes to small oscillations. We linearize for 
this purpose the system (24)-(31) without allowance for 
the dissipative increments near the obtained solutions. The 
result is a system of eight linear equations for eight un- 
knowns. We seek solutions in the form -exp(iwf), so as to 
reduce the differential equations to an algebraic system. 
Since the initial system (8)-( 10) is symmetric with respect 
to the operation t -  - t (with simultaneous changes 
H + - H and S - - S), the dispersion equation should 
contain even powers of the frequencies. Two frequencies in 
the system are identically equal to zero. One corresponds to 
conservation of the invariant P, and the other to the degener- 
acy of the system states relative to the variable a. We obtain, 
thus, ultimately a bicubic dispersion equations for the fre- 
quencies of the small oscillations. 

In case Ia, i.e., the spins are at rest and are directed 
along the external field H, while the direction of the vector n 
is arbitrary, the dispersion equation takes the form 

where n, is defined in (40), and n: + n: = 1. One of the 
three frequencies (w , ) is of the order of the dipole frequency 
fl, and the other two are of the order of the Larmor frequen- 
cy. Just as before, it is convenient to investigate (69) in var- 
ious limiting cases. If O/w, 1, we have in first order in 
terms of this small quantity 

here w, equals the frequency of the longitudinal resonance at 
nllH, w, equals the frequency of the ordinary transverse res- 

onance, and w, is a new frequency connected with the Fermi- 
liquid interaction. In the opposite limit when w, = 0 we 
have 

mi2= (I+p)Q2, (71) 

and the remaining frequencies vanish identically. 
In case Ib and Ic we have at n/w, < 1, respectively 

The difference between the frequencies of the small os- 
cillations in cases Ia-Ic is due only to oscillations of the Lar- 
mor-frequency scale. For dipole frequencies, on the other 
hand, the result agrees with that of the hydrodynamic case.' 

In Eqs. (70)-(73) the dipole frequency is multiplied by 
the coefficient ( 1 + p ) 'I2. This means that the renormaliza- 
tion of the dipole frequency is the same as carried out in 
expressions (50)-(52). The unrenormalized susceptibility 
xpO is then replaced by the complete one, with account taken 
of the Fermi-liquid corrections: X ,  = X~ ( 1 + zOxpO / 
4xno - '. 

In case 11, in the strong-field limit, Eqs. (70), (72), and 
(73) remain in force, in first order in fl/w,, for oscillations 
of the order of the Larmor frequencies w, and w,, but for the 
dipole frequencies we obtain in all three cases 

m,2=-2/i,(1+p)Q2(1+4 cos 13) ( I f  cos 8 ) ;  (74) 

thus, the frequencies w, are real at f l> 8, and the solutions 
(49)-(5 1) are stable in this region. 

Ifw, = 0, we obtain for both modes (52) at angles close 
to 8, , 

u , ~ = - " / , ~  (I+p)  Q2 ( 1 1 4  cos P), 

m,= ( l+p)  Q+0 (1+4 cos P ) .  (75) 

We have effectively expanded here the oscillation frequen- 
cies in powers of the small quantity ( 1 + 4 cos 8). The ori- 
gin of the factor ( 1 + p ) is the same as considered for Eqs. 
(70)-(73). 

It is easy to set a criterion for the validity of the method 
used in Sec. 4 to describe dissipation. For the adiabatic ap- 
proximation to be valid it is necessary that the relaxation 
rate be small compared with the frequency of the oscillations 
themselves. The spin and orbit parameter will then not de- 
viate greatly from the periodic solution in the process of the 
relaxation itself. I t  is necessary to satisfy mathematically the 
inequality 

Clearly, it suffices to stipulate satisfaction of the criterion 
(76) for the lowest of the possible frequencies w, in (70)- 
(75), since (76) is then automatically satisfied also for the 
frequencies w, and w,. In the case of the WP mode we obtain 
from (68) and (75) 
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which coincides with the condition for the validity of our 
solution for the WP mode in the collisionless region [see the 
estimates that follow (68) 1. In the case of strong fields 
R/w, < 1, on substitution of (66) and (74) for IIIb (50) in 
the inequality (76) the latter reduces to R/wLr< 1, which is 
certainly satisfied in the collisionless region. 

In case I11 we find that in the limit Sl/w, < 1 the most 
dangerous dipole frequency 

is pure imaginary, so that solutions I11 are unstable. It can be 
easily shown that this conclusion remains in force also as w, - 0. 

For case IV one should also expect instabilities to small 
oscillations, since the solution IV corresponds to the maxi- 
mum dipole energy. 

6. CONCLUSION 

In sum, we can state that we have obtained all the peri- 
odic solutions with respect to the angle variable a, which are 
actually determined by competition between the collinear 
dipole and Zeeman moments and the moment of the Fermi- 
liquid forces. What remains open, however, is the question of 
the behavior of the system in the entire nine-dimensional 
phase space, and not only close to the periodic solutions near 
which the behavior of the phase trajectories is given by Eqs. 
(70)-(75) and (78). For physical applications, the only im- 
portant solutions are I and 11, whose stability is guaranteed 
by (70)-(78). 

Let us dwell briefly on the most substantial differences 
between our solutions and those from hydrodynamics. ' 

First, a new nonlinear model is obtained, stemming 
from the Fermi-liquid interaction, and its properties are dis- 
cussed. The spins of the condensate and of the quasiparticles 
rotate in this model in a way that ensures immobility of the 
total spin. In a certain sense, the analog of this mode are the 
spin oscillations well-known from the theory of a normal 
Fermi liquid, where the deviations of the distribution func- 
tion from equilibrium is described by higher spherical har- 
monics. With account taken of higher terms of the expansion 
of the interaction function in spherical harmonics with a 
more accurate microscopic theory, other Fermi-liquid 
modes should also appear. To excite the mode in question, it 
is apparently insufficient to apply to the system only a mag- 
netic field, since both the condensate and the quasiparticles 
interact equally with the field and this does not cause the 
spins to "move apart." This spin mode, however, should be 
excited if the forces applied lift the degeneracy of the order 
parameter of 3He, since the condensate interacts with the 
dipole forces, but the quasiparticles do not. 

Second, equations that differ from the hydrodynamic 
ones were obtained for the damping of nonlinear NMR, and 
were discussed in detail in Sec. 4. For precession in strong 
magnetic fields at deviation angles f l >  B,, the form of the 
relaxation process (exponential or power-law) turns out to 

be the same both in hydrodynamics and in the collisionless 
region. This allows us to combine Fomin's  result^,^-" which 
are valid at w , ~  < 1, with our (64) and (66), which hold at 
w L r  > 1, and obtain an interpolation equation that is valid 
also in the intermediate region w, r- 1. For slow precession 
( IIa) we obtain 

where A ,  is a certain expression made up of the constant of 
the Fermi-liquid interaction and the susceptibilities (64) ,  
and has a smooth dependence on the temperature. However, 
as follows from (79), it is meaningful only if w,r> 1, or, 
equivalently, T <  T,. To transform to Eq. (64a) it is neces- 
sary in this case to put A ,  = 0.5. 

In the case of a precession close to the Larmor frequen- 
cy [case IIb, (66) 1,  we have an interpolation formula that is 
asymptotically valid for long times: 

Just as in (79), A ,  is a certain expression so defined that (80) 
must go over into (66a) at w, r > 1; at T <  T, the numerical 
value of A ,  is also 0.5. 

Equations (79) and (80) should be valid in the entire 
temperature range 0 < T < T, if the appropriate t imer is sub- 
stituted. As T- T,, a certain increase of the effective relaxa- 
tion time is observed, due to the features of the susceptibility 
xpO (Ref. 18).  When the temperature is slightly lowered, the 
relaxation rate assumes a constant value because 
(xo - xpO )T-const (Ref. 18). At still lower temperature, 
however, after passing through the region w,r- 1, Eqs. 
(79) and (80) predict an abrupt decrease of the relaxation 
rate. Thus, according to the estimate made in the Introduc- 
tion, lowering the temperature by a factor of two, from 
T-0.5Tc to T-0.25Tc, causes r to increase by an order of 
magnitude, and the relaxation rates (79) and (80) to de- 
crease by two orders. 

We emphasize once more that the phenomenological 
theory developed in the present paper should certainly be 
valid for times re, $7, and is therefore fully applicable to a 
description of precession in a strong magnetic field and of 
the relaxation of the WP mode, where, as we have shown, the 
inequality re, $ r holds. 

In conclusion, I take pleasure in thanking A. F. An- 
dreev, E. P. Bashkin, and Yu. M. Bun'kov for much helpful 
advice and for interest in the work. I am particularly grateful 
to I. A. Fomin for a discussion of the results during the 
course of the entire work and for reading the manuscript. 
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