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We show that the ultrametric space in spin glasses has a continuum structure. We find a 
representation of this space in the form of a time space with a logarithmic metric which is 
directly connected with the long-time logarithmic relaxation oberved experimentally. We show 
that all finite-dimensional relaxation and susceptibility distribution functions can be expressed 
in quadratures through the transition probability of a random Markov process. We evaluate 
the complete probability functional explicitly. 

I. INTRODUCTION 

The recent progress in the study of the molecular field 
theory of spin glasses is connected basically with the obser- 
vation of the existence of a hierarchical structure of states 
which is usually called an ultrametric It is very 
clear that for further development of the theory one needs to 
have the most detailed information possible about the actual 
structure of the ultrametric space, for instance, one might 
wish to be able to enumerate all objects contained in this 
space. On the other hand, it is well known that the basic 
quantitites characterizing spin glases are the various distri- 
bution functions. The complete probability functional which 
is defined on the ultrametric space is the comprehensive 
characteristic of the spin glass. It turns out that one can 
completely determine the structure of the ultrametric space, 
define on it a complete probability functional, and find an 
explicit expression for this functional. These problems are 
the main topics of the present paper. 

There is another set of questions for which an answer 
will be given in the present paper. One of them consists in the 
physical interpretation of the objects of the ultrametric 
space. In particular, one might wish to have a rather simple 
representation of this space. It turns out that one can accom- 
plish that using the time approach proposed by Sompo- 
l i n ~ k y . ~  The present author showed in Ref. 5 that the time 
approach can be formulated for spin glasses by introducing a 
representation of the correlation function in terms of loga- 
rithmic variables. It turns out that such a representation is in 
the most direct way connected with the ultrametric topol- 
ogy. The usual time space with a metric determined in terms 
of the logarithmic variables defined in Ref. 5 is an ultrame- 
tric space. The topology of this space is completely equiva- 
lent to the topology of the corresponding space in a spin 
glass. We thus obtain a very simple representation of the 
space we need. As the time space can easily be enumerated, 
we obtain thus also an enumeration of the objects of the 
original space. 

Moreover, as the time space is a continuum, this means 
that the space of the states in a spin glass is a continuum 
ultrametric space. We note that one can obtain the structure 
of the ultrametric space in spin glasses, and derive a method 
for enumerating the objects occurring in it and an explicit 

expression for the complete probability functional in it by 
using directly Parisi's a ~ ~ r o a c h . ~ - ~  

2. ULTRAMETRICITY OF THE TIME SPACE WITH A 
LOGARITHMIC METRIC 

We consider the space of normal time t and define in it 
the distancez(t, - t,) between two points t, and t,  through 
the formula 

In ( 1 ) r is a microscopic time which we shall call paramag- 
netic. We shall in what follows be interested only in the mac- 
roscopic time. The second line in (1)  gives the conditions 
that the distance between the times t, and t, is macroscopic. 
We note that our conditions are completely analogous to the 
usual situation with the main logarithms in field theory, 
while T plays the role of cutoff at small distances. We get 
clearly from ( 1) for macroscopic times t,, t,, and t ,  

From (2)  it follows at once that the main property of an 
ultrametric space, viz., that only equilateral and isosceles 
triangles can exist in that space, is satisfied. We see thus that 
the t-space with the metric ( 1 ) is ultrametric. We now prove 
that in order to exhibit explicitly the hierarchical structure 
of the t-space with logarithmic metric we must eumerate the 
different moments of time. 

However, we first consider a general method for enu- 
merating an ultrametric space. It is well known'.2 that one 
can represent an ultrametric space in the form of a heirarchi- 
cal tree. The simplest tree of this type is shown in Fig. 1. It is 
clear that one characterize a hierarchical tree by the number 
of the level of the hierarchy, k, and by the branching number, 
j (in the figure k = 2, j = 3) .  It is then clear from the figure 
that each element of the space can be characterized by k 
numbers a, (I = 0, 1, ..., k - 1 ) varying from 0 t o j  - 1. As a 
result one obtains k-valued numbers in a j-row system of 
enumeration. Moreover, the distance between different ele- 
ments in the ultrametric space is defined as the number of 
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FIG. 1. 

steps to the common For instance, the dis- 
tance between the elements 10 and 12 is unity, and the dis- 
tance between 01 and 12 is two. It is at once clear from the 
figure that, indeed, only equilateral and isosceles triangles 
occur in the ultrametric space. For instance, the elements 01, 
12, and 20 form an equilateral triangle, and the elements 01, 
11, and 12 an isosceles one. From the examples given here it 
is clear that if two elements are numbered by two sets of 
numbers a, and b, the distance between them depends solely 
on which of the a, and b, are the first to differ one from the 
other. For instance, if a,#b,, the distance is zero, and if 
a, = b,, but a ,  # b ,  the distance equals unity. The situation 
remains completely the same for arbitrary k and j. If all 
a, = b,, n = 0, 1 ,..., I - 1, but a, #b, the distance between 
such elements equals k - I ( I  = 0, 1 ,..., k - 1). 

We now turn to the problem of the enumeration of the 
various moments of time in the time space with a logarithmic 
metric. It is completely clear that in such a space one must 
perform the enumeration in a logarithmic scale. Let us have 
a time interval [t,,t, 1. After all calculations we consider the 
limit as to- - C O ,  t, - + CO. We put 

where j and k are integers. We POW introduce the following 
representation of an arbitrary moment of time t ,  : 

It is clear that (4)  gives a representation of (t, - t,)/r 
in a j-row system of enumeration. We see that t is deter- 
mined by k + 1 numbers a,. We shall assume now that 
j-- a. As a,  -j we get in this case clearly 

The number I in (5 )  is determined by which of the a, and b, 
are the first to differ from one another. For instance, if 
a,#b,, wehaveI=O, i fao=bo ,bu ta ,#b , ,  wehaveI= 1, 
and so on. As a -0, z is independent of the actual values of 
the a, and b, and depends merely on I. We now put 

z(tl-to) =z-=(k+l) Az, Az=a In j ,  
z(ta-tb) =zi=(k-l+l) Az, 

k+m, j+m, Az+0, 
a-+O, A z / a + ~ ,  zrnol+w. (6)  

The meaning of the representation (4)  is completely clear 
from (6) .  We simply divide z,,, into k + 1 identical inter- 

vals Az; it is then important that j- oo as only in that limit 
will z(t, - t, ) depend solely on which of the a, and b, are 
the first to differ from one another. And this, as we have 
seen, defines the ultrametric topology. One sees easily that 
the definitions (6 )  and ( 1 ) of the distances are completely 
equivalent. On the other hand, it follows from (4)  and (6 )  
that in our definition of the ultrametric distance each mo- 
ment of time is defined by an infinite set of numbers a, in an 
infinite-row system of enumeration with basej- CC. This set 
a, also determines the structure of our ultrametric space. 
The corresponding hierarchical tree has an infinite number 
of hierarchy levels (k  - cc ) and at each level of the hierarchy 
each branch divides into an infinite number ti- C O )  of 
branches. The ends of this tree are numbered by the com- 
plete set of indexes a, and determine the moments of time t, . 
One can show that such a structure of a hierarchical tree can 
be obtained directly from Parisi's theory for objects which 
are called valleys in that theory. This means that the topol- 
ogy of the space of valleys in Parisi's theory and the topology 
of the time space with the metric ( 1) are identically the 
same. 

We would like to note here the following fact. Usually 
an ultrametric space is representated in the form ofa discrete 
set. On the other hand, the t-space in ( 1) is a continuum set 
and the way to number it in (4)  to (6)  is simply the usual 
way of going from a discrete to a continuous variable. We 
have thus in ( 1) in fact defined a continuum ultrametric 
space. As the ultrametric space in Parisi's theory is isomor- 
phous with ours it is also a continuum. 

3. EFFECTIVE HAMlLTONlAN 

We shall consider a standard Ising spin glass. However, 
there arise in the derivation of the effective Hamiltonian in 
the time approach immediately difficulties for an Ising glass 
which are connected with the use of a Glauber dynamics. 
The way out of this position is well k n ~ w n . ~ . ~  We must to 
start with write down the equations of the dynamics for a 
weak spin glass model. These equations have a rather simple 
structure and one can easily derive the effective Hamiltonian 
from them. After this is will be clear that the equation ob- 
tained turns out to be valid also for the usual Ising glass. The 
weak model Hamiltonian has the following form: 

The mi  in (7 )  are classical fields, and the Jik are random 
exchange integrals with a Gaussian distribution. In the time 
approach one must write down the Langevin equations for 
the m i ,  write down the stochastic functional for these equa- 
tions, and average it over the Jik . We shall in what follows 
consider only a molecular field theory. After averaging over 
the Ji, we must in that theory perform the standard decou- 
pling in the stochastic If after this decoupling 
we turn to the equations of motion for the mi we get an 
equation for the motion of a single spin m in a field of Lange- 
vin forces and in the self-consistent field of all other spins. 
This equation has the following form: 
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-- am - - 4 1 0 J  dtf G(t-t ')  m ( t l )  
I'T at T Z  -- 

< h ( t )  h(tf)>=4I0D(t-t ') ,  
2 

(e  ( t )  E ( t f )  )= - 6 ( t - t ' ) ,  I~ = 
r T  ( 8  

k 

In ( 8 )  G ( t )  is a retarded Green function, and D ( t )  is the 
correlator of the spins m ( t ) .  Quation ( 8 )  determines the 
m ( t )  in terms of G ( t )  and D ( t )  and the self-consistency 
conditions consist in that these G ( t )  and D ( t )  are in the 
standard way determined in terms of m  ( t ) .  Equation ( 8 )  is 
valid both in the ergodic region and in the non-ergodic re- 
gion. However, in the latter there arises a long-time, singular 
part in G ( t )  and D ( t ) .  This singular part is just the charac- 
teristic of the non-ergodicity of spin g l a s ~ e s . ~ ~ ~ . ~ - "  In the 
present paper we consider only the non-ergodic region. We 
split off in ( 8 )  the long-term contribution. We then get 

We split off from G ( t )  and D ( t )  the ergodic quantities G o ( t )  
and Do( t )  which satisfy the fluctuation-dissipation theorem 
and describe the usual thermodynamic fluctuations and the 
non-ergodic, singular quantities G, ( t )  and D, ( t )  describing 
the long-time correlations. The present author5 has shown 
that G, ( t )  and D, ( t )  have the following form: 

where z  and a are defined in ( 1 ) while q (2) and A ( z )  are 
standard order parameters which characterize non-ergodi- 
city in spin glasses. 

It is clear from ( 9 )  that all quantities characterizing 
non-ergodicity are included in f ( t )  . It follows from ( 1 ) , ( 9 ) ,  
and ( 10) that Eq. ( 9 )  is a generalized Langevin equation for 
m  ( t )  . Of most importance in ( 9 )  is then the appearance of a 
magnetic field l ( t )  which is time-dependent and changes 
over macroscopic times. We defined macroscopic times in 
( 1 ). It is very clear that the macroscopicity condition is the 
condition for the adiabatic approximation for solving Eq. 
( 9 ) .  If we use this condition we get easily an explicit expres- 
sion for the complete probability functional for the field 
m ( t ) .  It has th form of a Gibbs distribution in the slowly 
varying field f ( t ) .  The fact that there are the terms with Go 

and Do present in ( 9 )  which are usual for Langevin equa- 
tions does not change the structure of our equation, as one 
shows easily. The only consequence of these quantities is the 
renormalization of the function1' U ( m  ) which in the Gibbs 
distribution must be replaced by the function 

Since the condition that there be an equilibrium which 
is local in time is satisfied in our case, the probability func- 
tional has the form 

We note first of all that we can now replace in ( 12) m  ( t )  
from the weak model by the Ising spins( t ) ,  and we need then 
simply use the last line in ( 12) for H [ s ( t )  ,t] and replace the 
normalization integral over m  in ( 12) by the corresponding 
sum overs. We shall in what follows consider only the Ising 
case. Moreover, when using ( 1 2 )  it is necessary to bear in 
mind that m  ( t )  (or s ( t )  ) occurs in H not only directly, but 
also through g ( t ) .  We must take this fact into account not 
only in the numerator in ( 12),  but also when calculating the 
normalization integral in the denominator. For what follows 
we use the well known connection between the retarded G- 
and the advanced G+ Green functions: 

We can symmetrize the expression for ~ { s ( t ) ) .  As a result 
we get the following expression for the complete probability 
functional P{s( t )  ): 

In ( 14) P { s ( t ) )  is expressed in terms of the external field 
h  ( t )  and the symmetrized susceptibility p ( t ) .  In that case 
h ( t )  is a random function with a correlator defined in (9) 
which is expressed in terms of the characteristics of the ran- 
dom field s ( t ) .  This also closes the set of equations. It is very 
important that the correlator of the external fields h ( t )  and 
p ( t )  also changes over macroscopic times. It is just this 
which enables us to write down P { s ( t ) )  explicitly. However, 
the expression ( 14) for P  is not the final one as it must be 
averaged explicitly over h ( t ) .  As we must in ( 14) average a 
fraction over h ( t )  we must use the standard replica method 
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(see, e.g., Ref. 12) which is used in such cases. To  do tliis we 
must introduce n quantities s, ( t )  (p  = 1, ..., n )  and after all 
calculations we must put n = 0. Using standard manipula- 
tions for the averaging over h ( t )  and using ( 10) we get 

We shall call the expression in the argument of the exponen- 
tial in (15) the effective Hamiltonian. The connection 
between (15) and (14) is well known. If we must evaluate 
the average of some functional @ of s ( t )  over P{s(t)) it is 
equal to 

= limSpaV ,t)[cD(s,(t) )P{sv ( t )  }I, 
n-o 

(16) 

where the s, ( t )  in (16) are any of the n replicas. A very 
important particular case is when 

The average in ( 16) then determines the correlator of spins 
at  different times. Equations ( 14) to ( 16) solve in principle 
the problem of the averaging of any functional @( t ) .  How- 
ever, in reality the calculation of the traces in ( 16) is not at 
all a simple problem. 

It turns out that one can solve this problem explicitly by 
using the ultrametric structure of q ( t )  andp( t )  and that one 
can thus write down an explicit expression for P{s(t)). The 
next section is devoted to this problem. 

In concluding this section we note that using p{s(t)) in 
( 15) we can calculate not only averages of functionals of a 
single replica s, ( t ) ,  but also averages of different replicas 
s, ( t ) ,  s, ( t ) .  These averages have a very well defined phys- 
ical meaning as in the usual case.I2 We shall not discuss this 
in detail. We give only a single example which is important 
for what follows. There occur two functions in ( 15) : p ( t )  
and q ( t ) ,  which are order parameters in spin glass theory. 
One shows easily that they can be expressed in terms of aver- 
age quantities as follows: 

In ( 18) we denoted by (...), the trace overs(t)  with the 
functional distribution P{s(t)) similar to what was done in 
( 16), and by (...), averaging over the random field h ( t ) .  

We note here the following very important fact. Com- 
paring the expression fo rp ( t )  in ( 14) with the correspond- 
ing expression in ( 18) we see that the susceptibility G(  t )  can 
be expressed simply in terms of a correlator of the fields s ( t ) .  
This expression is indeed a variant of the fluctuation-dissipa- 
tion theorem and is completely analogous to the correspond- 
ing expression of the static susceptibility in terms of a corre- 
lator. In our case the fluctuation-dissipation theorem thus 
connects the susceptibility not at  all with the correlator q ( t )  
but with the correlatorp(t). 

4. EVALUATION OF AVERAGES 

One investigates the structure of the probability func- 
tional by evaluating the simplest averages. We shall evaluate 
these averages using the discrete time representation (4) .  To 
do this we must first find the discrete representation for the 
effective Hamiltonian ( 15). For what follows we add one 
more term to  ( 15) with an external magnetic field h which 
we write in the exponent of ( 15) in the form 

Changing from the continuous times t, t ' to the discrete times 
t,, t, (see ( 4 ) )  weget 

It is perfectly clear from ( 6 )  and ( 10) that q,, depends sole- 
ly on the ultrametric distance z, between t, and t,, i.e., ' on 
which of the a, and b, are the first to differ from one another. 
I t  is clear from (6 )  that z(t, - t, ) runs through k + 1 val- 
ues corresponding to a change in 1 from 0 to k andz from z,,, 
to Az. According to (10) q,, also runs through the same 
k + 1 values. Using the ultrametric structure of q,, we then 
get from (20) 

A similar formula also arises for the term withp,, . However, 
there is here an important difference from (21 ). The fact is 
that, as is clear from ( l o ) ,  g, and hence also p,, decreases 
for large times as a power law and not logarithmically like 
q,, . We must thus parametrize this term in such a way as to 
take that fact into account. One shows easily that the corre- 
sponding expression has the following form: 

Substituting (21 ) and (22) into (20) and performing a Stra- 
tonovich-Hubbard transformation for all quadratic terms, 
we obtain the following expression for 
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dh O) which occur in ( 2 3 )  with the appropriate weight. We con- 
P {sp ( t ) ~  s (spa) = ( 

- (8n1oq~)'~~ sider the integral over one of these variables {, ,h. It is equal 

Expression ( 2 3 )  for P(s,, ) has already a rather simple 
structure which enables us to use it to calculate various actu- 
al averages. There arises, though, in the calculation of these 
averages, a difficulty which is totally characteristic for any 
spin glass theory at the present time. Using ( 2 3 )  to calculate 
averages one must assume the number of replicas n to be a 
finite quantity and to evaluate all integrals over h and 6 
which occur in ( 2 3 )  for finite n and only after that one can 
let n tend to zero. One checks easily that when one proceeds 
in such a way one cannot obtain from ( 2 3 )  any simple recur- 
rence relations which we, naturally, aim at. We are thus ob- 
liged when calculating averages to take into account in the 
intermediate calculations that n +O. This means an inter- 
change of limiting transitions. A similar interchange of 
limiting transitions is, for instance, characteristic for Parisi's 

By all appearances the necessity for such an inter- 
change of limits is not accidental but connected with the 
occurrence of non-ergodicity. As we are just interested in the 
non-ergodic region this necessity arises also in our theory. 
We demonstrate the way to calculate averages using the ex- 
ample of the calculation of the free energy. The free energy p 
per spin can be expressed in terms of F(s,, ) as follows: 

As 6 in ( 2 3 )  is independent of a,, the trace over spa gives the 
following expression: 

One must integrate the expression in ( 2 5 )  over all h and 6 

There occurs a product overp from 1 to n in the integrand in 
( 26 ) .  If we assume n to be finite the integration over h mixes 
up all 6, . If we, on the other hand, at once take into account 
that we take n -0, we can put in ( 2 6 )  

P II 

After this the integration over h in ( 2 6 )  can be performed 
elementarily and afterwards, using a formula such as ( 2 7 ) ,  
we collect everything in the exponent. As a result the inte- 
gral in ( 2 6 )  turns out to equal 

Since in the calculation of the integrals in ( 2 3 )  over h'k' and 
6 ',) we have on each branch j =p, _ , /pk terms, we get from 
( 2 8 )  on each branch similarly to ( 2 5 )  an expression 

We have thus again obtained an expression of exactly the 
same structure as the initial one. Repeating the iteration we 
get at any level of iteration I a recurrence relation connecting 
p, - , with p, .  This recurrence relation has exactly a form 
such as ( 2 8 ) ,  but with k replaced by I (q ;  ) by q;, and so on). 
After all iterations we are at the last level left with integrals 
over h'" and 62'. Instead of cp we have then simply the 
external magnetic field h for which there is, of course, no 
indexp. We can therefore at the last level explicitly split off 
the factor n. We get then for the total free energy, using ( 2 4 ) ,  
the following expression: 

Moreover, it is clear from ( 2 2 )  thatp, - w as j-. w so 
that we can use the saddle-point method for the integrals 
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over 8 in ( 2 8 )  and ( 3 0 ) .  It is convenient to express the final 
answer in terms of the function R, ( h )  which is defined as the 
solution of the equation 

We shall indicate in ( 3 1 )  and in other formulae in what 
follows Tc? /dh by a prime. If we take the saddle point in l in 
( 2 8 )  and ( 3 0 )  we get the following final expression for p ( h  ) 
and the recurrence relation for the p ,  ( h ) :  

One shows easily that ( 3 2 )  reproduces Sompolinsky's func- 
tiona14 for the free energy but we shall not discuss this in 
detail. 

In deriving ( 3 2 )  we managed to integrate explicitly 
over all gpa, but, it is true, at the price ofinterchanging limits 
as we have already mentioned. I t  would appear that one can 
in exactly the same way integrate in ( 2 3 )  over all lALa and 
obtain an explicit expression for ) in the form of inte- 
grals only over the physical fields h a .  However, it turns out 
that this cannot be done directly for the following reason. 
We managed to integrate over only after evaluating the 
trace over all spa but we cannot do this before calculating 
this trace and this is connected with the fact that the replicas 
are only symbols and not at all physical objects and they 
require a well defined limiting transition. To  derive the re- 
quired expressions we must therefore proceed similarly to 
what we did when deriving ( 3 2 )  and just investigate the 
average of various functions over spa . When evaluating these 
averages we first of all calculate all traces over spa, then 
integrate over all gpa and only after that as the last step we 
recover the expression for F(sp, ) in which we are interested 
in terms of integrals over the physical fields h a .  

We demonstrate the proposed plan of action by the ex- 
ample of the calculation of the average of a spin function 
f(spb ) which depends only on a single time t ,  while f(spb ) 
may depend on different replicas, for instance, we may have 

f ( ~ p b )  =Sllb,  

f(swb) =swbsvb, yZv ( 3 3 )  

and so forth. Let f(spb ) depend on m different replicas 
s,, ,..., s,, . We shall then assume, of course, that m is finite 
everywhere, for instance also in the limit as n -0 .  The neces- 
sity to take the limit as n +O under the condition that m is 
finite was just the reason that it was impossible to evaluate 
directly in Eq. ( 2 3 )  the integrals over the lpa ,  without calcu- 
lating beforehand the averages over the s,, . 

For what follows it is convenient for us to introduce two 
functions: 

{TI exp (hs, /T)  
p k ( h ) = Y , ( h . .  . h ) =  

2 ch ( h / T )  
} j(S1.e .sm) 

s,.. 6, w=t 

5 n+D lim 
{n exp (hs,iT) } f (s,. . .s.) . (34) 

st... s, P - t  

The last line in ( 3 4 )  is obtained by direct calculation and is 
the main limit we need. 

The further calculations are very similar to the deriva- 
tion of the expression for the free energy and we reproduce 
them therefore only briefly. Exactly as in the derivation of 
( 2 5 )  one sees easily that the trace over all spa leads to us 
obtaining instead of ( 2 5 )  the following expression: 

Acting in exactly the same way as in going from ( 2 5 )  to ( 2 9 )  
we get from ( 35 ) the expression 

dh 
'Yk-i ( t i .  .F.) = J (8nzoq.') i 

We have thus again obtained an iteration process for the 
quantity 'lJ, ( h , ,  ..., h, ). Iterating ( 3 6 )  further and evaluat- 
ing the integrals over lp by steepest descent we get 

d h  h2 
Y (ht. . .hm) = J 

(8nloqo) '" 

where R, ( h )  was defined in ( 3  1 ). I t  is clear from ( 3 7 )  that 
in the last stage of the iteration in all arguments of 9 the 
external magnetic field h  which is independent o f p  appears 
rather than the c p .  The average of f(spa ) can thus be ex- 
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pressed in terms of the function Y with coincident argu- 
ments. On the other hand, it is clear from (37) that for this 
function of a single variable there is exactly the same iter- 
ation scheme as for a Y of m arguments. We therefore get 
finally 

p l (h)=Yl(h . .  . h) .  (38) 

We have written down the boundary condition forp, ( h )  for 
I = kin (34). 

Equations (38) solve in general form the problem of 
evaluating any average of a quantity which depends on a 
single time t ,  . We note here one important particular case. If 
f = s,, , we obtain an iteration process for M, (h )  which de- 
termines the average moment M(h).  This iteration process 
is obtained simply by replacing in (38) p, andp by M, and M 
with the boundary condition 

The iteration scheme for M, (h )  and Eqs. (31) and (32) 
close the set of equations for R, (h ) and p, (h ) , M, (h ) which 
determines the free energy and the average moment of the 
system. 

We have thus shown that the calculation of the simplest 
averages reduces to iteration schemes of the kind (32), (37), 
and (38). 

We now formgize the iteration scheme (38). We intro- 
duce the operator P, ,,, which changes one function Y(h) 
into another function h through the following formula: 

dhi 
(h) j (8n10q0) I% exp ( - x) 8Ioqo Y [ R ~  (h+hi) I .  

As in Eqs. (32) and (38) one mustAdistinguish$e last iter- 
ation. We note that the quantities PI - ,,, and P{Y(h)) are 
functions of the magnetic field h which occurs as a param- 
eter in (40). We now define operators for a finite number of 
iterations: 

PI, n{Y (h)}=Pl, l+i{pl+i, i+z [. . . pn-I, n ( y ( h ) ) I  1 7  

i;.,{Y(h))=P{Po,~[YIP(h) I ) .  (41 

In these notations Eq. (38) with the boundary condition 
(34) have the following simple form: 

implied. We note that the field h w h ~ c ~ o c c u r s ~ s  a parameter 
in the expression for the operators P, F, , and F, is the exter- 
nal magnetic field h. 

We have thus learned to evaluate in a general form aver- 
ages of a single-time function f(s,, ). It is easy to calculate by 
the same method also averages of functions of several times. 
Let us need, for instance, to average the function 

f l  (spa )f,(s,, ) where the common ancestor of the times a 
and b is at level I, i.e., the ultrametric distance between them 
equals z,, = z, . It is convenient to associate a picture with 
all these words; for instance, we associate the picture of Fig. 
2a with two times a and b. In exactly the same way as we 
derived Eq. (42) we get then 

, [ e x  ( )  s ] }  , z,=,b. (43) 
311 ,,=I 

As an example we write down yet another average of a func- 
tion of four times: a, b, c, d. For the many-time case the 
distances between different times often coincide. We shall 
associate with each time distribution its own picture. For 
instance, for four times there are different figures, two of 
which are topologically non-equivalent and those are depict- 
ed in Figs. 2b and 2c, while the others are obtained from 
them by a permutation of the indexes. The ultrametric dis- 
tances for these figures b and c are, respectively, equal to 

We shall in what follows the transition to the limit n will be FIG. 2. 
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We write down the average only for the case of Fig. 2b: 

In ( 4 3 )  and ( 4 5 )  weevaluated for the sake ofsimplicity only 
the averages of products ofA (s, ), but, as we shall see below, 
this is unimportant and one can easily lift that restriction. 

We have thus learned how to calculate in general form 
the mean values of arbitrary functions of type ( 4 2 ) ,  ( 4 3 ) ,  
and ( 4 5 ) .  These expressions, however, are not very helpful. 
It turns out that they can be represented in a rather simple 
and helpful form by recognizing that we have an infinite 
number of levels of hierarchy levels k, while q; and A; are 
infinitesimally small quantities. We deal with this in the next 
section. 

5. DISTRIBUTION FUNCTIONS AND COMPLETE 
PROBABILITY FUNCTIONAL 

We now consider the continuum limit of our expres- 
sions. It is clear from ( 3 1 )  and ( 4 0 )  e a t  in the cgntinuum 
limit when q;, A; -0 the operators PI - , , ,  and P  become 
linear integral operators: 

410 1 
=6 (h-h') + -I1 q116" (h-h') -A1 ' M ,  ( h )  6' ( h - h l )  }, 

T 2  

1 (h-h')2 
P  (h ,  h') = 

(8nzoqo)" -P{- -} 8zoq0 

In the expression for P(h,h  ') in ( 4 6 )  we neglected infinitesi- 
mal terms as Ah + 0 as compared to q, and in the expression 
for P ( z l - ,  ,h,z,,h ' )  we changed from a numbering of the 
hierarchy levels by the index I to a numbering, correspond- 
ing to that level, by the quantity z ,  defined in ( 6 ) .  We then 
get from ( 4 1 )  and ( 4 6 )  

i.,,n{y ( h )  1- J p ( z 1 ,  h. zn? h') Y (h ' )dhr ,  

We defined in ( 4 7 )  two very important quantities: 
P(z ,h , z f ,h  ' )  and F(z,h ' )  where F depends on the external 
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magnetic field h  as on a parameter. From the equations ob- 
tained it is clear that P  satisfies the equation 

P ( z ,  h , z J ,  h l ) =  J d h . ~ ( z . h , z ~ ,  h , ) P ( z , ,  h l , z t ,  h ' ) ,  ( 4 8 )  

which, as is well known, is the basic equation for the transi- 
tion probability in the theory of Markov processes while the 
variable z plays here the role of the time. It is completely 
clear that F(z ,h  ) is the single-particle distribution function 
for the appropriate Markov process. We have a Fokker- 
Planck equation for F(z,h ) . The same equation is satisfied by 
P(z,h,zf ,h ') as function of h ', but as function of h  this func- 
tion satisfied the adjoined equation. We write down these 
two equations which we easily obtain from ( 4 6 )  and ( 4 7 )  : 

a P I a2p I a 3 = 41"- 2 q' (z') - ahtz  + - T A 1 ( z l )  - ah' [ P M ( z f ,  h') ] }, 

P ( z ,  h, Z ,  h') = 6 ( h - h ' ) ,  
F(w, h') = P ( h ,  h ' ) ,  

q ' ( z , )  =q,', A f ( z l )  =A,‘. (49) 

Equations ( 4 7 )  to ( 4 9 )  give us the transition from a discrete 
representation which we numbered by the index 1 to a con- 
tinuum one which is determined by the variable z. 

One sees easily that Eq. ( 4 9 )  are the same as the analo- 
gous equations in Parisi's theory which were obtained in 
Refs. 13, 14. The only difference consists in that in Parisi's 
theory there is a parameter changing in the range [O, 1 ] while 
we have a logarithmic variablez which changes in the range 
[ co , O ] .  One can show that, by virtue of gauge in~ariance,~. '  
x may be any monotonic function of z, for instance, we may 
assume that 

1 
x ( z )  = -- = 

1 

I f z  1Sa In((-t-t' I / T )  ' 
( 50 )  

We have thus also established the connection between the 
time theory and Parisi's approach. All results, therefore, 
which we obtain (in the continuum limit, of course) can be 
completely extended also to Parisi's theory. 

We now turn to a consideration of many-particle distri- 
bution functions which we did not consider earlier. We show 
that any many-particle distribution function can be ex- 
pressed in quadratures in terms of the transition probability 
P(z,h,z l ,h ' )  . We first of all consider in detail the single-parti- 
cle distribution function. From ( 4 2 )  we have 

(f )= J d h J 1  ( h l )  erp [$ s,., ]f (s,.,) , 

F,(h)=F(O,  h ) .  (51 )  

I t  is at once clear from ( 5  1 ) that the single-time spin distri- 
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bution function P(s,,, ) obtained from ( 1 5 )  by integrating 
over all times except t ,  is equal to 

Iff(s,, ) depends only on a single replica we get by evaluating 
the trace over all other replicas in the limit as n - 0 from ( 5  1 ) 
and ( 5 2 )  an explicit expression already for the spin distribu- 
tion function P ( s ,  ) which is obtained from ( 14) like ( 5 2 )  
from ( 1 5 ) :  

It is clear from ( 5 1 )  to ( 5 3 )  that the single-time spin distri- 
bution function is obtained by averaging the usual distribu- 
tion functions in a magnetic field K(h,s, ) or K ( h , s ) :  

c . 1 ~  (hsi T )  
Ii (h ,  s )  = - - 

2 cli ( h / T )  

over the single-particle molecular field distribution function 
F , ( h ) .  

Exactly the same situation arises also for the many-par- 
ticle distribution functions. One shows easily, using equa- 
tions such as ( 4 3 ) ,  ( 4 5 )  that we have for the arbitrary r- 
particle distribution functions F, and P, 

P,  (s,, . . . S ,  , ) = dhl . . . d h E r  (hi . . . h.) 

esp  (h,s,/T) 
P.(si . . . s,) = j d h ,  . . dh.P. ( h l  . . . 

hr )  ' 2rL (h,/l.) ' 
r , , , = I  

where the F, ( h , ,  ..., h,  ) are r-particle molecular field distri- 
bution functions. We have here marked the different mo- 
ments in time t ,  by the index m. Therefore, F, depends not 
only on the variables h,, but also on the ultrametric dis- 
tances z ( t ,  - t ,  ), m, k  = 1 ,..., r between these times. As we 
already discussed when deriving Eqs. ( 4 3 )  to ( 4 5 )  it is con- 
venient to represent the picture of the ultrametric distances 
by figures such as 2a to 2c. We write down F,(z,,,h,,h,) 
corresponding to Fig. 2a and F4(zI,z2,z3,h ,hb,hc,hd ) corre- 
sponding to Fig. 2b (the definition of thez, is given in ( 4 4 )  ) : 

= J dh, dh, dh,P(n,, h i ) p ( z l ,  hl. s, h,) 

The way to write down expression such as ( 5 6 )  is clear. With 
each figure there is associated a well defined expression. The 
upper line is associated with the function F(z ,h )  and the 
other ones with P(z,h,zl,h ' )  and one must integrate over the 
free hi variables. The variables z,, are determined, as in 
( 4 4 ) ,  by the ultrametric distances between the different 
times t i .  

We see thus that any r-particle function F, ( h , ,  ..., h,. ) 
for any ultrametric distances between the times z( t ik  ) 
(i,k = 1, ..., r) can be completely expressed in terms of the 
distribution function F(z ,h)  and the transition probability 
P(z,h,zl,h ' )  . Since, as can be seen from ( 4 7 ) ,  F(z ,h )  can also 
be expressed in terms of P(z,h,zl,h ' )  we need only know the 
transition probability. 

It is now already completely clear that for our problem 
we can write down also the complete probability functional. 
To do this we must in ( 5 5 )  let r- w . We then get 

The functionals F{sp ( t ) )  and P { s ( t ) )  are the complete 
probability functionals introduced in ( 14) and ( 15).  They 
can be expressed explicitly in terms of the local Gibbs distri- 
bution E(h,s ,  ) and K(h , s )  and in terms of the complete 
molecular field probability functional F{h ( t ) ) .  To write 
down an explicit expression for F { h ( t ) )  we must again 
change to discrete times t ,  similarly as was done to derive 
( 2 3 ) .  We then get 

= J d h ( ~ ] ~ ( h ,  h lO))  I-J, j dh::)~(z. ,  h(ol, z , ,  h c )  

The presence of a &function in the last stage instead of P is 
completely analogous to the corresponding property of Eq. 
( 2 3 )  and is connected with the fact that z, = Az is the last 
term which corresponds to macroscopic times and in the 
continuum limit Az--0. We note also that in that limit 
z,,- CQ 

All expressions in ( 57 ) and ( 58 ) are, of course, normal- 
ized. If we must evaluate the explicit expression for some r- 
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particle distribution function we must in (57) and (58) inte- 
grate over all s ( t )  or h ( t )  corresponding to all times bar t ,  
when we obtain expressions such as (52),  (53) ,  (55), (56),  
and similar ones. 

The problem of calculating complete spin and molecu- 
lar field probability functionals has thus been solved in a 
general form. One might wish to note that obtaining the ex- 
plicit form of these functionals turned out to be possible only 
thanks to the ultrametric topology of the time space. 

6. CORRELATORS AND SUSCEPTIBILITY 

To close the molecular field equations one must, as can 
be seen from ( 18), calculate two-particle correlators. We get 
forq(z)  from (18) and (55) 

h, hl 
q ( z )=  Jdh, dh2F,(z, h,, h , ) l l , y t h -  

1 T  

The evaluation of the correlator p (z )  is somewhat more 
complicated The fact is that, as can be seen from (55) when 
to # t b  

It is clear from (18) and (60) thatp( t )  = 0. If we recall that 
in deriving the expressions we need we used everywhere 
steepest descent for thel!, and if we examine the correspond- 
ing expressions before evaluating the saddle points we see 
that only when the saddle points are calculated is (60) ob- 
tained. This means thatp( t )  = 0 only in the dominant order 
in the steepest descent parameter j- a. One should have 
expected this as it is clear from ( 10) that G, ( t )  -p( t )  - l / t  
and it is clear from (22) that the point-law decrease in p ( t )  
at once leads to being small in the steepest descent param- 
eter. It is rather complicated to calculate the corrections to 
the saddle point and we shall therefore use the following 
circuitous method. We turn to (23). We multiply (23) by 
s,, , integrate the expression obtained by h a, , and sum 
over all spa.  One easily sees that we then get 

where the sum over b in (61) extends over all b such that 

We then get from (61 ) the following expression in the limit 
as n -0: 

The last line is obtained from ( l o ) ,  ( 14),  ( 18), and the 
boundary conditions for q (z )  and A (z) . We can thus evalu- 
ate A(z). If after differentiating with respect to h'" we carry 
out the whole procedure for obtaining the recurrence rela- 
tions and afterwards go over the continuum limit we get 

Equations (59) and (64) close the set of molecular field 
theory equations as the functions F(z,h) and M(z,h)  which 
occur in (59) and (64) are in turn determined from equa- 
tions in which q(z) and A(z) occur. The equation for F(z ,h)  
is written down in (49) and one easily obtains the equation 
for M(z,h) from the definition in (49) of this quantity and 
the equation for P(z,h,zl,h ' )  in the first variable. We write 
down explicitly the equation for M(z,h ) : 

We can thus obtain an equation and an explicit expression 
for any correlation function. Concluding we write down ex- 
plicitly the three-particle correlation function correspond- 
ing to Fig. 2d (it is, of course, non-vanishing only when 
h #O): 

(s,sbs,>= Jdh,  dh, dh, dh, dh jP(z ,h l )  P ( z , ,  h,, z2 ,  h Z )  
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