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The paper reports an analysis of the effect of sink (trap) diffusion on the phenomenon, 
observed earlier in the case of stationary sinks [B. Ya. Balagurov and V. G. Vaks, Sov. Phys. 
JETP 38,968 ( 1974) 1; M. D. Donsker and S. R. S. Varadhan, Commun. Pure Appl. Math. 28, 
525 (1975); 32,721 (1979); A. A. Ovchinnikov and Ya. B. Zel'dovich, Chem. Phys. 28, 215 
( 1978); P. Grassberger and I. Procaccia, J. Chem. Phys. 77,628 1 ( 1982) 1, of fluctuational 
slowing down of the death of Brownian particles over long periods of time. I t  is shown that the 
slowing down of the death also occurs in the case of mobile sinks. In one- and two-dimensional 
spaces the slowing down occurs at arbitrary sink mobilities, providing the particles are mobile. 
In the three-dimensional case, for the fluctuational slowing down to occur, it is necessary that 
the sink diffusion be slow compared to the particle diffusion. 

INTRODUCTION 

The investigation of the kinetics of a number of physical 
and physico-chemical processes amounts to the study of the 
survival of Brownian particles in a medium with randomly 
distributed mobile sinks (traps), the concentration of which 
is high compared to the particle concentration. The tradi- 
tional approach, which derives from Smoluchowski's work, ' 
presupposes independent deaths of the particles at  each of 
the sinks. I t  is exact when the particles are stationary, and 
the motions of the sinks are uncorrelated. But if the particles 
are mobile, the probabilities of their deaths at different sinks 
cease to be independent, and such an approach is inapplica- 
ble. 

This manifests itself most clearly in the situation in 
which the sinks are stationary. It is shown in Refs. 2-5 that, 
in this case, after long periods of time, the deaths occur at a 
rate lower than the rate predicted by the traditional ap- 
proach. This is due to the survival of the particles that find 
themselves in those regions of space which, because of fluc- 
tuations, do  not contain sinks. The greater the size of such a 
fluctuation pocket, the longer a particle will survive, since its 
death outside the pocket will be preceded by a long random 
walk in a region free of sinks. On the other hand, the bigger 
the pockets are, the less probable they will be. It is these two 
circumstances that determine the nature of the so-called 
fluctuational slowing down. 

Thus, the kinetics of the death of particles over long 
periods of time is clear only in two limiting cases: 1 ) the case 
in which the particles are at rest (the traditional approach) 
and 2 )  the case in which the sinks are stationary (fluctua- 
tional slowing down). The question how these limiting cases 
go over into each other has not been dealt with in the litera- 
ture. The purpose of the present paper is to fill this gap. 

It is clear that the slower the sink diffusion is, the longer 
will be the time period over which the diffusion does not play 
a role, and the particle-death kinetics is the same as in the 
case of stationary sinks. On the other hand, even very slow 
sink diffusion, which leads to the swelling of the primordial 

fluctuation pockets, hastens the death of the particles. This, 
as we shall see, leads to the replacement of the time depen- 
dences obtained in Refs. 2-5 by new dependences, according 
to which the particle-death rate is higher than in the case of 
stationary sinks, but lower than the rate predicted by the 
traditional approach. Thus, the fluctuational slowing down 
occurs not only in the case of stationary, but also in the case 
of mobile, sinks. 

The time interval over which the sink diffusion does not 
play a role and the particle-death kinetics is described by the 
expressions obtained in Refs. 2-5 shortens as the ratio D, / 
Dp of the sink- and particle-diffusion coefficients increases. 
There is no such interval, starting from some characterisic 
value of this quantity. But even here, in the case of one- and 
two-dimensional spaces, the particles will, after long periods 
of time, perish at a rate lower than the rate predicted by the 
traditional approach, providing they are mobile. In three- 
dimensional space no slowing down of the death of the parti- 
cles occurs at such values of the ratio D, /Dp  . This difference 
in the kinetics is due to the speeding up of the swelling of the 
sink-free pockets as the dimensionality of the space in- 
creases. 

Below we shall assume that a particle perishes when it 
gets within a distance b from a sink, and that the volume 
fraction of the sinks, which are distributed with density n ,  is 
small: 

n b " a 1 .  (1) 

where d = 1,2,3 is the dimensionality of the space. Let us 
represent the probability, of interest to us here, for survival 
of a particle during a time period t in the form 

L~(c ' ' ( t ) -esp[-F""( t)] .  ( 2 )  

According to the traditional approach,' 

where at t 9 b '/D 

~,!,f' ( t )  -4nrr6Dt, (4)  
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F::: ( t )  -4nnDtlln(Dt/b2), ( 5  

F$: ( t )  =4n (Dtln) "'. ( 6 )  

Here D = D, + D, . Next, let us estimate the lower bound 
for the probability W d )  ( t ) .  By comparing this probability 
with the traditional dependence w;$ ( t ) ,  we shall find those 
time intervals over which our estimate yields a higher parti- 
cle-survival probability. It is precisely there that the fluctua- 
tional slowing down occurs. We shall find out how these 
intervals are related with the ratio D,7 /D, in spaces of differ- 
ent dimensionalities. 

THE KINETICS IN THE TWO- AND THREE-DIMENSIONAL 
CASES 

To estimate the probability Wd' ( t ) ,  we shall use a 
method similar to the optimal-fluctuation m e t h ~ d . ~  Let us 
introduce a d-dimensional sphere of radius R surrounding a 
particle at zero time, and let us represent the probability 
Wd' ( t )  in the form of a sum of conditional probabilities: 

m 

Here Wkd) (t,m ) is the probability for survival of the particle 
over a period of time t  under the condition that the sphere 
contains m sinks at  zero time; 

is the probability for finding m sinks inside the sphere at 
t  = 0; and v, is the volume of the sphere. w e  can choose the 
radius R of the sphere at our discretion, requiring only that 
R>b. 

Since all the terms in ( 7 )  are positive, 

Wed) ( t )  3P,(m=0) w$*' ( t ,  m=O) . (8  

Because we are estimating the lower bound for Wd' ( t ) ,  we 
have retained in the sum only the term corresponding to the 
absence of sinks inside the sphere. It can be shown that the 
slowing down of the death of the particles after long periods 
of time is due to their survival in precisely the sink-free pock- 
ets. 

Let us estimate the lower bound for the conditional 
probability wkd'(t,rn = 0). Since there are no sinks inside 
the sphere at zero time, the particle will survive over the time 
period t  if all this time is spent inside the sphere and the 
sphere remains free from sinks during this time. The prob- 
ability for the particle to remain during a period of time t  
inside the sphere (of radius R ) that surrounds it at zero time 
is equal to the integral over this sphere's volume of the solu- 
tion to the d-dimensional diffusion equation 

with the initial condition c(r,t = 0 )  = S(r )  and boundary 
condition c( lrl = R,t)  = 0. The lower bound of this prob- 
ability has the form exp( - PdD, t  / R  2 ) .  Herep, = rr2 and 
Br - 5.8 is the square of the first zero of the Bessel function 
J,(z). The probability for the preservation during the time 
period t  of a previously-isolated sink-free sphere of radius R 

is given by the expressions ( 3 ) - ( 5 ) ,  in which we must re- 
place b by R and set D = D, . 

Combining these estimates, we obtain 

W("J(t)>cxp [-Fn'"'(R, t ) ] ,  ( 9 )  

where 

F,'?'(R, t )  ~n2D,tlR2+4/lnn1Z3+4nnl~D~l, (10 )  

Fof2'(R,  t )  .~~,D,tlR~+nnR~+4nnD,tlln(D,tiR~). ( 1 1  ) 

In the expressions ( 10) and ( 1 1  ) the first term deter- 
mines the probability for a particle to stay inside the sphere 
of radius R during the time period t; the second term, the 
probability of finding this sphere free from sinks at zero 
time; and the last term, the probability of this sphere's re- 
maining free from sinks during the time period t." Let us 
emphasize that in the right-hand side of the inequality ( 9 )  
we have taken the estimate for the lower bound of the condi- 
tional probability W kd' ( t ,m = 0 ) ,  ignoring the survival of 
the particle when it gets out of the pocket, on the other hand, 
and sinks enter the pocket, on the other. 

The subsequent analysis will be carried out according to 
the following scheme. The radius R of the sphere has thus far 
been restricted by the single condition: R 2 6 .  Now let us opti- 
mize our estimate by choosing R = R,  such that the right- 
hand side of the inequality ( 9 )  has its maximum value at the 
given moment of time t: 

(dFocd'( R, t)ldR) R = n , = O .  

The value R,  thus found separates out from among the 
pockets that are free from sinks at zero time t  = 0 the one 
whose contribution to Wd' ( t )  at the instant t is maximal. 
Substituting R,  into ( 9 ) ,  we obtain the estimate (of interest 
to US) for the lower bound of the probability Wd' ( t ) :  

lY1'"(t) >cxp[-F,,'"'(R,, t ) ]  - -Wnf" ' ( t ) .  (12)  

Now let us compare WAd'(t)  with the traditional depen- 
dence W $  ( t ) .  To do this, let us determine the moment of 
time t,* at which Whd ' ( t )  and W;: ( t )  are equal to each 
other from the equation 

(Rt,*, td*) == 1;';: ( td*) .  (13 )  

For t<t ,*, we have W;: id,' Whd' ( t ) ,  and the survival of the 
particles in the sink-free pockets does not play a special role. 
Here the probability for survival is given by the traditional 
expression wd' ( t )  z W;: ( t ) ,  and the fluctuational slow- 
ing down does not occur. The fluctuational slowing down 
occurs in the region t )  t  ,*, where W;$ ( t )  < W::) ( t ) ,  and 
the kinetics is governed precisely by the survival of the parti- 
cles in the sink-free pocket: Wd'  ( t )  =: W:jd) ( t ) .  

Let us note that, at times when the fluctuational slowing 
down does occur, the neglect of the survival of the particles 
that have left a pocket is justified, since the radius R ,  is large 
compared with the characteristic distance over which a par- 
ticle perishes outside a pocket. Also justified is the neglect of 
the survival of the particles in a pocket containing at least 
one sink, since the characteristic particle-survival time in 
such a pocket is short compared to t .  For the corresponding 
estimate we can use the traditional expressions ( 3 ) - ( 5 )  with 
n = l/v,,. 
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Let us proceed to the description of the dependences 
obtained as a result of the analysis presented above. In the 
three-dimensional case the fluctuational slowing down oc- 
curs only when the mobility of the sinks is low: 

D,/D,<(nb3)'"<<1. (14) 

In the opposite case, when D,/D, ) (nb 3, ' I 2 ,  Eq. ( 13) does 
not possess solutions, and at all times the particle-survival 
probability is given by the traditional expression W 3 )  ( t )  
z W & ? ( f ) .  

For the description of the resulting picture, it is conven- 
ient to introduce the dimensionless time 

choosing as the scale the particle lifetime in the traditional 
dependence (see (3)  and (4)  1, which in this case has the 
form 

w;,:; ( 7 )  =e-<. (15) 

When the condition ( 14) is fulfilled, the solution of Eq. ( 13) 
yields 

~~*=4nnbDt~*=4n (nb3) -"'. 

The nature of the fluctuational slowing down phenomenon 
varies in time. In the time interval defined by the inequality 

T ~ * < T < ~ x  (Dp/D,)'/~(nb3)"', (16) 

the diffusion of the sinks is of no importance, and the parti- 
cle-death kinetics is governed by the well-known expression 
obtained in Refs. 2-5. Here 

The fact that we can neglect the swelling of the sink-free 
pockets in the time interval defined by the inequality (16) 
follows from a comparison of the terms in the expression 
Fh3' (see ( 10) ). This swelling should be taken into account 
at large T values, specifically, at 

T>>(~z  (Dp/D,)v3(nb3)"a. (18) 

The point is that the probability for a pocket's remaining free 
from sinks during the time period t decreases as the radius of 
the pocket increases (see ( 10) ) . Therefore, the growth of the 
radius R, in time ceases, and at times satisfying the condition 
(18) R, z n  (7i-Dp /2Dr ) ' I3 .  AS a result here 

Let us emphasize that, although the index of the exponential 
function in ( 19) is linear in T ,  just as obtains in the tradition- 
al dependence ( 15 ), the expression ( 19) gives a particle- 
death rate lower by a factor of the order of (Dp/ 
D, )213(nb 3, - ' I 3  (see (14)) than the rate predicted by the 
traditional approach. For D, -0, the instant when the sink 
diffusion begins to play a role shifts, in accordance with 
( 18), to infinity. Figure 1 shows a schematic drawing of the 
regions of applicability of the various approximations to the 
probability w3' (7).  

In the two-dimensional case, as the dimensionless time, 
it is convenient to take (see (3)  and (5) ) 

7=4xnDt. 

FIG. 1. Diagram of the regions of applicability of the various approxima- 
tions to the probability w3' ( T )  for particle survival in three-dimension- 
al space. In the region I the traditional approach is applicable, and 
w3' ( T )  is given by the expression ( 15). The fluctuational slowing down 
occurs in the regions I1 and 111. In the region I1 the neglect of the sink 
diffusion is justified, and w3' ( T )  is given by the expression ( 17). In the 
region 111 the sink diffusion plays an important role, and W" (7)  is 
given by the expression ( 19). The line T = 4s(nb ') 1 1 3 ( ~ p / ~ ,  ) 5 ' 3  sepa- 
rates the regions I1 and 111. 

In this case the traditional dependence has the form 

When the sinks are of low mobility, i.e., for 

D,/D,<l/ln (l/nb2) << 1, (21) 

the solution of Eq. ( 13) yields 

~ ~ * = 4 ~ n D t z f = P ~  1ii2 (J2/.-rnb2) 

In the time interval defined by the inequalities 

T;<T<<~JI (D,/D,)', (23) 

the diffusion of the sinks has no effect on the kinetics that is 
characteristic of the fluctuational slowing down phenome- 
non in the case of stationary  sink^.',^,^ Here 

Rt=n-'I: (P2D,~/4x2D.) +, 

At large T values, specifically, at 

T,,, 1.1 (D,,//)*) -, 

the nature of the fluctuational slowing down phenomenon 
changes, since the diffusion-induced swelling of the sink-free 
pockets play an important role. Since it occurs more slowly 
in two-dimensional space than in three-dimensional space, it 
only slows down the growth of the radius R, in time: the 
dependence R, cc r ' I 4  is replaced by 

Here this swelling controls the kinetics, and 

(cf. the last term in ( 11 ) ). According to (26), the particles 
perish at a rate lower (to the extent that the ratio D,/D is 
small) than the rate predicted by the traditional depen- 
dence. 
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A consequence of the above-noted slowness of the 
swelling of the fluctuational pockets in the two-dimensional 
case as compared with the three-dimensional case is that 
here the fluctuational slowing down occurs at any value of 
the ratio D, /Dp . The expression ( 2 6 )  is valid not just when 
the mobility of the sinks is low and the condition ( 2 1 )  is 
fulfilled, but for arbitrary sink mobility. If the opposite of the 
inequality ( 2 1 ) ,  i.e., the inequality 

is valid, then the well-known kinetics ( 2 4 )  corresponding to 
the case of stationary sinks is not realized at all. In this case 
the region of applicability of the dependence ( 2 6 )  is speci- 
fied by the condition T ) T ~ ,  and the time ~f is equal to 

Thus, in the case of two-dimensional space, in contrast 
to the case of three-dimensional space, the fluctuational 
slowing down occurs at  any value of the sink mobility, pro- 
viding the particles are mobile. According to ( 2 5 )  and ( 2 8 ) ,  
in both the D, -0  and Dp -0 cases, the limits of the region of 
applicability of the dependence ( 2 6 )  tend to infinity. Figure 
2 shows a schematic drawing of the regions of applicability 
of the various approximations to W2' (7 ) .  

THE KINETICS IN THE ONE-DIMENSIONAL CASE 

Let us use the fact that, in one-dimensional space, the 
problem of the survival of a mobile particle in a stationary- 
sink environment has an exact solution2: 

FIG. 2. Diagram of the regions of applicability of the various approxima- 
tions to the probability W2' ( r )  for particle survival in two-dimensional 
space. In the region I the traditional approach is applicable, and W2' ( r )  
is given by the expression ( 2 0 ) .  The fluctuational slowing down occurs in 
the regions I1 and 111. In the region I1 the neglect of the sink diffusion is 
justified, and W2' ( T )  is given by the expression ( 2 4 ) .  In the region I11 
the diffusion induced swelling of the sink-free pockets governs the kinet- 
ics, and W2' ( r )  is given by the expression (26) .  The regions I1 and I11 
are separated by the line r  = 4,rr(D/D, ).l The regions I and 111 for D,/ 
D > In-- ' ( l /nb  2 ,  are separated by the line r = r:, where 7: is given by 

We shall represent the estimate of interest to us in the form of 
a product of the probability W ( ~ , D ,  ) and the probability for 
the preservation over the time period t  of the sink-free re- 
gions surrounding the particles at zero time. The latter prob- 
ability is given by the expressions ( 3 )  and ( 6 )  with D  = D,5. 
As a result, we obtain 

The right-hand side of ( 3 0 )  gives the lower bound, since it 
ignores the change that occurs in the lifetime of the particles 
as a result of the change in the sink-free regions surrounding 
them at zero time. In both the D, = 0 ,  D,  # O  and D, = 0 ,  
Dp # O  cases, the right-hand side of ( 3 0 )  coincides with the 
corresponding exact solutions. For Dp # O  and D, # 0 ,  it can 
be considered to be an interpolation formula. 

Equating the estimate ( 3 0 )  to the traditional expres- 
sion for the probability, i.e., for WFd ( t )  (see ( 3 ) ,  ( 6 )  ), we 
find the moment of time t  7 starting from which fluctua- 
tional slowing down occurs. It is again convenient to intro- 
duce the dimensionless time (see ( 3  ), ( 6 )  ) 

The traditional dependence then has the form 
(3) w,, (T) = exp (-t"'). ( 3 1 )  

The time TT = 16n2Dt :/a is equal to2' 

In the region 7 %  T: there occurs fluctuational slowing down, 
and the particle-survival probability is given by the expres- 
sion 

( 3 3 )  
For D,/D <+, the picture that obtains in the time interval 
specified by the inequality 

in the case of stationary sinks is not altered by the diffusion 
of the sinks. Here the first term in the index of the exponen- 
tial function ( 3 3 )  predominates, and the particle-survival 
probability is given by the well-known expression obtained 
in Refs. 2, 3, and 5. At large T values, specifically, at 

the diffusion of the sinks accelerates the death of the parti- 
cles in comparison with the D, = 0  case. Here the dominant 
term in the index of the exponential function ( 3 3 )  is the 
second term, which gives the probability for the preservation 
of the fluctuational regions in the time interval t .  The result- 

the expression ( 2 8 ) .  ing kinetics describes a slower ( to  the extent that the ratio 
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FIG. 3. Diagram of the regions of applicability of the various approxima- 
tions to the probability R" (T)  for particle survival in one-dimensional 
space. In the region I the traditional approach is applicable, and w" (T) 
is given by the expression ( 3  1 ) .  The fluctuational slowing down occurs in 
the regions I1 and 111, in which the survival probability W "  (T)  is given 
by the expression (33).  In the region I1 the neglect of the sink diffusion is 
justified: the first term in the index of the exponential function (33) is the 
dominant term. In the region I11 the diffusion-induced swelling of the 
sink-free pockets governs the kinetics: the second term in the index of the 
exponential function (33) is the dominant term. The regions I1 and I11 
are separated by the line T = ( 3 r / 4 )  'D :D / D  :. The region I is separated 
from the regions I1 and 111 by the line T = T:, where T: is given by the 
expression ( 32). 

D,/D is small) particle death rate than the traditional de- 
pendence ( 3 1 ) . 

This kinetics is valid after long periods of time at any 
value of D, /D. For D, /D > 4 the well-known dependences 

obtained in Refs. 2, 3, and 5  for stationary sinks are not 
realized at all, and at times 7% rr there immediately arises 
kinetics governed by the diffusion-induced swelling of the 
fluctuation regions. In both the D, +O and D, +O cases the 
limits of the regions of applicability of this kinetics tend, in 
accordance with ( 33 ) and (35  1, to infinity. Thus, in the one- 
dimensional case (as in the two-dimensional, but unlike the 
three-dimensional, case), the particle-death rate after long 
periods of time is lower at any value of the ratio D, /D than 
the rate obtained in the traditional approach. Figure 3 shows 
a diagram of the regions of applicability of the various ap- 
proximations to W"' (T) .  

The authors are grateful to S. F. Burlatskii and V. A. 
Kaminskii for stimulating discussions. 

"The expressions used for the probability for the pockets of radius R to 
remain sink free during the period of time t are valid for t % R  */D,. The 
estimates obtained below for Rd' ( t )  satisfy this condition. 
2 i n c e  t:$1/r2nZDp, to find t:, we used the asymptotic form of 
W(t,D, ) for large t. 
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