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We obtain a functional representation for the different-time spin correlators of a Heisenberg 
ferromagnet at high temperatures. Using this we calculate the asymptotic behavior of the spin 
correlation functions at small times. 

1. INTRODUCTION 

1. Attempts to describe the high-temperature dynamics 
of a Heisenberg ferromagnet from first principles, starting 
from the exchange Hamiltonian H, have been made by a 
large number of authors. A detailed survey of the corre- 
sponding theoretical results is contained in the experimental 
Ref. 1. In the limit of an infinite temperature T the different- 
time spin correlator Ca" (r , t)  is define as 

CmB (r, t )  = sp ( e i t H ~ R n e - " " ~ & , )  . (1.1) 

Here r is the coordinate of the lattice site, a and /3 are the 
indexes of the components, and H is the Heisenberg Hamil- 
tonian 

(summation over repeated indexes is implied). The boun- 
dedness of the spin operators guarantees the existence of the 
trace ( 1.1 ). Thanks to rotational symmetry, 

2. As the basic method for evaluating the average ( 1.1 ) 
in the majority of the papers all possible schemes for decou- 
pling the correlators have been used, amongst them very re- 
fined ones.' The exception is the paper by Lazuta and Ma- 
 lee^,^ where a model considerably different from Ref. 2 was 
considered, using a diagram technique. Uncontrollable ap- 
proximations contained in such an approach led to state- 
ments either about the exponential damping of single-site 
correlations2 or about the existence of quasi-particles.4 The 
usual regular methods (diagram techniques) are of little use 
in this case since the basic building blocks are propagators of 
weakly damped elementary excitations. On the other hand, 
Kubo's formula used by Blume and Hubbard2 is inapplica- 
ble to non-commuting operators. 

3. The object of the present paper is the calculation of 
the asymptotic behavior of the function C(r,t)  for I t <  1 
(and arbitrary r )  using a functional integral for spin sys- 
t e m ~ . ~  The direct expansion of exp(itH) in ( 1.1 ) in powers 
of t  leads to an ultra-local series in r for C(r, t) ,  which indi- 
cates an (a priori obvious) non-analyticity of the function 
C(r,t)  at t = 0. The functional representation of Ref, 6 is 
convenient only in the low-temperature phase, owing to the 
explicit asymmetry of the field variables. Following the pre- 
scription proposed in Ref. 6 we get in what follows a rota- 

tionally invariant functional representation for C(r , t )  and 
we find the main asymptotic behavior as t-0. Unfortunately 
we were not able to calculate the most interesting asymptotic 
behavior as t = co (spin diffusion). This difficulty is not par- 
ticular to spin systems. 

2. FUNCTIONAL REPRESENTATION 

Writing eitH in the form (eitEH ) "' , E - 0 and using the 
formula (see, e.g., Ref. 7)  " 

where J ;  ' is the matrix which is the inverse of j,, , N' is a 
normalization factor, we can express C "O(r, - r,t) in terms 
of the functional Q ( h ) :  

Q (h) = N J ~ ~ ( 1 )  D ~ ( z )  erp ($ [ pi ( P ) J ~ ~ - ' ~  ( t r )  at') 

Cap (ri-rj, t )  = -- a" (h) I ah;) (ri) ah;) (r,) ,,=0 
(2.3) 

where the contour C i s  

[the indexes ( 1 ) and (2 )  refer, respectively, to the lower and 
the upper branches] and 

The T, sign indicates the ordering of the operator exponent 
along the contour C. 

Making the substitution (p - (p-h and neglecting terms 
which do not contribute to (2.3) we get the expression 

1 

Q (h) = J D ~ ( ' )  ~ q ( ~ )  exp{ i J dt l  (rp:1)~,j-1q;i)-y:2)~ij-1cP;2) ) 
0 
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1 + - hjL' Idj--l 1rpIi) ( t )  +d2) ( t )  ] 
2 

xn, { T ,  exp ( i  J q.si d l r ) } .  
C 

The calculation of T, operating on the exponent as a 
functional of the field cp(t ') reduces already in the particular 
case of spin 4 to solving a Schrodinger equation in an arbi- 
trary potential and is impossible in its general form. How- 
ever, (see also Ref. 6) in the framework of the functional 
formalism one can avoid this difficulty. We introduce the 
operator A ( t )  : 

q(ll ( t f )  s dtf  ] T exp[ - i rp( ' )  ( t f )  s d t ,  (2.7) 
0 

where T and indicate, respectively, the usual chronologi- 
cal and anti-chronological ordering. The operator A(t) is 
determined by the differential equation 

- iA( t )  =q"' ( t )  S A ( t )  -A ( t )  rp") ( t )  S  (2.8) 

and the initial condition A(0) = 1. We introduce explicitly 
the given operator G(t):  

t 

~ ( t )  = exp{i J [p (1 ) ( t1 ) -p (2 ) ( t1 )  1s dtl } (2.9) 
0 

and differentiate it with respect to time 
1 

ic ( t )  = j d r  exp ( i r b ~ )  ( p ( 1 ) - p ( 2 i )  S exp [ i  ( l - r )  f S ]  

=Us ( t )  G  ( t )  -G ( t )  U2 ( t )  . (2.10) 

Here 

U ,  ( t )  = J d r  exp ( i r f  S )  p " ' ~  exp ( - i d s ) ,  (2.11) 
0 

i 

U2 ( t )  = jdr  exp ( - i rW)  p ( i ' ~  exp (frES). 
0 

Noting that under the integral sign in (2.11) there appeared 
spin rotation operators we get immediately 

sin lbl ( fp" ' )  q, ( t )  = p"' - s in l f l  
I f 1  +f--( b2 I---) 16 1 

sin I b  l ( 6 ~ ' ~ ' )  q* ( t )  = p(2' - sin161 

16 1 +fT( b  1 ---) 161 

The transition in the functional integral (2.6) to the 
integration variables p( t  ' )  through the formulae 

y " ' ( t l )  = q l ( t f ) ,  ~p '~ ' ( t ' )=q2( t ' )  (2.13) 

puts T, -the ordering constant in (2.7)-in the form (2.9). 
On can easily calculate the Jacobian of the change (2.13) 
and it is equal to 

t '= t  

The explicit expression for the functional integral in the p- 
variables is cumbersome and we shall not write it down. We 
merely note that the substitution (2.13) is strongly nonlocal 
in time. 

3. ASYMPTOTIC BEHAVIOR AS t + O  

1. To calculate the main asymptotic behavior as t-0 we 
can put (the index of the site number is temporarily 
dropped) 

p ( l )  ( t l )=p( l ) -  -const, 

p@) ( t ' )  =p(''=const 

and we can consider p"' and p"' as independent integration 
variables. We have here made the rather natural assumption 
that our integral is concentrated on trajectories of a nonzero 
Holder class, i.e., as t, -t, 

For instance, for the simple case of a Brownian particle one 
can prove that a = ~ 4 . ~  The first non-vanishing term in 
&(t  ') is: 

the Jacobian is 

and the change of variables takes the form 

t' 
q"' ( t ' )  =p'l' + - [p"'p'Z'] +O ( t Z )  , 

2  
(3.3) 

t  ' (#'Z' (t ') ' P ( 2 )  - - [p (1 )p (2 ' ]+0( tZ ) .  
2 

We introduce new variables .rr and a: 
p  , @=p(')+p(2'. n=p"'- ' z '  (3.4) 

Writing the trace of the operator (2.9) in the form 
t 

~p eap {i Jd t f  (p"'-p(2') s } = exp(g, ( t  n 
0 

= const exp (-Dt2n2/2),  (3.5 
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where 

we get asymptotic form of the functional integral Q(h) in the 
form 

Performing the linear substitution 

and carrying out the Gaussian integration over the variable 
v we are led to the final expression for Q( h ) : 

($is the new normalization factor). We note some features 
of Eq. (3.9). Firstly, the integral (3.9) is Euclidean al- 
though it generates [in the sense of (2.3) ] correlation func- 
tions in real time. This corresponds to the essence of the fact 
as there should be no propagating excitation as T = co . Sec- 
ondly, the undesirable terms in the action containing odd 
powers in Tcancelled in the integration over T. Finally, thex 
expansion of (3.9) in t reproduces the ultra-local expansion 
for (1.1). 

2. Being interested in the coarse-scale structure of the 
correlations we go in (3.9) over to the continuum limit 

where a is connected with the exchange frequency a,, : 

as follows: 

E= ~ ~ ~ a " ~ .  

Here a is the size of the elementary cell in the lattice. The 
mass operator is on the single-loop level equal to (cutoff 
mementum A = ?r/a) : 

For the correlation function C"" ( r , t )  we get the expression 

J e'.r 
1 , -0 

CaR (r, t )  =DanGaB --f 

(2n) I+z"~ (k) 

The Dyson summation for the propagator C(r,t) is in this 
case justified as it takes into account to each order in t terms 
of the highest order in the derivative of S(r)  (in the contin- 
uum limit). 

I am grateful to V. B. Cherepanov for many discussions 
and useful hints and to V. I. Belicher, V. S. L'vov, and E. V. 
Podivilov for useful advice. I am pleased to thank D. E. 
Khmel'nitskii for his interest in this work. 

"One can in the limit as E-0 neglect the fact that the spin operators in Eq. 
(2.1 ) do not commute. 
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