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The space of Ramond states of a two-dimensional scalar field of zero mass contains a set of 
conformally invariant Ramond fields with dimensions ( 2k + 1 )2/1 6. Four-point conformal 
blocks of these invariant operators are discussed. It is shown that these blocks can be evaluated 
by starting with the block of primary fields of dimension 1/16 (Ramond vacuum). 

1. INTRODUCTION 

The conformal block plays a major part in two-dimen- 
sional conformally invariant quantum field theory. The 
evaluation of the conformal block was originally considered 
in Ref. 1, which began the active development of this theory 
that has taken place in recent years. Conformal field theory 
has led to striking advances in the description of second- 
order phase transitions in two-dimensional systems, and can 
serve as a convenient tool in the quantum theory of relativis- 
tic strings. '-" 

In two-dimensional conformal theory, the four-point 
conformal block plays the part of the partial amplitude, and 
serves as a "building block" when one attempts to construct 
the four-point Green's function in the confromal bootstrap 
method.'.' In the intermediate channel of the four-point 
function, it sums the contributions of all states belonging to 
the irreducible representation of the Virasoro algebra that 
corresponds to the infinite-dimensional group of space-time 
symmetries of the two-dimensional conformal field theory. 
At present, the explicit form of the general conformal block 
(corresponding to arbitrary parameters of the conformal 
theory, namely, the dimensions of the invariant field, and the 
central charge of the Virasoro algebra) is still unknown. Al- 
gorithms for its evaluation in the form of power series are 
considered in Ref. 8. Examples of explicit implementation of 
the conformal block program can be found in Refs. 3,4, and 
9. 

An explicit expression for the conformal block in con- 
formal theory with central charge c = 1 and conformal field 
dimension S,, = 1/16 was obtained in Ref. 9, where it is 
shown that this block is related to the correlation functions 
of fields that correspond to the Ramond states of a free scalar 
field. This space implements the higher order representation 
of the Ramond algebra of a Heisenberg free scalar field. The 
principal vector of the representation has the dimension I/ 
16 with respect to the corresponding conformal algebra (see 
Ref. 9 and Section 2 of the present paper). This space is 
reducible under the conformal Virasoro algebra and con- 
tains an infinite set of conformally invariant states with di- 
mensionsS, = (2k + 1)2/16, k=0,1,2 ,... . 

In the present paper, we shall consider the explicit 
evaluation of conformal blocks containing conformal fields 
IJ,, k = 1,2, ... , corresponding to these "higher invariant 
states." 

In general, the conformal block as a function of the di- 
mension of the intermediate channel A is found to have poles 
at points corresponding to the degeneracy of the Verma mo- 

dulus of the conformal algebra on the corresponding invar- 
iant field of dimension A. It is interesting that these poles are 
absent in the case of the block found in Ref. 9, which corre- 
sponds to correlations between the lowest Ramond field a,, 
and the block is an entire function of A. The particular fea- 
ture of the blocks of fields uk considered here is the finite 
number of poles in A. 

The paper is arranged as follows. In Section 2, we exam- 
ine the space of Ramond states of a free scalar field and 
investigate the structure of conformally invariant subspaces. 
We also derive a number of operator-algebra relations for 
the Ramond fields. These relations are used in Section 3 l o  
obtain an exact four-point block of the four lowest fields ao. 
An algorithm is constructed for evaluating the blocks con- 
taining the fields a, with k > 0, and some of these blocks are 
evaluated. The structure of the singularities of these blocks 
in the intermediate dimension A is discussed. In Section 4, 
we consider another construction that can be used to evalu- 
ate these blocks as the correlation functions of free fields on a 
type 1 Riemann surface (torus) suitably coupled to the four- 
point correlation function of the Ramond fields. 

2. RAMOND STATES OF A FREE SCALAR FIELD 

We shall consider the operator algebra of a free scalar 
field in two-dimensional Euclidean space with complex co- 
ordinates 

The holomorphic part @ (z) of the free scalar field is normal- 
ized by the vacuum correlation function 

and may be looked upon as part of the real scalar field 

cp(z, zf)=cD(z)+@ ( 2 )  (2.3) 

with the action 
1 

~ ( c p ) = ~ J  (3.cp)2d4. 

The holomorphic current 

is a conformal field of dimension 1 and forms an Abelian 
current algebra: 
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The conformal energy-momentum tensor in this theory is 
quadratic in the field I (z )  : 

The Verma modulus formed by the action of the operators 
I,, - with n(O is a space of the Ramond states of the current 
I (z ) .  The energy-momentum tensor constructed in accor- 
dance with the recipe given by (2.8) can be written in the 
following form: 

where the regularization of the singular product (2.7) of the 
two fields I (z )  at a given point must be performed so that 
T ( z )  is the next term in the operator expansion (2.6), i.e., 
the following local relation must be satisfied: 

I ( z )  I ( z ' )  = + T ( z l )  + O ( z - i t ) .  
2 ( 2 - z ' ) ~  

This energy-momentum tensor satisfies the local operator 
expansion 

1 2T ( 2 ' )  T' ( z ' )  
T ( z )  T (2')  = +- + ----;-- + O ( 1 )  (2.9) 

2 ( ~ - 2 ' )  ( Z - Z I ) ~  Z-z 
and, consequently, generates a conformal algebra with cen- It is clear from these formulas that the vacuum state a, is a 

conformal field of dimension 1/16. 
The conformally invariant states in Ramond space are 

determined by the conditions 

tral charge c = 1. 
We shall examine the following two states of the free 

current (2.5). 
( 1 ) Single-valued states corresponding to the point 

LnoA=O for n>O. (2.21 ) z = z, of single-valued character for the current operator 
Z(z) in the complex plane, around which the current can be Thus, by solving these relations for the first few levels, we 

find that the states expanded into the Laurent series (we assume that z, = 0)  : 

I ( z )  =x I , , Z - ~ - ~ .  (2.10) 
n 

According to (2.6), we have the following operator algebra 
f a  khe I,, : 

are conformally invariant fields with dimensions 6 ,  = 9/16, 
8,  = 25/16, and 6,  = 49/16, respectively. For higher levels, 
direct evaluation becomes more complicated. To determine 
the conformal field in the space of the Ramond states, con- 
sider the character of this space: 

The operator 

is conserved and will be called the charge of the state within 
the contour C. We note that the conformally-invariant sin- 
gle-valued state with chargep corresponds to the conformal 
field Assuming that the Ramond space contains only the nonde- 

generate representations of the Virasoro algebra, we can now 
write down the trace over the space of representation with 
dimension Si : 

m 
which has the conformal dimensionp2. Of particular interest 
among these fields are the currents 

Hence, which have conformal dimension 1 and, together with the 
current J, = I (z ) ,  form the Kac-Moody SL (2)  algebra with 
central charge k = 1 (Refs. 10 and 1 1 ) : 

We thus see that there is an infinite series of conformal 
Ramond fields a,, k = 0,1,2 ,... , corresponding to dimen- 
sions 6,  = (2k + 1 ) '/16. 

It is interesting to consider the nature of this Ramond 
series from the standpoint of representations of the Kac- 
Moody algebra (2.15) in the Ramond sector. The expansion 
given by (2.16) can now be integrated: 

where qaB and f l;, are, respectively, the Killing form and the 
structural constants of the SL(2) algebra. 

(2) The Ramond states corresponding to a point of 
two-valued character for I (z ) ,  such that the current changes 
sign when one circuit around it is completed. In this case, 

I , , - , />Z '~~-~  
UJ ( z )  ==Op+iZ (2.26) 

n-l / z  ' and the corresponding algebra is 
Since, in the Ramond sector, 

The lowest Ramond state a,, (Ramond vacuum) corre- 
sponds to the principal vector of the highest-order represen- 
tation of this algebra 

we arrive at the following representation of the operators 
(2.14): 
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exp (f 2iQ0) 
J* = : exp[*2i(Q(z)-(9o)]:, 

42 
where the usual ordering with respect to the Ramond vacu- 
um uo is implied (the creation operators I, - with k<O are 
placed on the left). We can now introduce the real currents 

1 
Jt = - : sin 2 ((9 (z) -0,) : , 

42 

1 
(2.29) 

I,=-: cos2(@(z)-(Do):, 
42 

which satisfy the same local operator expansions (2.8) as the 
current I (z )  [this is clear from the global SL (2) symmetry 
of the algebra (2.15) 1. The field J, (z) is then a two-valued 
field for the Ramond states, whereas J,(z) has a single-val- 
ued character and satisfies the relation 

This means that the Ramond vacuum a, has a charge of 1/4 
with respect to this current (in agreement with So = 1/16). 
If we derive this current from another scalar field ~ ( z )  

the Ramond vacuum a, assumes the form 

The fieldx(z) is related to the original field @ ( z )  by a non- 
linear transformation. We now use this field to write the 
following obvious relations: 

The higher-order Ramond fields ok (z) appear when these 
currents are combined with the lowest Ramond field. Thus, 

This gives us the representation 

a,,=: exp i(2n+'/,)~:, 

( 5 ~ , + ~ = :  exp i(-3/2-2n)~:. 

The currents 
i 

K ,  (z) =Z(z) * - : sin ~ C J  (z) : 
42 

(2.36) 

are then the shift operators for the invariant Ramond states: 

K+ (z) ozn (0) =z('"+')/~ Oz*+z (0) +. . . , 
(2.37) 

K-(z)G~,-~ (0) = ~ ~ " + ~ ~ z , + s  (0) +. . . . 
These operators can be used in their explicit form (2.36) to 
evaluate the invariant Ramond states in the basis formed by 
the operators I, - I with n (0. 

3. CONFORMAL BLOCKS OF INVARIANT RAMOND FIELDS 

In this Section, we consider four-point conformal 
blocks of the fields ak . We shall show that the relationships 
of the operator algebra enable us to evaluate these blocks in a 
consistent manner, beginning with the block of four lowes- 
tRamond fields a,. We shall use the notation 

and will assume that, in the channel containing the operators 
ok , (x, ) and a,, (x,) , we have isolated the contribution of 
the conformal representation of an invariant operator of di- 
mension A. We note that the product of Ramond operators, 
u k l  ( x l ) ak2  (x,), is a single-valued state for the free-field 
current I (z ) .  The conformally invariant operator for the 
channel can therefore be taken in the form 
exp[ + 2ip@(z)] : with one of the signs, and A =p2. We 
know that, for general values of the chargep#n/2 (where n 
is an integer), the space of the irreducible representation of 
the current algebra (2.11 ) coincides with the space of the 
representation of the conformal algebra. This means that the 
conformal blocks ( 3.1 ) can be looked upon as current blocks 
that sum the contribution of the representation of the cur- 
rent algebra. 

The isolation of the chargep in the channel of the four- 
point function (3.1 ) means that 

where 

From now on, it will be convenient to use projective invar- 
iance and place three of the four pointsxi, i = 1,2,3,4 in fixed 
positions: x ,  = 0, x, = x, x, = 1, and x, = a, ; the four-point 
blocks (3.1) are analytic functions of the single complex 
variablex. Moreover, we shall normalize the blocks (3.1 ) by 
the condition: 

The following explicit expressions for the block of lowest 
fields was obtained in Ref. 9: 

where 
m 

03(q)= C an'. 
,,=-Pi 

is the complete elliptic integral of the second kind. 
To evaluate the blocks with the participation of the next 

invariant field a , ,  we use the operator-algebra relations that 
follow from (2.16)-(2.20): 

1 2 
I (z) o, (0) = -ao (0) + 7i; ao' (0) +O (z'). 

22" z 

This structure of the expansions establishes the character of 
the asymptotic behavior of the functions ~oo,,(z,x) as z 
tends to the Ramond points 0, x, 1, and w . Accordingly, we 
can write 
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Apart from a constant factor that can be determined from 
the normalization condition (3.4), the quantity Aoooo can be 
related to blocks containing the field a, if we use (3.9): 

At the same time, the block condition (3.2) leads to 

Thus, using the normalization condition and the well-known 
relation 

It 
K(x)=-~, ' (Q),  2 

we obtain 

The remaining blocks containing the single operator a, are 
related to (3.14) by the cross-symmetry relations. By analo- 
gy with (3.10), 

oleo (x) = ( z - x )  ( I )  ] I h  ( A o o o x  + Boloo (x) ) . (3.15) 
2-5 

The operator relations given by (3.9) determine the func- 
tions Aolo0 and Bolo0 as z-x: 

As z - 0 and z- 1, these relations yield (normalization has 
been carried out) 

As functions of A, these blocks contain one pole each at 
A = 0 and A = 1/4, respectively. 

We note that the block condition (3.2) for TO,,,,(z,x) 
imposes additional restrictions on the functions A,,,, and 
B,,,, which, together with the relations used here, determine 
unambiguously the form of the original block of fields a, 
(3.5) (see Ref. 9) .  

It is shown in Ref. 8 (see also Section 4 below) that the 
general conformal block of four invariant fields of dimen- 
sions S,, S,, 6,, and 6,  with intermediate dimension A (in the 
channel containing operators of dimension S ,  and 6,) can be 
written in the following form in conformal theory with cen- 
tral charge c: 

G6,,6,,6r,6,(x) = (16q)A-(~-~)/2"B(~-11/2-'(b1+6~+6~+b4) 
(3.19) 

x(e-i)12r-6,-b, (c-1)/2&-6z-b3 Hbt,h,63,66 (A, q ) ,  
whereHS,,S,,S,,S,(A,q) = 1 + 0(1/A) for A +  W .  Accord- 
ingly, we now introduce functions H,,,,,,,, (q) that are relat- 
ed to the blocks (3.1 ) by 

GkrkJ13k(~) =( 169) A~-61-b1 (1 -x) - b 2 - 6 , e S - 4 ( b t + 6 ~ + b s + 6 r ) H  k,k&&, ( 9) . 
(3.20) 

In this case, these quantities are meromorphic functions of A 
with a finite number of poles (they are rational functions), 
and all their poles can lie at the points A = n2/4, 
n = 0,1,2, ... , in accordance with the degeneracy structure of 
the representations of the conformal algebra for c = 1. For 
the block (3.14), we have 

and the corresponding functions for block (3.17) and (3.18) 
can be represented by the ratios of two theta-series: 

OD OD 

In precisely the same way, if we consider the operator alge- 
bra for the function T I  ,,,(z,x), we obtain a block with the 
three operators a,: 

m 

Finally, by "associating" the current I ( z )  with the fourth 
operator a,, in this block, we obtain the symmetric block 
G ~ l ~ ~ ( x ) :  

This block has one double pole at A = 1/4. 
In principle, the same algorithm can be used to evaluate 

blocks containing the next invariant Ramond operators a,, 
a,, etc. However, the evaluation becomes much more com- 
plicated. For example, it is clear from the explicit expres- 
sions (2.22) that the operator a, can be obtained by "asso- 
ciating" a particular combination of one and three currents 
I ( z )  with the Ramond vacuum a,,. To evaluate blocks with 
the operator a,, we have to "associate" six current opera- 
tors, and so on. However, the evaluation can sometimes be 
simplified. For example, for the block G,,,,, we can use the 
operator expansion that follows from (2.17) and (2.20): 

Z(z) a2 (0) = ' / , ~ - ~ ~ o ,  (0) - 2 ~ - ~ ( ~ , , ' ( 0 )  
- 8 1  ,Z -'i> 0, " (0) +5/3Z-'"L-2~o (0) f 0 (z! '~). 

(3.26) 

The general form of the function T 0 2 0 0 ( z , ~ )  is 
r,,,, (2, X)  = [ Z  (z-I) (z-X) 1 

X [:"'""(" + B"o"x) + +C120Y ( I ) ]  . (3.27) 
z-x) - Z-x 

The expansion given by (3.26) can be used to express the 
functionsA ,,00, B,,,,, and C ,,,,, in this expression in terms of 
the function G,,,,,, and its derivatives. The correlation func- 
tion with the operator L , u ,  and all the functions contain- 
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ing the conformal "descendants" of invariant fields are then 
related by a differential operator to the block of invariant 
fields.' Integration with respect toz then gives the answer for 
the block Go,,,, as in (3.2) : 

where ai = 48, - c/8, and 

with one pole at A = 1/4. The functions G,,,, and Go,,, now 
have two poles each, at A = 0.1 and A = 0.1/4, respectively. 

The process of "associating" a large number of current 
operators to obtain blocks with the higher Ramond fields 
can be made easier by considering the multicurrent expecta- 
tion 

Comparison of (4.6) and (3.19) shows that the function 

where - 

The current I ( z )  is a free field, so that such correlators can 
be decomposed in accordance with Wick's rule into the 
product of paired current correlation functions. We shall 
show in the next Section how these blocks can be related to 
particular free-current correlation functions on a torus that 
is the Riemann surface of the elliptic curve 

satisfies the relation 
1 

This function can therefore be interpreted as the correlation 
function of the four conformal fields with dimensions 8,, 
i = 1,2,3,4 [placed at the point 0, 1, r/2, and (1 + r ) /2 ]  in 
conformal field theory on a torus (which appears when the 
planel is factored on a lattice with periods 1 and T),  with the 
additional symmetry condition T ( l )  = T( - l ) .  

In our case, the current operator 
4. RELATION TO CORRELATION FUNCTIONS ON A TORUS 

The quantity ( A , q )  in the representation 
(3.19) of a conformal block (see Ref. 8) can be related to the 
correlation function of conformal fields on a torus with par- 
ticular boundary conditions. For the conformal block 

Gbjb2636k(~) =( V 6 , ( ~ 1 )  Vb2(~2)  v b 1 ( x 3 )  v 6 1 ( x I )  ) 

satisfies the symmetry conditions 

the expectation value of the energy-momentum tensor has 
the following form (in accordance with the conformal Ward 
identities) : ' 

((T ( 2 )  ))=(T ( z )  Va, (21) Ve, (xz)  Va, ( 5 s )  Va, ( 1 1 )  )~a;:a,a,(x) 

and the same local operator algebra conditions as the current 
I ( z )  : 

6 ,  62 =-+-+- 6 3  + 61+62+6s+6r + ~ ( 1 - x ) C ( X )  
zz  ( Z - X ) ~  ( 2 - I ) 2  z ( 1 - z )  z  ( z - x )  (1-2)  ' 

The expansion of this current around 6 = 0 has the form 

~ ( 8 )  =2 z ~ - ~ , ~ ~ - ~ ~  (4.14) where the coefficient C(x)  determines the x dependence of 
the block: 

with the same operators I, -, as in Section 2. 
When we evaluate the correlation functions for the cur- 

rent I(6) subject to (4.12), we shall assume that the block 
conditions are satisfied, i.e., the charge flowing through the 
closed circuit corresponding to C in (3.2) is fixed and equal 
top .  On the 6 plane, this circuit can be represented by a 
segment of unit length, parallel to the real axis. Hence, 

a log G6,6 ,6 ,a , (~)  /dx=C.  (4.2) 

The elliptic substitution 
2 

maps the plane z onto a parallelogram on the plane with 
generators 1 and 7/2 [K(x)  and T are given by (3.7) and 
(3.8) 1. Under the conformal substitution, the energy-mo- 
mentum tensor transforms as follows:' 

In particular, it follows from these conditions that 

where The current I(,$) can therefore be written in the form 

where the current j (6)  satisfies the same relations (4.12) is the Schwartz derivative. The result is that, on the 6 plane, 
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and (4.13) and has zero expectation value. Since the current 
I({) is a free (Gaussian) field, the many-point correlation 
functions of the currentj(g) can be evaluated by Wick's rule 
and expressed as products of two-point functions: 

R(E, Ef)=(j(E)i(Ef)). (4.18) 

The two-point function R (g,{ ') is uniquely determined by 
the above symmetry conditions: 

1 dZ 
R(5,E') =--- 

2 dE2 log 0, (8-Er/q) 0, (E+gf/q) , (4.19) 

The use of these rules produces a substantial simplification 
of the procedure of "association" of different combinations 
of current operators I ( 6 )  with Ramond points which, in this 
representation, correspond to the points 0, 4, 7/2, and 
( 1 + r ) / 2  on a torus. Thus, for the blocks (3.14), (3.17), 
(3.181, (3.241,and (3.25), wehave (without takingnorma- 
lization into account) 

a 
H,,,,=<I (o)I('/.) ~ ( c i ~ )  )=-8nzip (p2-q- 0,' (q) ) (4.24) 

dq 
and, finally, 

where 

It is readily verifed that, when the normalization conditions 
are taken into account, all these expressions become identi- 

cal with the block formulas written out in Section 2. The 
explicit representations (2.22) for the higher-order Ramond 
fields can be used to derive the corresponding local fields 
that are constructed nonlinearly from the current i ( { ) ,  
where the "associations" of these fields with the vertices 0, 4, 
7/2, and (1 + r ) /2  gives the blocks containing these higher 
fields. For example, the following operators correspond to 
the fields a, and a,: 

and 
1 - (3 : I I ~ ~  : -10: ( I")~ : -20: zrfz3 : +8 : P :). (4.29) 

360 
Here, the normal ordering symbol signifies that singular 
contributionsofthe form I/({ - I / (< - { etc., are 
subtracted when we take the limit of equal arguments in 
these operators. For example: 

In particular, for the block (3.28), we obtain 

Since 

we find, as in the last Section, 
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