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A perturbation theory is developed and is based on transformation to a curvilinear coordinate 
frame in which the interface becomes flat. This transformation permits a correct description of 
the variation of the fields on the surface, which is essential for the investigation of processes 
such as absorption or scattering of light by molecules adsorbed on the surface. Expressions are 
obtained, in first order in the characteristic dimension f of the roughnesses, for the intensity of 
light scattered from films with rough boundaries. It is shown that in thin films the roughnesses 
lead to localization of surface polaritons. 

1. INTRODUCTION 

To describe correctly various phenomena that occur on 
an uneven interface of two media and in which an electro- 
magnetic field participates (absorption of light by molecules 
or atoms on a surface, interaction between molecules, scat- 
tering of light by the surface itself, and others), we must have 
for the Green's function a perturbation theory that de- 
scribes, in all regions of space, the changes produced in the 
fields by the roughnesses. Although in principle the ap- 
proach of Ref. 1 describes correctly the near surface region, 
the use of the Green's function is a more universal method 
that reveals furthermore the features of the perturbation due 
to curvature of the boundaries. On the other hand, the exist- 
ing methods of determining the Green's function for similar 

can lead to the correct answer only for problems 
such as light scattering by a surface, when the behavior of the 
fields far from the boundary is significant. 

The problems referred to above can be solved in princi- 
ple within the framework of the perturbation theory pro- 
posed in the present paper, since it permits the field to be 
correctly described also in the immediate vicinity of the 
boundary. This perturbation theory is constructed by trans- 
forming to curvilinear coordinates in terms of which the in- 
terface becomes flat." In this case the initial perturbation 
operator for the case of one surface contains terms of only 
first and second orders of smallness of the characteristic di- 
mension f of the roughness. When, however, a perturbation 
theory is developed for light scattering by the surface, the 
perturbation operator, in an orthogonal coordinate frame is 
an infinite series containing all orders of {. For films with 
two uneven boundaries, even the initial perturbation opera- 
tor contains all orders of {. As an example of the use of the 
perturbation theory, the present paper deals, in first order, 
with light scattering by films, and also with surface-polari- 
ton damping caused by the boundary roughness in thin 
films. 

2. PERTURBATION THEORY FOR THE CASE OF ONE 
UNEVEN SURFACE 

The retarded Green's function Da8 (w,r,rl) of an elec- 
tromagnetic field satisfies the equations 

where x, = {x,y,z}, A is the Laplacian and ~ ( r , w )  is the 
local dielectric constant at the frequency w and its values on 
the two sides of the interface are and E*. The boundary is 
given by the equation z = f ( p ) ,  with ( 6 )  = L  - *  
J {(p)dp = 0 and L * the area of the surface. The medium 
with E ~ ( w )  is located in the half-space z - f ( p )  > 0. We 
transform in Eq. ( 1) to the curvilinear coordinates x = x, 
y = y, u = z - f (p) .  In contrast to Ref. 7, however, the vec- 
tor indices (tensor indices for DaP ) still refer to the orthogo- 
nal axes. Equation ( 1 ) acquires then terms containing {, 
which we separate in the perturbation operator 

[DOGL: (a, V) + VaT (v) IDTO (0, V, v') = - 4 ~ J i 6 a ~ 6  (v-v') . (2) 

Here v = {x,y,u} are the curvilinear coordinates, 

f ,  d f  /ax, fy  =df /dy, and the remaining terms Vap are 
obtained by properly replacing x by y. 

Equation (2)  can be written in the integral form 

Da8 (v, v') = Doc (v, v') 

Here D % is the Green's function corresponding to an inter- 
face that is flat in the coordinates v and v'. Note that when 
expressed in Cartesian coordinates this function is not the 
Green's function for the case of a boundary that is flat in 
Cartesian coordinates. But if we consider the interaction 
between molecules absorbed on the surface, we must use Eq. 
( 3 )  directly, since the curvilinear coordinates correspond in 
this case to the real location of the molecules in space. 

To solve Eq. ( 3 )  it is first necessary to consider the 
problem in all of space, including the transition region 
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between the two media, where E ( U )  changes continuously, 
albeit rapidly, from E, to E,. The only conditions on DaB are 
initially that they decrease at infinity and that they and their 
derivatives be continuous (except at the point v = v'). The 
usual boundary conditions that relates the fields on the op- 
posite sides of the transition layer will follow from Eq. (3 )  
when the fields considered have wavelengths much longer 
than the size of the transition layer. Were we to transform in 
( 3 )  directly to a discontinuous jump of the dielectric con- 
stant at the point u, the integral in the right-hand side would 
acquire indeterminate terms of the type J S(u)B(u)du 
(8(u)  is the step function) in view of the discontinuities of 
certain components of D zD or of their derivatives. In addi- 
tion, the operators VaD and D &j would not be self-adjoint 
and we would lose the symmetry of the Green's function 
with respect to the first and second arguments, a symmetry 
expressed in nonmagnetic media by the relation 

D~B(o ,  r, rf)=DeG(m, rf, r). 

From (3)  we obtain the following expression for the 
first correction to the Green's function in the curvilinear 
coordinates: 

=- I I dv1 Dm; (0,  \., \.I) v::' (v I )D*~  (my VI. v'). (4)  
4nA ' 

We have retained here in Vbi' only terms of first order in 6. 
This expression leads, in first order, to a correct change of 
the boundary conditions for DaD in the transition to the 
abrupt jump of E ( u ) . Thus, for example, what is now contin- 
uous in u is not the function Di i ' (u ) ,  but 
D Li' (u)  + gxD :x (u),  meaning continuity of one of the tan- 
gential components of the electric-field intensity vector. 
Equation (4) thus describes correctly, in first order in f, the 
correlations of the field on the rough surface itself. What Eq. 
(4) yields, however, is not the complete expression for the 
first-order correction to the Green's function if we transform 
back to Cartesian coordinates to describe the light scattering 
by the surface. Even the initial Green's function, the "ze- 
roth" in the curvilinear coordinates, will contain all orders 
in 6 on going to the Cartesian coordinates, since 

DagO(u, u') =DagO(~-E, zf-E'). 

Thus, in orthogonal coordinates, we get in first order, on top 
of expression (4), the term 

This increment can be rewritten in the form 

since D,,! ( r l ) D g  (rl ,r)  = - 4&(r, - r)S,,. It is easy 
to verify that, in first order, the operator in the brackets is 
equal to 

Addition of (4) and ( 5 )  leaves for the Green's function 

where the action of the S function on the z component of the 
Green's function must be taken to mean the expression that 
follows from (7)  when account is taken of the continuity of 
E (z) D :G (zJ') on the interface: 

1 Da.O (z, ~ i )  6 (zi)Dz; (zt, z') dzr = Da,O (z, -0) DZB((+0, 8')- 

( 9 )  
and 

DaZ0 (z, *O) = lim DaZ0 (z,z,) 
2,--0 

for an abrupt jump of ~ ( z ) .  
This is precisely the form obtained for D $) in Ref. 3, 

but it must be noted once more that this equation describes 
actually the Green's function only far from the surface. It 
can be seen that the function defined by (8) will always satis- 
fy the same boundary conditions as D z B ,  without the 
changes due to curvature of the interface. Thus, the simple 
expansion (5)  of the Green's function in a Taylor series can- 
not yield the correct values of the fields near the surface, in 
view of the presence of discontinuous components, and such 
an expansion is a correct operation only for integrating the 
Green's function with continuously differentiable functions. 

Calculating the function D $) by using Eq. (8)  (various 
components of D % are given, e.g., in Refs. 2 and 3 ) ,  we can 
obtain by a single procedure the cross section for scattering 
of differently polarized waves. The energy flux per unit solid 
angle in the direction of k when a wave with wave vector k, is 
incident on the surface at an angle 19, is expressed in terms of 
D $) as follows: 

,DL;' (k, ko) m Z - o z  (k,) 
X( I (k) ea 4nR ee 

cZ 1 2 >  . 
(10) 

Here I,, is the intensity of the incident wave, (...) denotes 
averaging over the surface, and e$ and e i  are the polariza- 
tion vectors of the incident and scattered waves. The scatter- 
ing cross sections calculated from ( 10) agree with those ob- 
tained earlier by other methods (see Refs. 9 and lo).  

If we are interested in the local field produced by an 
incident wave with wave vector k and acting on a molecule 
adsorbed on a surface, we must transform to Cartesian co- 
ordinates not for both arguments, as in the preceding case, 
but for only one, leaving the second argument, correspond- 
ing to the position of the molecule, in the curvilinear coordi- 
nates. The field at the point v is determined by the DaB ( k , ~ )  . 
Using ( 7 ) ,  we obtain in first order 

(1) dDac(k, v) oZ 
D., (k. V )  = E (PI- a u + --_I 4nhc D,I. (k, vI) !eZ-el) 

In contrast to Eq. (8) ,  which is valid only for scattering, Eq. 
( 1 1 ) yields the correct boundary conditions for the fields as 
functions of v. Since both terms of ( 11 ) are in general of the 
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same order, we find, for example, that the correction to the 
cross section for absorption of molecules adsorbed on the 
surface differs by an approximate factor 4 from that calculat- 
ed from Eq. ( 8). 

To describe light-scattering processes of higher orders 
we can obtain, starting from Eq. ( 3 ) ,  a general expression 
for the Green's function in Cartesian coordinates. In this 
case we expand the Green's function in a Taylor series 

With the aid of ( 12) we transform in (3) to Cartesian co- 
ordinates: 

D,, (r, r') = jjj dri dr2 LS Da: (r, .I) VITV(~,, 4)  

where 

= (4nh) -' D~:: (r,) U (r,) Dl: (ri, rz) U-I (r2) D;; b2) ,  

V2a,(r)=(4nh)-1U(r)Vag(r)U-i(r), 

u(r)=exp[-E(@)d/azl, 

Vao is the perturbation operator contained in (2) and (3).  
The form of the perturbation-theory series obtained from 
( 13) is not at all standard, and the operators V ,  and V, con- 
tain terms of all orders in f .  Note that the action of these 
operators does not reduce to repeated action of the first- 
order perturbation operator of expression (8).  Thus, the 
presented perturbation theory differs from that developed in 
Refs. 3 and 4 in all orders of 6 higher than the first. 

3. SCATTERING BY FILMS HAVING UNEVEN BOUNDARIES 

We shall assume that the film boundaries are specified 
by two equations, z = f , ( p )  and z = d + f 2 ( p ) ,  with 
(6,) = 0 and (f,) = 0. The dielectric constant &,(z,zl) of 
the film can be both locally and nonlocally dependent on z 
andz'. Since a nonlocal dependence is typical of a sufficiently 
thin film, we shall use in this case an approximate descrip- 
tion, in which all the fields are averaged over the film thick- 
ness. The dielectric constants of the media in the regions 
r < f ,  and r > d + f, are respectively equal to E ,  and E,. For 
both boundaries to become flat, we must transform to the 
curvilinear coordinates 

where the function f (u )  varies continuously from 1 to 0 
when u changes from 0 to d, f (u)  = 1 at u <O, and 
f (u )  = 0 at u > d. We need not specify the form of f (u) .  
Following this change of coordinates, Eq. ( 1 ) takes the form 

In contrast to the case of one boundary, Vap contains now all 
orders of 6, and g,, for example, 

where f , = C3 f /du. 
Whereas in the preceding section the small parameter of 

the perturbation theory for scattering of light of wavelength 
A was the ratio f /A, to develop a perturbation theory as a 
series in powers of f ,  and f, it is now necessary also that the 
parameter f, = (f, - 6,) - (6, - 6,)/d be small, mean- 
ing, iff, and f 2  are not correlated, that the characteristic size 
of the roughnesses be small compared with the film thick- 
ness. The first-order Green's function in curvilinear coordi- 
nates is 

D$ (a,  v, v') 

where we retain in NV:;, as before, only first-order terms. 
Using a relation similar to (7), we can represent D $) in the 
form 

(1) a 
Dab (0, V, v') =-% (v)- Do: (0, V, v') 

au 

where S(v) = g l ( p ) f  ( u )  + f 2 ( p ) [ 1  -f ( ~ 1 1 .  We find 
from this that the scattering of light by the film will be deter- 
mined by the last term in the right-hand side of (16), al- 
though allowance for the first two terms is necessary for a 
correct decription of the field on the surface itself. D $) takes 
in Cartesian coordinates the form (see Ref. 8) 

(1) 0% Dab (r, r )  = -J Da:(r, ri) [ (eS--ct)Ei(pi)~(zi) 
4nhc2 

+ (82-€3) E2(~1) 6 (~1-d) ID780 (ri, r')dri. (17) 

The action of the S functions on the z components is deter- 
mined here, as before by 

= lim D,," (z,' -6)Dz; (+6, 2') , 
b-c+O 

j Da2 (z, zl) 6 (zi-d) Dz: (z,, z') dzi 

=,lim Da,O (z, d-6) D,: (d+6, z') . 
b*+0 

The Green's functions D $ corresponding to a film with flat 
boundaries can be obtained in the same way as in Ref. 11, 
except that both arguments must be above or below the film. 
The expressions obtained from ( 10) for the intensities of the 
s-s, p-p, andp-s scattering are given in Appendix A. 

In films with d)il there appear E, > E, and E, rather 
infrequent changes of the scattered-radiation intensity when 
the angles 8 and 8, are changed, in view of the interference of 
the light in the film. Assuming that E, >E,  and E, - 1, we 
obtain approximately from (A.2) 
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g1 (P-P') + g2 ( P - P ' )  
dl"" cos (q3d)  = I, cos ( ! l id )=  1 - = 4 cos 0. cos2 e cos2 cp ( P) E: I Q ~ + ~ ~ I ~ I ~ ~ ~ + ~ ~ ~ I ~  9 

I ,  0x2 
11 (P-P') I q2'12' l ' + ~ z ( P - P ' )  e J a ( 0 ' ~ )  , sin (q3d)  = I, .in ( q i d )  = 1 

9 

e , ' (o /c )  
(18) 

dzpp 1 qzqz' I c0sz q 
g i ( p - p ' ) +  g2(p-p ' )  

cos (q ,d)  = 1, cOs (q,'d) - 1 
- = 4 COS 0. C 0 S a  0 (:)' 13: [ (&iqa+ezqi 1 2 1  e iqz'f ~aq i '  1' 
I ,  dQ gi (P-P') ( ~ p ' ) ~ + g z  (P-P' )  (w/c)' cosz 9 , sin (q3d)  = I, sin (q,'d) = I 

es2 1 4141' 1 

The angle between two neighboring maxima near the angle 8 
is defined by the condition 

s i n 2 ( 0 t A 0 )  --sin2 0 ~ n h / d e 3 ' " .  

It follows from (18) that, in the direction of the smallest 
scattering of s-polarized waves by waves of the same polar- 
ization, the contribution of the roughnesses of the upper 
boundary f ,  is smaller than the contribution from f, by a 
factor I/€:, although their contribution to the scattering in 
the direction of the maximum is the same. Forp-p scattering 
the contributions of the roughnesses of both boundaries are 
approximately equal. In either case the intensity of the scat- 
tering changes by a factor of 1 /~ :  on going from the maxi- 
mum to the minimum. 

We average the fields over the thickness of the thin film, 
assuming that d 4. Using only the values of the fields out- 
side the film, we obtain from ( 17) 

where 

= lim Da,O (z, d+6)  D,: (d+6,z') , 
6++0 

E, = d -' ~~(z,z')dzdz', and account is taken of the fact l 
that in first-order approximation the field components E,, 
and E, are constant in the film. 

The intensity of light scattering by thin films is given by 
expressions (A.3) of Appendix A. No assumptions were 
made in (A.3) concerning the correlation off, and l,, since 
the scattering depends essentially on their mutual correla- 
tion. Thus, i f l ,  = f 2  we arrive at equations for light scatter- 
ing by an uneven interface between media with dielectric 
constants E, and E, (see Refs. 9 and l o ) ,  and in first order the 
presence of the layer on the surface does not affect the scat- 

tering at all. If there is no correlation between 6, and 12, 
.scattering in first order exists even if E ,  = c2, in contrast to 
the case of a single boundary. 

4. DAMPING OF SURFACE POLARITONS IN THIN FILMS BY 
BOUNDARY ROUGHNESSES 

Surface polaritons (SP) in thin films are considered 
briefly in Appendix B. The roughness of the film boundaries 
causes rescattering of the SP by one another in the film 
plane, as well as by their scattering by photons. In first-order 
approximation, the SP damping is given by 

dz,  dz,, x (PI DT: (P', z , ,  z2> ed* (PI - 
( 2 n )  

where 

v:' ( p ;  z )  =v::' ( p ;  2 )  

e ,  ( p )  and N, are respectively the polarization vector and 
the normalization factor of the SP vector potential [see 
(A.2) 1. The radiative damping frequency, i.e., the part con- 
nected with the scattering by photons, corresponds in (20) 
to the integration region from 0 to p' = max{k,,k,). The 
contribution from the pole in D s  (p , z , z l )  determines the 
damping due to the rescattering of the SP by one another. 
The radiative damping can be estimated by substituting for 
D the Green's function of the free photons, since the film 
alters little the photon field, in contrast, e.g., to the case of a 
semi-infinite metal with $1, when account must be tak- 
en of the decrease, by a factor I E ,  I -'/', of the tangential field 
components on the surface. 

For large (E,( the value of y, just as the scattering of the 
light, depends strongly on the correlation between 6, and 6,. 
If there is no correlation and the roughness size is smaller 
than the SP wavelength, the expressions for the mean free 
path are 

( ~ ~ ~ ~ ) - ~ ~ ~ s ~ k ~  [g i  ( 0 )  (0) 1, 
(c;;) - I = ,  I ispo~32k'[gi  ( 0 )  +gz ( 0 )  1, 

(21 
- 1 ~ ~ ~ ~ 3 2 k 3 p o  [gi ( 0 )  +g2 ( 0 )  1, 

( 1  :f)-l = 1 / 4 ~ o ~ o l [ ~ s 2 / ( ~ i + ~ 2 ) 2 ~  [ g l  ( o ) + g , ( o ) ] ,  
g< ( 0 )  =gi (p=O) .  
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Here I = (ydp/do)-', k = w/c ,  p, is the SP wave vector, 
and the subscripts R and SP denote respectively scattering 
by phonons or by SP. Expressions (21 ) show thus that when 
1 ( I 4 l/kd andp,) k the main process is the rescattering 
of the SP and not their radiative damping. This should lead 
to localization of the SP and to the appearance of effects due 
to the onset of the localization. These effects include an in- 
crease of the intensity of the s-p scattering, which is forbid- 
den in first order,13 and the appearance of a peak of back- 
scattering counter to the incident wave.14 

5. CONCLUSION 

Development of a perturbatiion theory for the Green's 
function even in the case of on rough surface encounters a 
number of difficulties that complicate the problem substan- 
tially. To use the general methods of the theory of Green's 
functions and of scattering theory it is necessary to derive the 
Dyson equation and explicitly separate the zeroth approxi- 
mation of the problem and the effective perturbation opera- 
tor corresponding to the bending of the boundary. It turns 
out that such an equation that describes correctly the change 
of the Green's function also in the immediate vicinity of the 
boundary can be obtained relatively simply by transforming 
to a curvilinear coordinate frame.2' One of the difficulties in 
this case is that the zeroth approximation used is the Green's 
function for a flat interface, but expressed in curvilinear co- 
ordinates. This function already contains part of the pertur- 
bation due to the surface roughness, and does not describe 
merely the scattering by a flat surface in the real Cartesian 
coordinates of the surface. Note that the perturbation opera- 
tor contained in the Dyson equation (3) is a "three-dimen- 
sional" perturbation, i.e., the influence of the roughnesses 
cannot be reduced in the general case to a two-dimensional 
perturbation potential "tied" to the interface plane. 

A theory in which the starting point in the zeroth ap- 
proximation is a Green's function for a surface that is plane 
in Cartesian coordinates always leads to an incorrect result 
near the boundary. Such a "zeroth" function can be used 
only in problems involving light scattering by the surface 
itself, i.e., when we are interested in fields far from the 
boundary. This case meets with another difficulty, in that 
the effective perturbation operator V contains terms of all 
order in 6, so that the expansion of the Green's function in 
terms of V does not coincide with the expansion in powers of 
6. 

For films with rough boundaries, an investigation of 
higher orders of perturbation theory is an even more compli- 
cated problem than for a single surface. In the case of small 
roughnesses, however, the use of the expressions presented 
in this paper for first-order scattering cross section (A. 1 ) 
may be sufficient to determine from experimental data the 
correlation functions of the roughnesses of each boundary. 

In conclusion, the author is deeply grateful to L. V. 
Keldysh for helpful discussions of the result. 

APPENDIX A 

The intensity of scattering of waves with different po- 
larizations by films under the condition that the incident and 
scattered waves propagate in a medium with E,,  is given by 
the expressions 

= 
41q1q:1z ( $ ) 4 c o S z  ,+,[ g l (p -p f )  ( E 3 - a i ) z  - =  

I .  dP cos 00 

DaO (p ,  0,O) DS0 (P', 09 0 )  
(Inti) I z  
DWO (p ,  0, d)DWO (P" d,  0 )  + g2 (p -p f )  ( e z - e ~ ) ~  1 (4nti) 

1 dlPP 4 1 q i q i f 1 2 ( ~ ) 4  --= 
I ,  dQ cos 00 

[ g,(p-P') (ea-e1)' 
cos2 0 c0s2 00 

1 Z P  4 1 qIq( I ' (:) ' sinz p [ --= - 
c0sZ 00 

gi (P-P' )  (es-81)' 
I, dQ cos 00 

where 

Lo (p,  0, 0 )  =-4nli[ (q,+q,) eqsd+(qa-qr)e-V] 
X [  (qi+ qs) (q2+ q3) eq?-(q3-qi) (qs-qz) e-'Q]-', 

DWO(p, 0 ,  d )  
= - 4 d { Z q ~ [  (qi+qs) (q2+qs)eq'-(qs-qi) ( q r - q ~ ) e - ~ ~ ] - ~ ) ,  

DwO (p ,  0, 0) = (4nAqiqrcZ/a') 

p=(ei"o/c) sin go, p'==(ei50/c) sin 0,  

6, and 6 are the incidence and scattering angles, q, the azi- 
muthal angle between the incidence and scattering planes, 
and and l2 are assumed to be uncorrelated. In the case of 
thin films with d(A the expressions for the scattering inten- 
sity are of the form 

1 dl"' 4(q,q,'(2 0 --= 
0 d cos 00 (T) 
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--= 
I ,  dQ cos 0, 

--= 
I, dQ cos 0, 

Assuming that I&,[ )E~ ,E*  it is necessary then to neglect in 
expressions (A.2) for D;,, and D ex the terms containing 
dw/c, but retain the terms with E ~ ~ w / c .  In this approxima- 
tion 

APPENDIX B 

Thin films can have surface polaritons (SP) of the TE 
and TM type (see, e.g., Ref. 12), with dispersion laws deter- 
mined respectively by the poles of D L  and D ; y .  In the fre- 
quency region where the relation 1 < I E ,  (w) I <c/dw is valid, 
the SP wave vectors are in the interval w/c < p  < l/d. The 
dispersion relations are of the form 

pTE ( 0 )  = E ~ ( o )  d 0 2 / 2 ~ 2 ,  &3>0, 
(B.1) 

Simplifying expressions (A.2) for the functions D :, 
and D ;,, for the case of thin films, we easily find the vector- 
potential operations of SP of various types: 

where 

h=TE, T M ,  
NpTE= [ 2 n F ~ L - ~ ( d o / d p )  ]'", , 

fi and 2 are unit vectors in the direction of p and z, respective- 
ly, and 2; is the annihilation operator for SP of type il with 
wave vector p. 

"Such a transformation was used In Ref. 7, but no'itccount was taken there 
of the need for changing the incident and reflected waves on transform- 
ing to a curvil~near frame, and the result was in error. 

''A der~vat~on of lntegral equations of another type to find the fields on the 
surface, based on the use of the Green equations for the Helmholtz equa- 
tlon, can be found, for example, In Refs. 15 and 16. 
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