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The penetration of an alternating electric field from a vacuum into a degenerate electron 
plasma of a conductor in a direction perpendicular to the interface is analyzed with allowance 
for electron scattering by the conductor surface. The asymptote of the inhomogeneous part of 
the field in the interior of the plasma is formed by carriers with maximum velocity components 
along the normal to the interface, and constitutes in the collisionless limit a nonexponentially 
damped quasiwave. The dependence of its amplitude on the specularity parameter that 
characterizes the intensity of the surface scattering of the electrons is obtained. A new method 
is proposed for the required calculations. 

1. The structure of an alternating electric field in the 
transition layer between the sample surface and the plasma 
interior in which the microscopic description is valid de- 
pends substantially on the dynamics of the plasma particles. 
The problem of the behavior of the field in such a layer was 
first solved by Landau' for a half-space filled with a nonde- 
generate Maxwellian plasma. It was assumed in Ref. 1 that 
the electrons are specularly reflected by the surface. An im- 
portant result of Ref. 1 was detection of a longitudinal-field 
component Ex, with a slower than exponential damping. It 
is this component which determines the asymptotic behavior 
of the field in the transition layer (the approach to the mac- 
roscopic value E,/E(w), where ~ ( w )  is the dielectric con- 
stant of the plasma). According to [ 1 ], 

where w is the field frequency, w, = ( 4 ~ n e * / r n ) " ~  the plas- 
ma frequency, a = ( T / 4 m ~ e ~ ) " ~  the electronic Debye- 
Hiickel radius (the remaining notation is standard and X is 
the coordinate along the normal to the surface). 

Degeneracy of the plasma alters substantially the field 
structure in the transition layer. In particular, the existence 
of a maximum electron velocity (v, ),,, ( v ,  is the Fermi 
velocity) leads to the appearance of a field component that is 
damped non-exponentially (almost as a power law). This 
component is customarily called quasiwave.* From the phys- 
ical standpoint a quasiwave is the result of the penetration of 
ballistic electrons, moving perpendicular to the sample sur- 
face, to a depth on the order of the mean free path I. At 
distances x 1 the quasiwave has a power-law attenuation. 
Mathematically, the quasiwave is due to the presence of 
branch points of the dielectric constant of the metal (as a 
function of the complex wave vector). If the Fermi surface of 
a degenerate plasma has a complicated shape, this is "felt" 
by the field in the transition layer, viz., Ex, consists of several 
terms, each generated by a separate value of v,. 

A collisionless plasma is a medium with clearly pro- 
nounced spatial dispersion that leads to a nonlocal connec- 
tion between the current density and the electric field 
strength. Determination of this connection (derivation of 
the material equation calls for solution of the kinetic equa- 
tion for the electron distribution functionf, an impossible 
task without formulating the boundary conditions forf. This 
is a special complicated problem whose solution starts out 

with more-or-less model-dependent description of the sur- 
face and of the character of its interaction with the electrons 
(see Ref. 3 and the citations therein). 

To calculate the electric conductivity of a thin plate, 
Fuchs4 formulated a phenomenological boundary condition 
that takes into account the nonspecularity of electron reflec- 
tion by a sample surface (X>O) : 

(2)  

f, = f - f, is a nonequilibrium increment to the equilibrium 
distribution function of the electrons. Condition ( 2 )  should 
not contradict the natural requirement that the current not 
leak through the boundary. In the problem of the conductiv- 
ity of a thin plate4x5 and also in the calculation of the surface 
impedance of a metallic isotropic half-space6, the nonlea- 
kage condition was automatically satisfied because f, is odd 
in the transverse (relative to the normal to the metal sur- 
face) components of the electron velocity. Encountering (in 
a study of the high-frequency properties of an anisotropic 
metal) a violation of the non-leakage condition, Azbel' and 
PeschanskiT7 generalized the condition (2 )  as follows: 

where the integration is over that part of the Fermi surface 
on which vx < 0. 

Although recent studies have shown that the phenome- 
nological boundary conditions (2)  or ( 3 )  do not cover all 
the situations, considerable interest attaches to solution of 
electrodynamics problems with an arbitrary Fuchs param- 
eter q. First, as will be shown below, it requires a significant 
generalization of the Wiener-Hopf method, a generalization 
that will undoubtedly be useful in many branches of theo- 
retical physics. Second (and foremost), an analysis of the 
solution can identify the electrons responsible for some par- 
ticular electrodynamic property of an electron plasma, while 
comparison of the phenomenological boundary conditions 
with the microscopic ones can determine the effective value 
of the physically lucid parameter q. Such a comparison, 
however, requires a solution for arbitrary q. 

Our present task is the find the distribution of the longi- 
tudinal electric field in a transition layer of an extremely 
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degenerate electron plasma ( T  = 0)  with boundary condi- 
tion ( 3 )  at an arbitrary value of the specularity parameter 
q(O<q< 1 ). The electron dispersion law is assumed isotrop- 
ic: 

This, of course, is a simplifying assumption. It is appropriate 
to mention, however, that metals exist with spherical Fermi 
surfaces (Na, K, Rb, Cs, ... ). In addition, paying principal 
attention to the dependence of the solution on the specular- 
ity parameter q, it is natural to simplify to the utmost the 
dynamic properties of the particle in the interior of the plas- 
ma. 

We emphasize, finally, that the problem of penetration 
of a longitudinal electric field into a plasma is one of those 
problems whose solution adds to our knowledge of the be- 
havior of a many-body system under external action. The 
solution of this problem is of importance for the understand- 
ing various processes that evolve in electron systems. 

2. We consider thus the penetration of an alternating 
electric field E(X,t) =(E(X)exp( - iwt); 0; 0) from a vacu- 
um X < 0, where E(X) = Eo, into a plasma occupying the 
half-space X>O. The connection between the field in the con- 
duction current 

is obtained directly from Maxwell's equation 

Here v =  Iv, I, the subscript + or - coincides eith the sign 
of v, , and the angle brackets denote averaging over the Fer- 
mi surface: 

vn 

( u ,  = (2~, /m) ' I 2  is the Fermi velocity). The function $+ 
determines the nonequilibrium increment - e$ ,  (dfi/ 
&)e - j"' to the Fermi distribution function f, of the degen- 
erate electron gas and satisfies the kinetic equation 

a$*/dX*p$,=~ (x) , ( 7 )  

where p = ( Y  - iw)/v, and Y (the electron relaxation fre- 
quency) is the smallest problem parameter with dimension 
of frequency, introduced to make the corresponding inte- 
grals convergent. We are actually interested in the collision- 
less limit (we could introduce the parameter of the adiabatic 
turning-on of the field in place of the collision frequency, see 
Ref. 1 ) . In terms 4 + the boundary condition (3) takes the 
form 

The solution of Eq. (7) takes the form 

since j, = 0 in vacuum, the condition that the total current 
(6)  be constant means that 

i 

This in fact the equation for the distribution of the field 
E(X) in the plasma. Using the definition (5 )  of the current, 
the solution (8 )  of the kinetic equation, and the non-leakage 
condition, we express the field in explicit form: .. 

T ( X )  = (4ne2/io) (V exp ( - p X )  )+. 
( 9 )  

We introduce now the constant - 

(10) 

It is equal to the difference 1 - ~ ( o )  between the dielectric 
constants of the vacuum and the plasma. The plasma fre- 
quency w, is the largest parameter with dimension of fre- 
quency in the problem. For metals (and also semimetals and 
even degenerate semiconductors) it is natural to assume a 
field frequency w go,, andB is then a large parameter of the 
problem. The solution given below uses essentially the fact 
that 

It follows from (9) ,  as can be easily shown (see also 
Ref. 1 ), that E( + 03 ) = E,( 1 - 0 )  - '. We shall consider 
only the inhomogeneous part of the field, 
E(X) - Eo( 1 - P) - ', which vanishes at infinity. We intro- 
duce its dimensionless value through the equation 

Transforming in (9)  to the dimensionless variables x -wX / 
v,, u = v/v,, we obtain the following equation for Z? (x)  : 

OD 

The kernel of this equation is not a difference kernel as for 
q = 0, nor can it be transformed into a difference kernel, as in 
the case q = 1, by an odd continuation of the sought function 
to the semi-axis x < 0. It is difficult to obtain an approximate 
solution of (13) because its kernel is unbounded at large 
values of the parameter IB 1 .  It is necessary to find for the 
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equation an equivalent form that would facilitate an investi- 
gation of the solution at large 1 .  

3. The use of the Laplace transform 

yields in place of ( 13 ) 

where 

is the dielectric function of the metal and coincides a t p  = 0 
with E ( w ) .  It is convenient to introduce in the complex p 
plane two cuts (a ,  a co ) and ( - a ,  - a CE ). The function 
~ ( p )  is even outside the cuts and has no singular points other 
than the branch pointsp = f a. It vanishes at 

The function 

has only one singular point-a branch point p = a in the 

plane with a cut (a ,  a CE ), we note that limpFL (p) = 1. The 
P- m 

function 

has ~e same branch point and two polesp = f a/u; 

Relation (14) shows thus that the sought function 
$, (p) can be continued into the left half-plane Re p < 0 
with a cut (a ,  a cu ), and has there only one simple pole p, 
and one branch point a .  Consequently, the solution $ (x) 
has the same structure as in the limiting cases q = 0 and 1 
(see Ref. 2): a rapidly damped term Aexp(p&) plus a 
quasiwave, i.e., the contribution of the branch point. In the 
general case, however, when q#O or 1, the derivation of 
relations that can determine both contributions (and their 
dependencies on q)  is not trivial and requires modification of 
the known Wiener-Hopf method." 

Namely, dividing ( 14) by ~ ( p ) ,  we represent the func- 
tions 

in the form of Cauchy integrals along the contour shown in 
Fig. 1. If we now let the radius of the circle go to infinity, 
each of these functions breaks up into a sum of four terms 

FIG. 1. 

'[ y + 
y - pO, ya , y - a ; similarly for p (p) 1,  having in the 

cut plane only singular point each-identified by the sub- 
script. These terms are 

Using these expansions, we can rewrite ( 14) in the form 
I 

8, ( p )  + 3ap 1 du 8, (-alu) ya ( P ,  u ) -  c ~ a  ( P )  - A (P-PO)-' 
0 

where the prime denotes differentiation with respect to p, 
and 

1 

1 
[ F L ( + P O ) -  3 4  o J d u 8 , ( - a / u ) ~ ( * p ,  u ) ]  . 

(21) 
The left-hand side of (20) is analytic in the right-hand 

plane (Rep)O), and the right part in the left half (Rep<O), 
i.e., both are equal in the entire (uncut) p plane to one and 
the same analytic function, zero in this case [see ( 17) and 
( 18) 1. In addition, the pointp = - p, is not singular for the 
function q, -,; all this leads to three equalities: 

A 8, ( p )  + 3ap Jdu  lL (-a/u)  la ( p ,  u)  - 'P= ( P )  = - 
0 P-Po 

4. Identity transformations (left out for brevity) of 
(22) lead to the following formulation of the problem: 

where 
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@ ( z )  is a bounded (also as JP I - co ) function of z, the form 
of which is known, while the unknown function W(z) satis- 
fies the integral equation 

m 

with the symmetric kernel 

(26) 
which is independent of8. It is bounded by the inequality 

5. No use was made so far of condition ( 1 1 ) in the refor- 
mulated problem. Equation (23) and (26) are suitable just 
at ID I ) 1. An investigation based on an estimate of integrals 
of the form 

m 

jdzzn/r(i)  (n<2) ,  
t 

shows that at IB I ) 1, neglecting remainders that are small in 
the parameter 1nIP I/IP 1 'I2 < 1, the functions r(z)  and @ ( z )  
in expressions (23 ) and (25 ) can be replaced by 

(28) 
The constant 

is calculated with the same accuracy. We have thus deter- 
mined the first term of (23). Note the weak dependence of 
the ordinary wave on the specularity parameter. Clearly, 
this is a result of the kinetic correction to the hydrodynamic 
solution (actually macroscopic and therefore insensitive to 
the character of the electron reflection from the surface). 

The ordinary wave attenuates rapidly in the interior of 
the conductor (in real coordinates-at a depth on the order 
of the Debye screening radius ~ , / 3 ' ~ ~ w , ) ,  so that the second 
term of (23) predominates already at x % 1nIP 1/18 1 'I2. This 
term can be found by numerical integration of (25) (with 
(27) and (28) taken into account). 

The asymptotic form of the field g ( x )  at x %  1, i.e., in 
real coordinates at depths larger than the distance uo/w ne- 
gotiated by the electron during the period of the field, can be 
approximately obtained analytically. From (23) we have 

rn 

The asymptotic form of the integral in this equation is easy to 
calculate: 

a 

The quantity W( 1 ) can be estimated from Eq. (25), using 
the explicit forms of the functions @,(z), r,(z) and Q(zg ) : 

This quantity is less than half of one percent of @, ( 1 ) [see 
(28 ) 1, and can be simply neglected. 

Thus, 

x ( x ~ 1 ,  1fiIBl). (32) 

Recall that a = i - v/o, and x = wX/uo, i.e., the 
quasiwave (32) propagates with Fermi velocity v, to depth 
on the order of the electron mean free path I = v,/v; in the 
collisionless limit (or at X-4 I) it attenuates non-exponential- 
ly. Complete uniformity of the field 

E (X) =Eo (I-P) -', 
is reached, as is clear from (32), relatively slowly (in pro- 
portion to x-'ln-'x). 

6. Estimating the role of the asymptotic behavior of the 
function 8'(x), we must bear in mind the following: its 
smallness is due only to the fact thatx =wX /u,) 1. The func- 
tion @? (x)  itselfdoes not contain any special smallness what- 
ever, since the factor P - '  in (32) is contained both in the 
value of the macroscopic field in the interior of the conduc- 
tor, E,/E(w) z - EO/P (cf. Refs. 9 and 10, in which it is 
shown that the amplitude of an acoustic quasiwave contains 
an "extra" small factor-the ratio of the electron and ion 
masses-compared with the amplitude of an ordinary sound 
wave). 

The character of the surface reflection of the carriers 
(the value of q )  influences, as we see, the constant coefficient 
in the quasiwave amplitude. Its dependence (albeit weak) 
on the specularity parameter q is nonlinear; the ratio of the 
amplitudes for the limiting cases q = 0 and q = 1 is approxi- 
mately 

which agrees, naturally, with the result of Ref. 2. 
It is clear from the analysis of the solution (32) that, 

independently of q, the asymptotic form of the quasiwave is 
governed by electrons that move into the interior of the sam- 
ple with maximum velocity u, (i.e., in the present case, nor- 
mal to its boundary). This can, on the one hand, help choose 
the corresponding effective value of the parameter q when 
solving this (or a similar) problem), but with allowance for 
the real interaction of the electron with the surface, and on 
the other, shows that in the case of a complicated electron 
dispersion law, at any type of scattering from the surface, the 
spectrum of the quasiwave is determined by the extremal 
values of u, on the Fermi surface (see Refs. 2 and 1 1 ). 

Note that solutions of problems of high-frequency elec- 
trodynamics of an electron plasma for arbitrary q are rarely 
encountered in the literature. We know only Refs. 12 and 13, 
in which a concrete form of the integral-equation kernel is 
used. The method proposed [transition to Eq. (25)]  can 
conceivably find use in numerical integrations of equations 
containing a large parameter, similar to the one considered 
in the present communication. 
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