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Stochastic aggregation of like particles, accompanied by generation, is considered in a 
stationary regime. The correlation function of the densities of the uncompensated charges of 
the electron-hole system is rigorously calculated in second order in the concentration in the 
one- and three-dimensional cases. It is shown that if the electron-hole pair creation radius 
exceeds its annihilation radius the concentration is determined by the effective-mass law 
subject to substantial corrections (of fluctuation origin), which become decisive in the 
diffusion-controlled limit, especially for few-dimensional systems. Relaxation from a 
stationary regime after turning off the generation is considered. An exact equation for the 
concentration is obtained in the three-dimensional case. It describes the fluctuation regime for 
long times, and contains the classical kinetics regime for intermediate ones. The long-time 
asymptote takes the form c  a t -3'4 for a finite pair-production radius, whereas for a large 
production radius the asymptotic form is c  cc t -'I4. In the one-dimensional case and for a finite 
production radius the concentration decreases like c a t - 'I4. 

L INTRODUCTION 

In Refs. 1-5 is reported a cycle of investigations of the 
influence of concentration fluctuations of reacting particles 
on the asymptotics of the approach of the density to equilib- 
rium. Thus, for bimolecular recombination A + B -  C with 
random (Poisson) initial distribution of the reagents, the 
following laws hold for long time intervals: c  cc t -314 in place 
of t  -' if the initial component concentrations are equal, c, 
= c, (Refs. 1 and 2),  and 

in place of 

if c, <c, (Refs. 1 and 3).  In the case of a reversible reaction 
A + B t t C  the equilibrium sets in accord with the law 
ACE t -312 rather in the exponential manner that results 
from classical  kinetic^.^.' Thus, in all cases, the reaction rate 
during the final stage is limited by a diffusive smoothing of 
the initial fluctuations of the reagent distribution. 

Stochastic aggregate of particles generated by a station- 
ary flux in an equal concentration was considered in Ref. 6. 
It was shown that although the initial particles are produced 
in space independently, the steady-state fluctuations do not 
have a Poisson spectrum-aggregation of like particles in 
space takes place. (Although the statement that like parti- 
cles become aggregated was made in a number of papers,'-lo 
the spectrum of their fluctuations was not obtained.) When 
the generation processes are turned off, the relaxation of the 
concentration of uncharged particles over long time inter- 

cording to Refs. 5 and 11, the diffusion equation with reac- 
tions between the particles can be reformulated in the sec- 
ond-quantization representation and, as shown in Ref. 5, 
this problem is similar to that of a quantum non-ideal Bose 
gas with condensate. The Bogolyubov method of separating 
the Bose condensate was used in Ref. 5 and it was shown that 
to obtain a result that is valid in the leading order in the 
concentration, at arbitrary reaction rates, it is necessary to 
sum perturbation-theory ladder diagrams. The correspond- 
ing calculations were made in Refs. 12 and 13 for the case of 
one-component chemical reaction with sources, using a dia- 
gram technique similar to that of Belyaev.'4~'5 

2. TWO-COMPONENT REACTING SYSTEM. FUNDAMENTAL 
RELATIONS 

Consider a system made up of electrons ( e )  and holes 
( h )  that diffuse in a d-dimensional volume V( V+ co ) with 
respective diffusion coefficients D, and D, . We assume both 
components to have equal concentrations, c, = c , ,  so that 
the electroneutrality condition is met. We denote by 
wa (y - x)  the probability that an electron located at the 
point x will recombine with a hole at the point y in a unit 
time. The inverse process, due to thermal activation or pho- 
togeneration of pairs, is described by a probability 
wb (X  - y ) that an electron and a hole will be corresponding- 
ly produced per unit time in the vicinities of the points x and 
y. This, in contrast to Ref. 6, the particles of each pair are 
produced in space correlated, with a distribution function 
w,. For simplicity, we disregard the potential interaction of 
the particles, and their concentration will be assumed small: - - - 

vals follows a t - 'I4 law. c r t a i ,  
The purpose of the present paper is a rigorous and more 

( 1 )  

detailed solution of the problem of aggregation of uncharged where ra (rb ) is the radius of the function wa (x) (w, (x)  1. 
particles, and an investigation of the kinetics of their decay The state of the considered multiparticle system con- 
after their generation is stopped. taining m electrons making up a configuration X m  

We solve the problem by a method proposed in Refs. 11 = Cxl;...;~, ) and m holes Ym = {Y,;...;Y, will be charac- 
and 5 and developed in Refs. 12 and 13 for an investigation of terized by a distribution function urn (X ", Y "). The evolu- 
the kinetics of diffusion-controlled chemical reactions. Ac- tion of urn (X ",Y ") is described by corresponding diffusion- 
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balance equations that can be rewritten, according to Refs. 5 
and 11, in a form similar to a Schrodinger equation: 

The "wave" function l F ( t ) )  is defined here in terms of 
the field operators by the relation 

_ z d x , .  . . dxm \ d y , .  . . dym urn (X"', Y"') (X"', Y m ) ,  

,,z=u 
m! m ! 

Our task is to calculate the correlation function that 
describes the spatial distribution of the uncompensated 
charges 

~Ac(0)Ac(x))=([ce(O)-ch(o)][~e(~)-~h(~)]), (4) 

and is expressed in terms of the particle-number density op- 
erator 

C ~ ( X ) = + , + ( X ) ? ) ~ ~ , ( X ) .  ( 5  

The "Hamiltonian" (2 )  has in k-space the form 

H=Ho+H,,t, (6)  

particles of concentration c, and the interaction is assumed 
to be turned on adiabatically. 

The expression for the correlation function of interest 
to us becomes 

< J e  (0) 4 c  ( x )  ) = 2c6 ( x )  - 2V-' E'COS kx ( a ~ p - ~ )  

To calculate the correlator I?, = (aka- ,) in the low- 
est (second) order in the concentration, it is necessary to 
sum ladder diagrams which contain a minimum number of 
condenstate lines that yield a factor c, and of vertices with 
small interaction w,. They are made up of the following 
terms in the Hamiltonian 

It is easy to verify that the correlators (aka - ,) @,P - , ) 
are proportional to c3 and should be discarded. 

The free Green's function (GF),  as can be easily seen 
from the Heisenberg equations of motion, is defined as 

It is important that G, ( t )  = O  at t < 0. 
where Ho corresponds to free diffusion 

To avoid divergences that occur in few-dimensional 

H a = - D . Z  k2ak+ok - D ~ Z  k2Pk+pk, (7)  systems as a result of the singularity of the free GF G, (w) as 
k - 0  and w -0, we construct ladder diagrams made up of 

and H,,, includes terms with the reaction "dressed" GF: 

Here A(k) = S,,,, ,..., S,,, is the Kronecker symbol. Aver- 
aging the operator of the total number of particles, we obtain 
an expression for the concentration in terms of the conden- 
sate operators a,, Do, (a, = Po) (Ref. 5 ) :  

Writing next in the Heisenberg representation the equa- 
tions of motion for the condensate operators and replacing 
them with c-numbers in accordance with the procedure5.13 

we obtain an equation for the concentration 

where the prime on the summation sign means that the sum- 
mation index is not zero. The condensation operators are 
separated also in the Hamiltonian and in the calculated cor- 
relator. 

Finally, we arrive at the interaction representation and 
introduce an S matrix in standard f a~h ion , ' ~ , ' ~  SO that the 
wave function is given by 

where the mass operator I;, (w) is also calculated in the lad- 
der approximation. Since it is small in terms of concentra- 
tion [see ( 19) 1, I;, (w) in ( 16) can be replaced by its values 
2, at k  = 0  and w = 0, when the free GF ( 15) has a singular- 
ity.15,13 

3. STOCHASTIC AGGREGATION OF PARTICLES IN A 
STATIONARY REGIME 

We denote by l?;' the sum of ladder diagrams that start 
with the first term of the interaction Hamiltonian ( 14), and 
by rL2' = r, - r:" those starting respectively with the sec- 
ond term. For I?:" and ri2' we have the integral equations 

where D denotes the total diffusion coefficient D = D, 
+ Dh. 

The mass operator 2,  calculated in the ladder approxi- 
mation is easily seen to be expressed in terms of rL2' as fol- 
lows: 

where (F( t  = - w )) corresponds to randomly distributed In view of the presence of an incoming condensate line 

354 Sov. Phys. JETP 65 (2), February 1987 Burlatskil et a/. 354 



a,@,) the mass operator 8, is small in terms of the concen- 
tration. 

Relations ( 1  1 )  and ( 1 7 ) - ( 1 9 )  for the stationary re- 
gime form a closed system, the solution of which determines 
the particle concentration and the correlation function of the 
densities of the excess charges ( 1 3 ) .  This problem is easily 
solved if the probabilities w, ( x )  and w,  (x)  are taken in a S- 
function form corresponding to creation and annihilation of 
pairs at fixed distances. We consider a three-dimensional 

- case, when 

and a one-dimensional one 

while the recombination probabilities w, ( x )  are obtained 
from ( 2 0 )  and ( 2 1 )  by interchange b-a  of all the indices. 
(In the two-dimensional case are encountered additional 
mathematical difficulties, and we shall not consider it here. ) 
Here k ,  is the pair-production rate constant, i.e., the proba- 
bility of pair production per unit time and per unit volume, 
and k,  is the annihilation rate constant. The classical effec- 
tive-mass law, which is valid for thermodynamic systems, 
i.e., when the detailed balance equation is met in local form 
( r ,  = rb in our case), connects the particle concentration 
with the constants k ,  and k , :  

The dimensionalities of k ,  and k ,  are respectively time-' 
volume and time-'.volume-'. Note that in the case when 
the local detailed balance condition is not met, for example 
for carrier photogeneration, the effective-mass law ( 2 2 )  re- 
quires, generally speaking, substantial corrections [see ( 3 0 )  
and ( 4 2 )  below]. 

We consider thus first a three-dimensional case. The 
mass operator 8, can be set here equal to zero, i.e., we can 
construct ladder diagrams of free GF; no divergences occur. 

Adding ( 17) and ( 18) and taking ( 1 1 ) into account, 
we obtain the system 

in terms of the solution of which the correlator of the excess- 
charge densities is expressed as follows: 

(Ac(O)Ac(x)) =2c6(r)-nzx-' jdkGksinkr. ( 2 5 )  

After calculating the three-dimensional integrals in the 
equations of the system and substituting ( 2 4 )  in ( 2 3 ) ,  the 
integral term in the equation for I?, drops out and we get 

sin kr. 
kr, 1 

The correlation function (25 ) takes ultimately the form 

<Ac(O)Ac (x) )=2c6 (x) + k , k , - ' ~ - ~  

FIG. 1 .  Plot of correlation function of the densities of uncompensated 
charges at r, > r,. Three-dimensional system, stationary regime. 

where the diffusion rate constant k, is determined in the 
three-dimensional case by the usual relation 

A plot of the corresponding relation is shown in Fig. 1 
for the case when the pair-production radius exceeds the 
annihilation radius. If r, > r , ,  the correlation function con- 
sists of a &function at zero and a positive constant equal to 
2kb k ,  - ' ( 1 - r , / r ,  ); at r, < x  < r ,  it decrease hyperbolical- 
ly to zero: 2kb k ,  - 'r,  ( x -  ' - r ,  - ') and vanishes identically 
at x > r ,  . The positive spatial correlation of the density of the 
uncompensated charges describes the phenomenon of sto- 
chastic aggregation of like particles in a reacting medium. It 
is easy to estimate the average number of uncompensated 
charges in such a cluster: 

The excess charge is proportional to the square root of the 
low pair-production probability, but with the small total dif- 
fusion coefficient, which enters in the form of the factor 
D - ' I 2 ,  and with the large creation rate r, ( N - r i  ),it may be 
not small at all. 

According to this picture, radioactive irradiation of a 
dielectric should produce in it spontaneously regions that 
contain predominantly electrons (holes). This is naturally 
accompanied by the appearance of internal electric fields 
which are stronger the lower the carrier mobility and the 
higher the irradiation intensity. This effects was experimen- 
tally observed in Ref. 16, and the internal field reached 
breakdown values. Note that to describe this effect quantita- 
tively account must be taken of the Coulomb interaction of 
the electrons and holes.6 

At the inverse ratio of the creation and annihilation 
radii, r, and r, change places and the continuous component 
in the correlator becomes negative; this corresponds to 
"screening" of particles of one species by particles of the 
other. 

It is also of interest to examine the expression obtained 
from ( 2 4 )  and ( 2 6 )  for the average concentration: 

The first term in the right-hand side of ( 3 0 )  corre- 
sponds to the classical law ofeffective masses (22), while the 
second is a correction to it. This correction was first obtained 
in Ref. 5 for the limiting case of low carrier density and low- 
efficiency annihilation compared with diffusion. It was 
found there to be small in the parameter k ,  / k ,  4 1 .  

It can be seen from ( 3 0 )  that in a system under thermo- 
dynamic equilibrium, by virtue of the detailed-balancing 
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condition r, = r,, the classical law of effective masses is ex- 
actly satisfied. If the carrier creation process is equilibrium 
(although the process may be stationary), we have generally 
speaking r, # r, . If, moreover, the electron-hole pair moves 
apart upon creation to a distance exceeding its annihilation 
radius (as, for example, in y irradiation), the correction to 
the law of effective masses differs from zero, and in the case 
of slow diffusion and effective annihilation k, 4 k, (the limit 
of the diffusion-controlled process) it is the correction 
which becomes decisive. 

As shown above, in this regime there are produced in 
space clusters of like particles, the spreading of which is slow 
and by diffusion. Clearly, clustering of like particles in- 
creases the stationary value of the concentration (the sign of 
the correction is strictly positive) : if particle clusters are uni- 
formly mixed the annihilation processes become more effec- 
tive and the equilibrium concentration decreases. Thus, the 
essense of the correction to the low of effective masses is that 
it consists of stationary fluctuation effects that manifest 
themselves at r, > r, . 

We note that the large number of the like particles in a 
cluster having a characteristic dimension r, >)r, (29) does 
not contradict the low-concentration limit ( 1 ). At the same 
time, if the total diffusion coefficient D in (27) and (30) 
tends to zero, the fluctuation effects and the equilibrium 
concentrations increase without limit, so that at 

the conditions for the validity of the concentration expan- 
sion are violated. 

We proceed now to the one-dimensional case. Equa- 
tions ( 17) and ( 18) have degenerate kernels. Introducing 
the symbols 

we obtain from (17) and (18) a system of algebraic equa- 
tions for r, and r,, whose solution takes the form 

where the quantity 

depends on the mass operator 8, which is self-consistently 
connected with r12' by Eq. ( 19). The equilibrium concen- 
tration and the correlation function of the concentrations of 
the uncompensated charges are expressed in terms of I,: 

A transcendental equation is obtained to determine 2, 
from ( 19) and (32)-(35 ). We consider its solution for three 
physical cases of interest. 

Assume first that in (34) 

Then 

and from (35) and (34) we obtain an expression for the 
concentration: 

Comparing now (38) and (39), we see that the inequal- 
ities (37), which determine the region of applicability of the 
resultant expressions, are equivalent to 

This case corresponds thus to finite values of the cre- 
ation and annihilation radii r, -r,. The first inequality in 
(40) is equivalent to the condition for the applicability of the 
concentration expansion ( 1 ), while the second means that 
on the average the number of particles in a segment of length 
r, -r, is small. 

Just as in the three-dimensional case, the effective-mass 
law when particle aggregation takes place. The correlation 
function of the densities of the uncompenstated charges is 
obtained from (34), (36), and (38 ), and takes the following 
forms (Fig. 2a): at x <r,,r, it is equal to the constant 
k, (r, - r, )D -I, at min{r,;r,) < x  < max{r,;r,) it de- 
creases (increases) linearly to the small quantity 
E ,  = - (8ka kb/D) lf2c2, and at x > ra,rb it decreases expon- 
entially in absolute value with a small coefficient in the expo- 
nent, -&, exp [&,Dxk , ' (< - rZ, ) -' ]. 

The second limiting case corresponds to large creation 
radii rb, r,, SO that the signs of the inequalities in (37) are 
replaced respectively by ( ( and )). Expressed in terms of the 
concentrations, the inequalities (37) take in this regime the 
form 

i.e., in contrast to (40), the line segment r, contains on the 
average many particles. 

The expression for the concentration is found in this 
case to be quite similar to the law of effective masses (22); 

FIG. 2. Correlation function of excess-charge densities in a one-dimen- 
sional system (a) r?r, ,  (b)  r, S r , .  
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(42) 
In the principal term of (42), the dependence on the creation 
rate is very weak, a k i'3 instead of linear. It does not depend 
at all on the annihilation rate, but on the other hand it con- 
tains a diffusion coefficient; this is evidence that the limiting 
stage in the recombination processes is diffusive wandering 
of the particles in large-scale fluctuations. The fluctuation 
effects play thus a very substantial role in this regime. 

The correlation function of the densities of un- 
compensated charges (Fig. 2b) consists of a 6 function at 
zero and a constant E, = (kb/0),I3/2 at x < r ,  and 
x < r,, decreases exponentially like -&,{exp [ - 4 ~ k / ~ x ]  
- exp [ - 4&;/'(rb - x )  ] ) to - E~ at r ,  < x  < r , ,  and de- 

crease exponentially to zero with a small coefficient in the 
exponent, - - &,{exp [ - 4.~;'~ (x - rb ) 1, at x > r , .  Thus, 
strong interparticle correlations extend over quite large dis- 
tances 2 r ,  . 

The third and final case corresponds to the limit of 
small diffusion coefficients [the conditions (40) and (41) 
were violated as D tended to zero in (39) and (32) 1. The 
inequality signs in (4)  are then replaced by ) , the principal 
term of the expression for the concentration agrees with 
(42) apart from a numerical factor, and the validity condi- 
tions take the form 

which prevents the use of the concentration expansion. Ob- 
viously, in this regime the spreading out of the produced 
clusters is so slow that the average concentration, which is 
determined by their population, is no longer small. 

We shall find useful in the arialysis of nonstationary 
processes an explicit expression for the correlator I', . It is 
easily obtained from (32) : 

4. RELAXATION OF THE PARTICLE-DENSITY 
FLUCTUATIONS 

We consider the relaxation of particle clusters pro- 
duced in the stationary regime after the generation was 
turned off. We assume that starting with the instant t = 0 the 
arrival term in the Hamiltonian, which are proportional to 
k,, vanish identically. We are interested in finding the law 
that governs the decrease, with time, of the average particle 
concentration and of the correlation function of the density 
of the excess charges. 

The correlator I?; ( t )  = (a, ( t )P  -, ( t ) ) ,  which enters 
in the expression ( Ac (0)  Ac (x)  ) ( 13) consists of ladder dia- 
grams of two types. We denote by I'L1)'(t) the sum of the 
ladder diagrams that stem from the fluctuation produced in 
the stationary regime prior to turning off the generation, and 
by I'p" ( t )  the one stemming from the fluctuation produced 
after generation was turned off as a result of annihilation of a 
pair of particles in a homogeneous condensate. The equation 
for 

rkf ( t )  = r:'" ( t )  + r:t" ( t )  

is of the form 

r,' ( t )  = GkR ( t )  ( t )  rR 
t 

-wa ( k )  J d t ,  C' ( t l )  Gra ( t - t j )  G-kYt-ti) 
0 

t 

- v-1 z' zoa(k-ki) dt ,  Gka (1-ti) G-kB(t- t i )  rk,' ( t i )  7 

0 

(44) 

where T, is the stationary correlator obtained above. The 
expression (Ac(O)Ac(x)) ( 13) and the equation ( 11 ) for 
the concentration remain valid if the substitution T, 
-+r;( t )  ismadeandifw,(k)=O, t>0 .  

We consider first the three-dimensional case. Just as 
before, the kernel of the integral equation (44) with respect 
to k is degenerate. Evaluating the three-dimensional inte- 
grals and substituting in (44) the expression that follows for 
c2 (t ,  ) for the concentration ( 1 1 ) 

where 

r.' (2, t )  = 5 dk L' ( t )  k sin kx. 

we see that the integral terms with I?: (x,t) cancel out and we 

get 

k b  sin kx sin krb 
r:(., t )  = - J dk e x p [ - - ~ k ' t ] - -  - - - 

D k  [ krb sin kr. kra 1 
1 dc (ti) + - dk sin kx sin kra J dt ,  exp[ -Dk2( t - t , )  1- 
ra o dti ' 

(47) 
where the expression (26) for the stationary correlator was 
used. Note that by virtue of the presence of the exponential 
factor exp[ - Dk '(t - t ,)  ] in the last term of (47), the 
main contribution to the integral with respect t, is made by 
large t , z t .  Expanding therefore the derivative dc/dt in a 
Taylor series at the point t and integrating, we get 

1 2n2ra +-- dc ( t )  [ I ,  ( x ,  r.) I t-. +--I , 
Dr. dt X ( 2 )  

where 
1 (x+r)  

I ,  (x ,  r )  = - ( n D t )  I" {exP [ - -1 
2 4Dt 

(x -r )  -4 --4D11} 
I X + F  1 Ix-rl 

+?{lx+rlerf  4 [ m ] - l x - r l e r f [ ~ l }  1 

and x (x )  denotes the quantity 
m 

I2 ( x ,  ra) 
X-3 ( x )  = - -------- I (- 1)  " d " ~  ( t )  

2n2Dr.2 8n%D'r02 
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Substituting finally ( 4 8 )  in ( 4 5 )  we arrive at an exact 
closed equation for the concentration c ( t )  : 

At large t ,  when x - ' ( r ,  ) can be neglected, this equa- 
tion has a perfectly clear meaning. The second term in the 
curly brackets describes the relaxation of the fluctuations 
that serve as the initial condition for the nonstationary prob- 
lem, while the first term gives the Smoluchowski equation 
with an effective rate constant that coincides, naturally, with 
the classical expression 

Equation ( 5  1 ) with large t contains thus both a fluctu- 
ation regime and a classical-kinetics regime. 

Note that the integral equation ( 4 7 )  can be reduced 
exactly also to the partial differential equation 

which makes up with (45 ) a closed system. Equation ( 5  1 ), 
however, is more convenient for the investigation of the re- 
gions of long and short times. 

Let us analyze the behavior of c ( t )  in various regimes. 
Let the creation an annihilation radii be finite quantities of 
like order, r, -ra and let the time t  be long enough, so that 

In this regime we obtain from ( 5 0 )  

x-' (r,) = - const.D-" t-'" + -1 .. . =c k e f f .  ( 5 5 )  

The second term in the curly brackets of ( 5 1 ) ,  which 
describes the relaxation of the initial fluctuation, decreases 
as a power-law: 

where 

With allowance for ( 5 5 )  and ( 5 6 ) ,  the solution of ( 5  1 ), 
neglecting the torms O ( t  -9'4), is expressed in terms of 
modified Bessel functions: 

The following expansion terms are exact and describe 
both the fluctuation and the transient regimes: 

The first term leads to a slower power-law decrease of 
the density, a t  -314,  than the classical kinetics ( a t -') in 
which the fluctuations of the reagent distribution are not 
taken into account. Note that a similar time-dependent as- 
ymptote was obtained in a less rigorous manner for relaxa- 
tion of Poisson  fluctuation^.'*^ The second term of ( 5 9 )  is 
similar to the solution of the Smoluchowski equation, but 
differs by a numerical factor 3/8. 

If the creation radius r ,  exceeds considerably the anni- 
hilation radius r, an the time t  is not too long, viz., 

we have an intermediate asymptotic form 

c ( t )  =k,'"/2n"D"t'"+ . . . , ( 6 1 )  

that describes the rather slow power-law decrease, cr t  -'I4, 
of the concentration. In the region of short times, the region 
where ( 6 1 )  is valid is bounded by the inequality 

thereby justifying the neglect of the term x -  ' ( r ,  ). The fluc- 
tuation result (61 ) was obtained in Ref. 6, apart from a coef- 
ficient, by a less rigorous method. 

Finally, at short times Eq. ( 5  1 ) takes the form 

and yields at zero the regular expansion 

where ~ ( t  = 0 )  is determined by the stationary value ( 3 0 ) .  
We proceed to consider the correlation function of the 

densities of the uncompensated charges. The expression for 
this function, with allowance for ( 4 8 ) ,  takes the form 

At distances on the order of the creation and annihila- 
tion radii and for long times 

we have 

and ( 6 5 )  yields the following dependences: 

where 

A=kb(rb2-ra2) /24na1*D11*-. . . , B=3"l'A'"/4nD, C=AI4D. 

The particle clusters are thus spread out in this regime by 
diffusion, and in proportion to t  -3'2. 

Similarly, in the intermediate asymptotic regime ( 6 ) ,  
the coordinate dependence of the correlation function 
( Ac (0) Ac ( x )  ) remains. unchanged over distances 
x  a r, 4 r b  on the order of the annihilation radius, but has in 
this case a different time dependence: 
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It can be seen that in this case the spreading of the cen- 
tral part of an extended bunch is slower, a t - ' I 2 .  

We consider now one-dimensional systems. Repeating 
the operations that led to relations (48)-(50), we get 

m 

antic (t) (- 1) " 

n=O 

where 

(x-r) 
I3 (x, r) = - ( xDt )  IA 

I x-r I -~{/x-r/erf----- 2 (Dt) '" +(x+r(erf- Ix+rI 1 . 
2 2 ( D t )  

Relations (70) and (71 ) and Eq. ( 11 ) for the concen- 
tration at large t 

lead, in contrast to the three-dimensional case, to an equa- 
tion that is not similar to that of Smoluchowski 

( t ) " [d;:) 
t d2c(t) t2 dsc(t) - --A- +--- 

5 dt" 
. . .] 

n D 3 dt" 
k b  (r:-ra2) 

=-c2 ( t )  + ------- 4n'hD%t'l~ + 0 (t-'la) . 

The two principal terms in the expansion of its solution 
are 

The principal fluctuation term of (74) ,  proportional to 
t - 'I4, can be determined, just as in the three-dimensional 
case, by equating to zero the right-hand side of (73 ), and the 
second term, in contrast to ( 5  I ) ,  is determined by the de- 
rivatives of all orders. To find the next terms of the expan- 
sion it is necessary to solve the corresponding integral equa- 
tion for all t. 

For short times ( r : , , /D t )  1 )  the concentration de- 
creases in regular fashion, just as in the three-dimensional 
case: 

where c ( t  = 0 )  is determined by the stationary value (39) 
and (42).  

The correlation function of the densities of the uncom- 
pensated charges, for distances of the order of the creation 
and annihilation radii, is obtained in the limit (72) from 
(13) and (70):  

It can be seen from (76) that at x - r ,  - r ,  the spreading of 
the particle bunches is mainly by diffusion and in proportion 
to t - ' I 2 .  

Obviously, the kinetics of reaction processes in fractal 
systems of dimensionality d < 2 is similar to that considered 
above for the one-dimensional case. 
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