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The nature of charge relaxation in a three-dimensional anisotropic medium, and also in two- 
and one-dimensional cases, differs radically from the Maxwellian law. The process of 
relaxation in an anisotropic medium creates charges in regions which are initially neutral and 
the density of such charges changes sign as a function of position, falling off with the distance 
as rP3. Uniform expansion of the charged region, which maintains a constant charge, occurs in 
a thin conducting film. In the case of a thin filament the charged region spreads in accordance 
with a diffusion law. A similar law applies to relaxation of a charge in a conducting channel of 
a metal-insulator-semiconductor structure. 

1. INTRODUCTION 

It is well known that relaxation of the density of a 
charge p (r , t  ) in a homogeneous isotropic medium occurs in 
accordance with the law 

where T ,  is the Maxwellian relaxation time, E is the permit- 
tivity, and u is the electrical conductivity. We shall consider 
charge relaxation in a homogeneous anisotropic medium 
and also in low-dimensional media such as a thin film, a 
conducting channel in a metal-insulator-semiconductor 
(MIS) structure, and a thin filament. We shall show that in 
all these cases the nature of charge relaxation differs radical- 
ly from the Maxwellian law, Eq. ( 1 ). In the case of a three- 
dimensional anisotropic medium the most important differ- 
ence is the appearance of charges in regions which are 
initially neutral. The charge density changes sign as a func- 
tion of position and decreases quite slowly (as r3) with the 
distance. 

The case when one of the principal values of the electri- 
cal conductivity tensor is negative and the other two are 
positive is of special interest (a  situation of this kind occurs 
in ruby crystals under photoelectric instability condi- 
t i o n s ' ~ ~ ) .  In this case the initial charge inhomogeneity is 
tranformed into a structure with charge densities of both 
signs in which the absolute value of the charge density in- 
creases with time. Similar results are obtained as a result of 
growth of a local charge fluctuation in a medium with a 
negative differential conductance which is created in a 
strong electric field (for example, under Gunn effect condi- 
tions). If we adopt a system of coordinates moving at the 
average carrier drift velocity, we find that the description of 
the linear stage of the growth of an initial charge fluctuation 
reduces to the same problem: one of the principal values of 
the effective tensor of the electrical conductivity is negative 
(this is the component of the tensor along the field), whereas 
the other two are positive. 

In the case of two- and one-dimensional conducting me- 
dia we find that, in contrast to three-dimensional media, 
there is no characteristic charge relaxation time. In fact, a 
film of thickness d is characterized by a two-dimensional 
conductivity us = ud, which has the dimensions of velocity, 
and a filament with a cross-sectional a reas  has a one-dimen- 
sional conductivity u, =us, which has the dimensions of 

the diffusion coefficient. Consequently, in the two-dimen- 
sional case a charged region expands uniformly, whereas in 
one-dimensional media the expansion is in accordance with 
a diffusion law, but the total charge is conserved during such 
an expansion. [According to Eq. ( 1 ) the charge in a three- 
dimensional body passes entirely from the interior to the 
boundaries of the conductor.] Spreading of a charge fluctu- 
ation in a conducting channel of an MIS structure will be 
shown to occur also in accordance with a diffusion law. 

In all the situations under consideration a redistribu- 
tion of the charge by ordinary diffusion is unimportant if the 
Debye radius is considerably less than all the characteristic 
scales of the problem. We shall assume that this condition is 
satisfied and ignore the diffusion current in all the cases con- 
sidered below. 

A similar problem of dynamic screening of the electron- 
electron interaction was solved in Refs. 3-5 for two- and one- 
dimensional cases in connection with calculation of the den- 
sity of states in disordered systems. The process of charge 
relaxation was not discussed. 

2. THREE-DIMENSIONAL ANISOTROPIC MEDIUM 

In this case the process of charge relaxation is described 
by the equations 

dp/dtf div j=O, j,=-oijdv/dsj, (2 )  

div D=4np, Di=-~i,drp/a~,, ( 3 )  

wherep and j are the densities of the charge and current; D is 
the electric induction; q, is the potential; ou and .cij are the 
electrical conductivity and permittivity tensors. 

The qualitative features of charge relaxation in an an- 
isotropic medium indicated in the Introduction arise be- 
cause in such a medium (in contrast to the isotropic case) it 
does not follow from div D = 0 that div j = 0. Therefore, 
even at early times the derivative dp/dt differs from zero in 
the regions where p = 0. Therefore, charge appears in all 
space. 

This circumstance is related to another property of an 
anisotropic medium described in Ref. 6: under conditions of 
steady-state flow of the current (div j = 0 )  a space charge 
(div D # 0 )  can exist in a homogeneous anisotropic conduc- 
tor. 

We shall now solve the system of equations ( 2 )  and ( 3 ) .  
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In view of the linearity of the problem, it is sufficient to study 
charge relaxation for a point initial distribution 
p,(r) = S( r ) .  For simplicity we shall first assume that ev. 
= So and consider the case of uniaxial symmetry when the 

tensor a. has the principal values uxx = uyy = u,, 
a,, = u I  . The general case will be described at the end of the 
present section. 

We shall calculate ap/dt at t = 0. Assuming that 
p = l/r, we find from Eq. (2 )  that 

where 6 is the angle between the r vector and the z axis. 
Therefore, in addition to a reduction in the initial charge at 
r = 0, charges appear in all space and the sign of these 
charges depends on the angle 0 and on the relationship 
between uL and all (see Figs. l a  and 2a). 

The appearance of charges opposite in sign to the initial 
positive charge is easiest to explain in the case when a, g u l l  . 
When this condition is obeyed the lines of flow of the current 
are everywhere parallel to the z axis and directed along this 
axis ifz > 0 and opposite to this axis ifz < 0. Hence, it is clear 
that a negative charge should accumulate near the z = 0 
plane, as predicted by Eq. (4).  We shall now find the time 
dependence of the charge density. The solution of Eqs. (2 )  
and (3 )  gives the following expression for the potential p: 

We shall calculate the integral assuming that the vector r is 
the polar axis. The integral of the modulus of k gives (T /  
r)S(cosp),  where p is the angle between k and r. After 
integration with respect to this angle, we obtain 

FIG. 1. Distribution of the charge density in the case a, > 0 , .  The figure 
shows lines of constant charge density. The numbers give the charge den- 
sity in dimensionless units (which are different for Figs. l a  and lb) :  a )  for 
short times; b) for long times (171 = 10). 

FIG. 2. Same as in Fig. 1, but for a, <a,, 

J" q(r ,  t )  = - - exp (-4ntoijxixj) ,  
r ,  2n 

where x is a unit vector lying in a plane perpendicular to r 
and integration is carried out with respect to the azimuthal 
angle in this plane. 

Under uniaxial symmetry conditions, we have ov ?ti % 
= aI sin2 6, + all cos2 e,, where 6, is the angle between 

the vector x and the z axis. If the azimuthal angle $ is mea- 
sured from the line of intersection of a plane passing through 
the z axis and through the vector r by a plane perpendicular 
to r, then cos 6, = sin 6 cos $. Here, 6 is the angle between 
the vector r and the z axis. 

Integration with respect to the angle $gives the follow- 
ing final result 

1 
(f~ (5 t )  n - r exp (-4rcolt) f ( sin2 8) , 

Here, I, is a modified zeroth-order Bessel function. 
We shall also represent the potential in the form of an 

expansion in terms of Legendre polynomials P, (cos 6 )  (ob- 
viously, this expansion contains only the polynomials with 
even values of 1) : 

00 

exp (-4no,t) 
c ~ ( r ,  t )  = * C c. (TIP,. (COS 0). 

The expansion coefficients are described by the expression 
1 

We can now calculate the charge density p = - Ag, /4a. It 
follows from Eqs. (7)-( 10) that 

where 
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F ( T ,  O)=-(nI T I ) - ' "  sin-3 0 for e> 1 TI-'". (17) 

The function F can be expanded in terms of Legendre poly- 
nomials using Eq. (9)  : 

F (r, 0) = 2n (2rz+1) C. ( r )  P,. (eos 0) .  (14) 

We can thus see that an initial point charge transforms in the 
course of its relaxation in accordance with Eq. ( 11). Firstly, 
there is a nonexponential change in the magnitude of the 
point charge. I t  can be seen from Eqs. ( 1 1 ) and ( 12) that at  
early times the change is described by Eq. ( 4 )  and it is gov- 
erned by the average electrical conductivity (2a, + ail )/3. 
After a long time the coefficient in front of the 6 function in 
Eq. ( 1 1 ) becomes ( 2 r )  - 'exp( - 4n-all t )  if a, > all and ( T /  

417) ) ' I 2  exp( - haI t )  if aL < all , i.e., the relaxation pro- 
cess is governed by the smallest of the principal values of the 
tensor 5. I t  should be pointed out that for all <O and 
(aII I < 2a, the magnitude of the point charge varies nonmon- 
otonlcally: it first decreases and then rises. 

Second, throughout the space surrounding the initial 
point charge there appear charges of density which de- 
creases with distance as r P 3  and with an angular distribution 
which is time-dependent and described by the function 
F ( r ,8 ) .  The integral of this function with respect to the an- 
gles vanishes. For this reason the quantity C,(r) 
Xexp( - 4n-a, t )  represents the total charge contained in a 
sphere of arbitrary radius. However, if we wish to consider 
the total charge in an arbitrary region surrounding the point 
r = 0, then its magnitude and sign depend on the shape of 
this region, no matter how far the boundaries of the region 
are located from the position of the initial point charge. 
Moreover, the absolute value of the charge in such a non- 
spherical region increases logarithmically for a similar in- 
crease in its dimensions. 

For short times 171 < 1 we have F ( r ,8 )  
= - 2rP2(cos 8 ) ,  which is in agreement with Eq. (4) .  A t  

late times Irl $1 the asymptotic form of the function F de- 
pends strongly on the relationship between o, and all.  If 
a, > a l i ,  then throughout the range of angles 8 with the ex- 
ception of small intervals near 8 = 0 and 8 = r / 2 ,  it follows 
from Eqs. (8)  and ( 13) that 

F ( r ,  0) =-4n-'"~"z sin 0 cos2 0 exp ( T  sin2 0) ,  

0, l0-z/2l BT-'". (15) 
Hence, we can see that after a long time the bulk of the 
charge is located near the 6 = n-/2 plane. In  this region we 
have 

where a = n-/2 - 6 and its value obeys la\< 1. 
I t  is therefore clear that if r$ 1, then the positive charge 

is concentrated near the.6 = n-/2 plane in a narrow region 
la\ < (2~)-"'.  Elsewhere in space the charge is negative 
and its density decreases exponentially for la1 %r-"' (Fig. 
lb) .  

If a, < ul, , then everywhere with the exception of small 
angles we have 

However, for small angles 8 < 1, we find that 

F ( T ,  6)=2(ale-" [ i l -2q) IO(q)+211I i (q ) ] ,  q = I ~ 1 0 ~ / 2 .  

(18) 

The function F vanishes at 7-0.8. Therefore, the positive 
charge is concentrated in a narrow cone 8 < 1.3 171 - ' I2.  Out- 
side this cone the charge is negative (Fig. 2b). 

We shall now consider the general case of an anisotrop- 
ic medium of arbitrary symmetry assuming however that the 
principal axes of the tensors 6 and 2 coincide. We shall intro- 
duce a vector r' in terms of the principal axes, defined by the 
components 

where E,, E ~ ,  and E, are the principal values of the tensor 2. 
Then, the potential p is no longer described by Eq. (5 ) ,  but 
by 

4n J* ' ) =  ( E ~ E ~ ) '  ( 2 n )  'k2 exp [ ikrr -4x tb i j k , k j l kZ] ,  ( 19) 

where eii = a,, ~"7 I. Calculation of the integral in Eq. ( 19) 
gives 

exp ( - 4 n A t )  
cp (r', t )  = Z0[4nt  ( A 2 - B Z ) ' b ] ,  

( E ~ & z E ~ )  "'r' 
(20) 

where the invariants A and B are defined by the formulas 

Here, n' is a unit vector along r'. The charge density p ( r l , t )  
can be found from Eq. (20) : p ( r l , t )  = - (A1p)/4n-, where 
the differentiation is carried out with respect to the compo- 
nents of the vector r'. We can adopt the coordinates r by 
making the following substitutions in Eqs. (20) and ( 2  1 ) (n  
is a unit vector along r ) :  

Equations (20)-(22) represent the general solution of the 
problem formulated above, written in a form which is inde- 
pendent of the choice of coordinate axes. In the case of axial 
symmetry, we have 

where Sl = uL / E ~ ,  Erl! = all 8 ' is the angle between the 
vector r' and the z axis, and 

The expressions obtained earlier for the potential q7 and the 
charge densityp remain valid if we add the factor ) - ' I2 

and make the substitutions r-r' ,  8-8 ', a, -S,, all -SI1. 
The qualitative features of the relaxation process discussed 
above are still retained. 

In the special case when the principal values of the ten- 
s o r b  are proportional to the corresponding principal values 
of 2, we find that &o a SS, and the process of charge relaxa- 
tion is described by Eq. ( 1 ) . 
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3. TWO-DIMENSIONAL CASE (THIN FILM AND MIS 
STRUCTURE) 

We shall now discuss charge relaxation in a thin film 
with a two-dimensional conductivity a ,  = ud, where d is the 
film thickness and a is the bulk conductivity, which we shall 
assume to be isotropic. The ambient medium is an insulator 
of permittivity E. The actual value of the permittivity of the 
film is unimportant. The film thickness d is assumed to be 
small compared with the characteristic dimensions describ- 
ing the charge distribution on the film surface. 

The nature of relaxation can be understood qualitative- 
ly on the basis of the following considerations. At large dis- 
tances from the initial charge the field and the current den- 
sity decrease as r-'. Therefore, the total current flowing 
through a circle of radius r decreases as l/r in the limit 
r- m .  Consequently, the total charge in the film is con- 
served, so that the process of charge relaxation is accompa- 
nied by expansion of the charged region. (This is in contrast 
to the case of a three-dimensional isotropic medium when 
the total current across the surface of the sphere is indepen- 
dent of the radius, so that the total charge in the interior 
decreases with time.) It follows from considerations of di- 
mensionality that the rate of expansion is of the order of gs. 

The equations describing the spread of the charge in the 
film are as follows: 

where p, is the surface charge density; r and r' are two-di- 
mensional vectors in the plane of the film; A, is the two- 
dimensional Laplace operator; p ( r )  is the potential in the 
film which is constant across the thickness, subject to the 
condition given above. The Fourier components p,, and p, 
are described by the following expressions which follow 
from Eqs. (25) and (26): 

d p a k  2 . " ~  
- $ 0,k2Cpr=0, T k  = P s k .  
ilt 

(27) 

Hence, we find that 

or, in coordinate form, 

The same equation is clearly obeyed also by the surface 
charge density p, . 

When the initial charge distribution is described by 
p, = S(r )  and p(r,O) = 1 / ~ r ,  the solution of Eq. (29) is 

The surface charge density p, is then given by 

These expressions are valid if ut>d. It follows from the 
above qualitative considerations that the charged region ex- 
pands at a constant velocity v [Eq. (28)], where 
~ d ' r p ,  (r , t)  = 1. 

It is interesting to note also that this charge distribution 
(3  1 ) is induced on a perfectly conducting surface by a unit 
negative point charge traveling away from the surface at a 
velocity v. Naturally, the results obtained are valid if the 
velocity v is considerably less than the velocity of light. 

We shall now consider another two-dimensional prob- 
lem of charge relaxation in an MIS structure. We shall as- 
sume that a constant voltage applied to this structure is such 
as to form a thin conducting (for example, inversion) layer 
of thickness d much less than the insulator thickness a. 

Relaxation of a local charge density gradient in a con- 
ducting layer is described by Eq. (25). If there is a potential 
across this layer, we have to allow for the charge induced by 
such a gradient in the metal. If the surface charge density p, 
changes little over distances of the order ofa, the potential in 
the layer can be calculated from the formula for a parallel- 
plate capacitor p = 4rp , a /~ ,  where E is the permittivity of 
the insulator. Substituting this expression in Eq. (25), we 
find thatp, (r,t) is described by the following diffusion equa- 
tion 

It thus follows that the initial charged region spreads in 
accordance with a diffusion law and the total charge is con- 
served. 

We can easily show that Eq. (32)  is valid if the region 
r (Dt) ' /' In (Dt /a) ,  where the bulk of the charge is concen- 
trated. At larger distances the parallel-plate capacitor ap- 
proximation is invalid and we have and 
p, cc us t ~ ~ r - ~ .  

4. ONE-DIMENSIONAL CASE (THIN FILAMENT) 

We shall now discuss relaxation of a charge in a con- 
ducting filament with a one-dimensional conductivity 
a, = US, where S is the cross-sectional area. The filament 
thickness will be assumed to be small compared with a typi- 
cal length of the charged region. 

Tlle process of charge relaxation is now described by 

wherep, is the linear charge density, p is the potential inside 
the filament which in the case of a thin filament is practically 
homogeneous over the cross section, and z is distance along 
the filament. 

Obviously, at large distances from the charged region 
we have p = ( E I z I  ) -', where E is the permittivity of the me- 
dium surrounding the filament. Inside this region, we find 
from the formula for the filament capacitance that, to within 
logarithmic terms, we have p (z) = ( l / ~ ) p ,  (z) A, where 
A = In (b  '/S) $1 and b is the characteristic size of the distri- 
bution pl (2). Substituting this expression in Eq. (33), we 
obtain a one-dimensional diffusion equation with the diffu- 
sion coefficient D = (2u , /~ )A .  If the initial condition 
plo (z) = S(Z) is satisfied, the solution of this equation is 

1 
pl (z, t )  = --- 

( x D t )  "' 
exp ( - z Z / D t )  , 

The expression for D, valid to lowest order, is obtained by 
replacing b in the expression for the logarithm with the char- 
acteristic scale (ul  t )  ' / '  of the distribution (34). 
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For large values ofz it follows from Eq. (33) that 

For given values ofz and t we find that of the two equa- 
tions (34) and (35) the one which applies is that which gives 
a larger value ofp,.  Therefore, Eq. (34) is valid if exp(z2/ 
Dt) < In(u, t /S), i.e., it is valid in the main region where the 
charge density varies. Moreover, the condition u, t t S  must 
be satisfied. 

We can thus see that in the one-dimensional case the 
process of charge relaxation occurs in accordance with a 
diffusion law and the effective diffusion coefficient increases 
slowly with time. 

It should be noted that Eqs. (30), (32), and (34) which 
apply to the two- and one-dimensional cases can also be ob- 
tained from expressions for a dynamically screened potential 
of a point charge derived in the ( w , k )  representation in Refs. 
3-5. 

We shall conclude by stating the conditions under 
which the neglect of the diffusion current is valid. Such ne- 
glect is justified if 1% (Dot) '" (I  is the characteristic scale of 
the charge distribution, t is the characteristic relaxation 
time, and Do is the diffusion coefficient of carriers). In the 
three-dimensional case we have t a a-' and this condition 
reduces to the requirement I%ro, where ro is the screening 

radius. In the case of a thin film, bearing in mind that t rn I / v  
[see Eq. (3  1 ) 1, we have the condition (Id) 'l2$r0. Finally, if 
charge relaxation occurs in accordance with a diffusion law, 
then the effective diffusion coefficient D [Eqs. (32) and 
(34) ] is considerably greater than Do. Hence, we obtain the 
condition ( a d ) " 2 ~ r o  for a MIS structure and d)ro for a 
filament. 

The authors are grateful to D. E. Khmel'nitskii for 
pointing out Refs. 3-5 and to A. G. Aronov for valuable 
discussions. 
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