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A theory of the behavior of the muon-spin polarization in solid and liquid hydrogen in a strong 
external magnetic field is developed. It is shown that the experimental results can be explained 
only if the muon forms a diamagnetic complex ( H y  ) +. It is shown that the spin interactions 
inside the complex lead to effective depolarization of the muon spin, and the rates of 
depolarization are close for para and ortho hydrogen. For a "frozen" (H+)  + ion, account is 
taken of the influence exerted on the depolarization rate by rotational diffusion along 
crystallographically equivalent orientations in the hcp lattice of hydrogen. The observed 
polarization rate A decreases with increase of the rotational diffusion rate. An ice sphere is 
produced in liquid hydrogen around the ( H y  11) + ion. The Brownian rotation of this sphere 
should lead to a noticeable decrease of the rate of depolarization on going through the melting 
point, as is indeed observed in experiment. 

INTRODUCTION 

The muon technique was recently used for the first time 
to study solid and liquid hydrogen.'-3 The principles of the 
theory that explains the observed facts were developed in 
Ref. 4. We present below a complete theory of the behavior 
o f p t  in liquid hydrogen. 

We emphasize first of all that it is often impossible to 
predict, from first principles, the behavior of a muon in a 
particular substance, nor the chemical complexes into which 
it will be bound. Moreover, as shown by a number of experi- 
ments, the character of the chemical reactions of a muon is 
substantially altered in phase transitions even in chemical 
objects such as inert gases.' Therefore, on the one hand, the 
theory must be based on experiment, and on the other, it is 
necessary to analyze several possible variants. Experiment 
has shown that solid and liquid hydrogen contain only a 
diamagnetic muon fraction. According to the available 
data,' on the contrary, in hydrogen gas 60% of the muons 
produce muonium. As already noted, such changes in the 
behavior of the muon are quite frequently observed in phase 
transitions. 

In solid hydrogen, the depolarization rates are of the 
order of lo5 S - I  and differ little in para- and orthohydrogen. 
In the liquid phase, the damping rate is decreased by about 
one-half (6.  10V4 s ' ) .  The fact that the polarization of the 
diamagnetic fraction attenuates quite rapidly in parahydro- 
gen indicates unequivocally that in solid and liquid hydro- 
gen the muon is bound in some diamagnetic chemical com- 
pound. Indeed, the nuclear spin of the paramolecule is zero, 
and if the muon were free and in an interstice, its spin would 
hardly be depolarized. 

The simplest diamagnetic complexes of a muon in hy- 
drogen are the molecule MuH and the ion ( H y  ) +. Owing 
to the mass difference between the proton and the muon, the 
vibrational structure of the MuH molecule is w,,, 
~ 2 . 2 0 , ~ .  Recognizing that fiwH2 = 0.52 eV, we see that the 
energy of the zero-point oscillations of the MuH molecule is 
approximately 0.31 eV higher than in the H, molecule. 
Thus, the exchange reaction Mu + H, - MuH + H or 
,u+ + H,+MuH + H +  is endothermic and is possible so 
long as the muon (muonium) is not thermalized ("hot" 

channel). It can therefore be assumed that these reactions 
are relatively unlikely. We nevertheless consider this var- 
iant, too. 

On the contrary, approximately 4.5 eV is released in the 
reaction H, + ,u2+ ( H y )  +, this reaction can be freely pro- 
duced in the condensed phase after thermalization, and this 
channel is the most probable. The behavior of muon polar- 
ization in an ( H  y ) + "frozen" in a crystal was analyzed in 
Ref. 4. 

The equation for the spin density matrix is 
a 

ih-p(s,t)=[H(s),p(s,  t )  I ,  at 
(1)  

where the spin Hamiltonian is 

H(s)  =SP, V(q, ~ ) p ( ~ ' ( q ,  t ) .  ( la)  

The muon spin polarization is equal to 

Pi(t) = Sp, 0, ,p (s, t) 

= SPs 0,> exp (-iH (s) tltz) p (s, 0) exp (iH (s) t l h )  . (2) 

1. FROZEN (HZp)+ ION 

We consider in this section the behavior of muon polar- 
ization in an ( H y  ) + ion frozen in a lattice, making exten- 
sive use of the results of Ref. 4. Note that the observed dia- 
magnetic fraction cannot be attributed to formation of a 
MuH molecule. Indeed, in the rotational ground state of the 
molecule the problem reduces, after averaging over the coor- 
dinate variables, to motion of two unbound spins in an exter- 
nal field. In parahydrogen, where the magnetic moment of 
the molecules of the medium is zero, we would observe in a 
perpendicular field, in both the solid and liquid medium, a 
practically undamped precession at the free-muon frequen- 
cy. The damping rate would then hardly change in the phase 
transition. Thus, the hypothesis that a MuH molecule is 
formed must be rejected, since experiment contradicts total- 
ly both conclusions. 

Neglecting the small change in shape because of the 
difference between the muon and proton masses, we assume 
that the ( H y  ) + ion, just as the H z  ion, is an equilateral 
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triangle with side R ~ 0 . 8 5  A. The proton binding energy in 
the H: ion is 4.7 eV. This effect lowers it by 0.2-0.3 eV, 
which is unimportant to us. The time of formation of the 
( H y  ) + ion in the ground state is limited by the rate of ther- 
malization of the vibrational and rotational degrees of free- 
dom. As indicated, a typical time is t 5  lo-" - lo-', s, 
therefore the initial spin states of p+ and H, remain un- 
changed by the instant of completion of the elementary act. 
Simple estimates4 show that in liquid hydrogen, owing to the 
polarization pressure, there can be produced around the ion 
an icy sphere, just as in The sphere radius is esti- 
mated at r-4-7 A. In the solid phase the polarization of the 
medium leads to a noticeable distortion of the lattice around 
the ion. 

Generally speaking, the location of the ( H y ) +  ion in 
the lattice cannot be unambiguously identified. Simple esti- 
mates show, however, that the potential energy of the 
charge-dipole interaction for the ion is a maximum in a tetra- 
pore. Indeed, the polarizability of molecular hydrogen is 
(a) = 5.4~: (a ,  = 0.53 A is the Bohr r a d i u ~ ) , ~  and we ob- 
tain for the ion Uz0.5 eV at the lattice site, Uoz0.8-0.9 eV 
in the octapore, and U, ~ 0 . 9  eV in the tetrapore. It can be 
seen that the interaction energy of the ( H y  ) " ion with the 
lattice is higher by one or two orders than the binding energy 
(30-40 K )  of the hydrogen molecule in the lattice. However, 
the interaction between the charged and the induced dipoles 
does not freeze the rotation of the ion. Obviously, the poten- 
tial energy of the electrostatic interaction between the ion 
and the lattice depends strongly on the ion orientation in 
accordance with the crystal symmetry. This "corrugation" 
of the potential relief determines the ion-rotation freezing 
energy. For the symmetry group D ,, the size of the corruga- 
tion is determined by the interaction of the octupole moment 
of the ( H y  ) + ion with the quadrupole and with the induced 
dipole moments of the H, molecules. Estimates show that 
the height of the potential barrier (corrugation) for the ion 
of the center of an undistorted tetrapore is A U, - 100 K and 
that AU- 10 K at the lattice site and in the octapore. It 
follows from the same estimates that the energywise favor- 
able orientation of the ion plane is perpendicular to the 
threefold symmetry axis. 

We assume hereafter that the localized (H y ) + ion is 
frozen in the hydrogen lattice and that its coordinate density 
matrix is a function of the positions of the nuclei. 

We emphasize that since the ( H y ) +  ion interacts in- 
tensely with the lattice, an adequate description of its behav- 
ior requires the use of the density-matrix formalism. Note 
that for a frozen ion the energy levels with total proton spin 
I = 0 and 1 are degenerate in the coordinate variables. It is 
also obvious that the effective spin Hamiltonian for the fro- 
zen ion is entirely different than for a free one. Therefore, in 
contrast to the free ion, the spin interactions can lead to 
(I = 1 ) - (I = 0)  transitions. 

The spin Hamiltonian of the molecular ( H y  ) + ion in 
an external magnetic field B, obtained by averaging over the 
coordinate density matrix, is 

3 

where pi and si are respectively the magnetic moments and 
spin operators of the muon and of the protons, r ,  is the 

distance between the nuclei, and n,, = rik /rik. The problem 
of three interacting spins si = 1/2 in a strong external field 
was considered in Refs. 9 and 10 to determine the NMRD 
spectrum and line shape of compounds containing three pro- 
tons. We need a more complete analysis, hwoever, primarily 
because to determine the muon polarization we must know 
the spin density matrixp(t). An important role in the calcu- 
lation of the latter is obviously played by the initial condi- 
tions. Finally, considerable interest attaches to cases when 
the external magnetic field is comparable with the internal 
fields or is altogther nonexistent. 

The spin density matrix of the ( H y )  + ion at the initial 
instant of time can be written in the form 

where 

is the density matrix of the polarized muon, and pH, (0)  is 
the density matrix of the hydrogen molecule H,. 

Let the target be an arbitrary mixture of para- and 
orthohydrogen with concentrations c, and c, = 1 - c,. The 
states of the triplet are practically equiprobable, and there- 
fore 

where I is the total spin of the protons. 
Substituting Eqs. (4)-(6) in the definition (2)  of the 

polarization, we get 

where for the three 1/2 spins 

S,, ( t )  =I/,, Sp [exp (&'Hat) 0, ,exp (-iF.-'H,t) oPh pnZ (0) 1. 
(8)  

It is convenient to calculate the tensor S,, ( t )  in the 
basis of the eigenfunctions la) of the spin Hamiltonian H, : 

where h&, = E,  - E& , and E,  are the eigenvalues of H, . 
It is known that in a strong magnetic field one need 

retain in the Hamiltonian (3),  in first-order perturbation 
theory, only its secular part (see Refs. 11-13): 

where 

The interactions that alter the spin projections on the 
external magnetic field are neglected here, since all the s i ,  
and hence the projections of the total spin, are good quantum 
numbers in a strong field. This is true if the external field is 
much stronger than the field produced by the protons at the 
muon, B s  B, =,up /R 3, where R is the molecule dimension. 
We choose for the estimates the mean valueI4 R = 0.85 A, 
and then B,z25 G. 

We introduce for the ( H y )  '- ion a convenient set of 
spin functions, the product of the muon spin function 10, ) 
by the singlet and triplet functions lI,I, ) of the protons, 
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where I is the total spin of the protons. We use for the basis 
function the designations 

Accordingly, the state vectors 15) - 18) contain 
Iu,) = I - ) in placeof 10,) = I + ). 

In our basis, the states with the maximum total spin 
projections 11) and 17) are eigenstates of the Hamiltonian 
( 10) with energies 

where w,, = ~,L.L,,~ B (we put A = 1 ) . States havingidentical 
projections of the total spin of the system are intermixed. 
Therefore the states 12), 14), 15) and 13), 16), and 18), with 
respective total spin projections 1/2 and - 1/2, are inter- 
mixed. Thus, the Hamiltonian matrix ( a lH  ']@ ), where la) 
and I@ ) are the state vectors ( 11 ), breaks up into two diag- 
onal elements and two 3 X 3 matrices. We write down the 
matrix for three states with total spin projection 1/2 

a+/2 vr 
-a-12 1/T 

a+/2 1/2 -a-/2 jf 2 (o, + 20, + a+ - ax2)/2 
(13) 

where a * = a,, _+ a,,. In the matrix for the other triplet of 
bound states it is necessary to reverse the signs of w, and up. 

In a strong external magnetic field we have op ) laik I, 
therefore the spectrum and the eigenfunctions of the matrix 
(13) can be obained by using the method of approximate 
diagonalization of a Hermitian matrix, 15*16 used in perturba- 
tion theory for close energy levels. In fact (H ;, - H ;, I, 
IH ;, - H; 1-0, ) IH ;, I, IH ;, 1, as against the difference 
IH;, -H$I = la,2(-1H241 = la-1/2. We can therefore 
assume in first-order approximation [accurate to (a, / 
w, that only the states (2) and 14) are intermixed, while 
the state 15) and the matrix element H ;, are respectively an 
eigenstate and an energy level of the system. The matrix 
( 13) can thus be approximately diagonalized with the aid of 
the unitary-transformation matrix 

where tan 29  = 2H;,/(H;, - H;) = - a-/a,,. 
Similar operations for states with total spin projection 

- 1/2 yield the energy levels 

while the energy levels E ,  and E,  are given by Eqs. ( 12). 
The nonzero components of the tensor Sik ( t )  are 

~ ( a ~ , ~ + a - ~  cos 02t)) exp( io,t), (16) 

2 2 112. where w, = a+,  w, = (a,, + a - ) 

The off-diagonal components of the tensor S+ - ( t )  are 
defined to make 

where P+  = P, + iP,. 
Equations ( 16) determine the behavior of the muon po- 

larization in a field ( H y )  t that is arbitrarily oriented rela- 
tive to the external magnetic field. Obviously, the observed 
polarization of the muon ensemble is determined by a tensor 
averaged over all the ion orientations. For a frozen ion all the 
plane orientations are equally probable. Let us average the 
tensor component S+ - ( t )  over all the equiprobable orienta- 
tion of an equilateral triangle relative to the external magnet- 
ic field B. 

Let 6 be the angle between the field B (the z axis) and 
the normal to the plane of the ion, and q, the angle between 
the projection of B on the ion plane and the axis joining the 
protons; we have then 

mi(€), cp)=yopp[3 sinz 8(1+'/, cos 2rp) -21, 

a-= (31q2) lopp sinZ 0 sin 2rp, (18) 

wz2(8, cp)=oPp2(1+3 sin2 8['/& (l+3y2)sinZ 6-11 

-313/, (3y2-1)sin2 0 cos 2rp+l ]sin2 0 cos 2q), 

where wpp = 2,ui R -3, y = ,up /,up = 3.18, and R is the dis- 
tance between the nuclei (the side of the triangle). The cor- 
respondingly averaged tensor components are: 

1 
ts+-(t) )= - j dcp j do sin BS+-(~) 

4 n o  

where 

Si=<cos 01(8, q ) t> ,  (21) 

&=([a-(0, cp)/o2(0/(p)l2 cos ~ ~ ( 0 ,  cp)t). (22) 

It is shown in Ref. 4 that the dephasing of the muon-polar- 
ization precession frequencies in a frozen field ( H y  ) + leads 
to depolarization with a characteristic rate A - ywpp . It is 
also shown there that the functions S, ( t )  and S, ( t )  decrease 
to 5 1 % of the initial value at t- s. Thus, the calculat- 
ed depolarization rate is several times larger than the experi- 
mental one. 

2. ROTATIONAL DIFFUSION OF THE (Hzp)+ ION 

Thus, for the frozen ( H y  ) + ion the calculated relaxa- 
tion rate is several times larger than the observed one. It is 
natural to associate the model refinement needed for quanti- 
tative agreement with experiment with some diffusion of the 
muon. Diffusion always decreases the relaxation rate. The 
potential well for the muon in the ion, however, is approxi- 
mately 4.5 eV, the distance to the nearest equilibrium posi- 
tions is - 4.0 A, and it is easily seen that hopping diffusion of 
the muon is excluded in practice. This excludes all the more 
translational diffusion of the ( H y  ) + ion as a whole. In par- 
ticular, this can be directly verified by the data on the trans- 
lational self-diffusion in solid hydrogen and on diffusion of 
orthohydrogen in parahydrogen.l7-l9 It is perfectly obvious 
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that the diffusion rate of an ion, whose effective mass is very 
large because of the strong polaron effect, should be smaller 
by several orders. 

Nonethless, it is precisely the diffusion mechanism that 
provides the necessary decrease of the relaxation rate for the 
(H+)+ ion. The hcp lattice for the (H+)+  triangle has 
three crystallographically equivalent orientations, separat- 
ed by a potential barrier determined by the corrugation of 
the potential relief of the ion + lattice system. As noted 
above, the height of the barrier is - 10-100 K, depending on 
the position of the localized ion. 

Consider the simplest variant of rotational diffusion of 
the (H+)+ ion, when the equivalent equilibrium positions 
are specified by rotation of the triangle through an angle 
a + 2 ~ / 3  about the C, axis." 

We introduce a coordinate frame xyz rigidly connected 
with the lattice and withzllC,. In our case the normal to the 
ion plane coincideden with the z axis and the ion orienta- 
tion is determined by the angle between the axis joining the 
protons and thex axis. We denote the muon polarization for 
the orientations a, a + 2 ~ / 3  and a 3- 4 ~ / 3  by P,(t), PI ( t ) ,  
P, ( t ) ,  respectively. 

The magnetic moments have in an external field a pre- 
ferred direction. The dipole-dipole interaction between the 
magnetic moments of the protons and of the muon depend 
therefore on the ion orientation in the magnetic field. The 
transition frequencies that determine the behavior of the 
muon polarization in different equilibrium are correspond- 
ingly dependent on the orientation. Let us consider the case 
of a strong magnetic field. 

In each of the three equilibrium positions, the muon 
polarization is determined by the secular Hamiltonian ( 10). 
The polarization component parallel to the field is con- 
served: PI, ( t )  = Pil (0).  The precession of the perpendicular 
component is determined by one complex function S+  - ( t )  
[Eq. ( 16) ] that depends on the ion orientation in the field B. 
The polarization of a muon jumping from one equilibrium 
position to another is, naturally, conserved: Pi+ ( t )  
= Pi ( t ) .  The longitudinal polarization component is thus 

preserved in the course of diffusion, just as for the frozen ion. 
The transverse component attenuates, since the orientation 
of the ion relative to the field changes during the jumps, and 
the time dependence of the function S+ - ( t )  is determined 
by the equilibrium position of the (H+) + ion. 

Thus, in each equilibrium position the complex trans- 
verse polarization Pi ( t )  = (Pxi + iPYi ) is determined by a 
corresponding function Si ( t )  =S + - ( t ) ,  where i = 0, 1,2. 
We denote by A /2 the probability of a transition from a posi- 
tion "i" to a neighboring position "k," so that the muon 
polarization Pi ( t )  is given by the integral equation2' (Ref. 
20 

1 

h pi(t) =e-"si (t)P,(O) + J e -~~-~ )&( t - - r )  ~ h ( r ) d r .  
0 k f i  

(23) 

The system of integral equations is'reduced by a La- 
place transformation to an inhomogeneous system of three 
algebraic equations. All the equilibrium positions for the 
muon are equally probable, therefore P,(O) = P, (0)  
= P2(0) = P(0)/3, where P(0)  is the total muon polariza- 

tion at the initial instant of time. The solution of the system 

of equations for the Laplace transform of the total polariza- 
tion P( p )  = Bpi ( p )  is 

P(P) 

where the argument of the functions Si =Si ( p + A )  is left 
out for brevity. 

The time dependence of the polarization P ( t )  is deter- 
mined by the inverse transform 

i m - 0  

We putp + A = x - imp, and then the Laplace transform of 
the function takes the form 

where 
fi (x) =x'+'/3[ (lf2co) oli2+a:ai+20zi2-2~oa-12] 

Substituting (26) in (24), we get 

P (2) = ~ ~ o n l ~ 2 + ~ , n o n z + f 2 ~ O n l  

The denominator of (29) contains a polynomial of or- 
der 15. The residues in the integral (25) must accordingly be 
taken at 15 points. The main contribution to the integral of 
(25), however, is made by poles with small real parts that 
determine the low depolarization velocity. It is known that 
poles with small real parts can exist ifA Bw,, ,  . We separate 
from the argument of the functions (27) and (28) the large 
rea1partA:x = y  +A,y = p  -imp. We have lyI<A forthe 
sought solution. 

It follows from the structure ofthe denominator of ( 19) 
that there exists a single small root proportional to l/A. Re- 
taining in the denominator of (29) only terms linear in y and 
leading in A, and equating the denominator to zero, we ob- 
tain the desired pole with small real part: 

where 

The remaining 14 poles have large real parts -A and the 
corresponding residues are of the order of A/A. We obtain as 
a result, accurate to terms - 1/A, a simple time dependence 
of the muon transverse polarization: 

P,(t)=P, ( 0 )  exp (io,-zl)t. (33) 
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Note that the relaxation rate depends on the orientation of 
the C, axis relative to the external field. 

Let the direction of the field B be specified in the xyz 
frame by the angles 8 and p .  The components of the unit 
vectors joining the nuclei along the field direction are then 

n,,='/, sin 0[3'" cos (9-a)*sin (9-a)].  (34) 

We express the functions (3  1 ) and (32) in terms of unit 
vectors: 

We substitute (34) in (35) and sum over the three equilibri- 
um positions. The summation over three-equiprobable val- 
ues of the angle a is equivalent to averaging over this angle. 
Sinc the argument everywhere in (34) is only (p - a ) ,  we 
find that in the presence of axial symmetry the result de- 
pends only on the angle 8: 

An experiment on a single crystal can determine the 
orientation of the (H+) + ion in the crystal lattice. Produc- 
tion of large hydrogen single crystals suitable forpSR inves- 
tigations is rather complicated task. All the experiments per- 
formed to date were made on polycrystals. To obtain an 
equation that describes the behavior of the muon polariza- 
tion in polycrystals, Eq. (33) must be averaged over all the 
orientations of the C, axis in the magnetic field B. We recoe- 
nize here that A &a, and replace approximately averaging 
of the exponential by averaging of its argument: 

It can be seen from (38) that the depolarization rate ( A )  
depends little on the ortho/para ratio in the hydrogen: in 
pure parahydrogen it is approximately 10% higher than in 
pure orthohydrogen. In the reduction of experimental re- 
sults for a mixture of para- and orthohydrogen, account 
must also be taken of the known dipole-dipole relaxation 
rnechani~m.~' 

CONCLUSION 

The results obtained within the framework of the as- 
sumed model permit interpretation of the entire experimen- 
tal material presently available on the behavior o fp+  polar- 
ization in solid and liquid hydrogen. The hypothetical 
hopping rotational diffusion of the frozen (H+)+ ion ex- 
plains the observed depolarization in pure parahydrogen. 
The depolarization is due to para and ortho transitions in the 
(H+) + ion and should therefore vanish even in strongly 
slowed-down rotation of the ion, for in this case the para and 
ortho states differ in energy by more than the dipole-dipole 
interaction energy. 

A final check on our hypothesis that a frozen (H+)  + 

ion is formed can be obtained by studying the muon polariza- 
tion in the absence of an external magnetic field and in longi- 
tudinal fields of the order of 20-200 G.  Indeed, as already 
noted [see Eq. ( 16) 1, the longitudinal polarization is con- 

served, within the secular approximation, in a strong exter- 
nal field. The characteristic scale of the internal field at the 
muon in the ion is approximately 25 G, so that the depolar- 
ization is practically zero in longitudinal fields k 200 G. 

Note that rotational diffusion of the ion does not lead to 
any qualitative changes of the behavior of the longitudinal 
polarization. Quantitative diffusion-induced changes in the 
secular part of the Hamiltonian do not influence the conser- 
vation of the longitudinal polarization. Quantitative diffu- 
sion-induced changes in the secular part of the Hamiltonian 
do not influence the conservation of the longitudinal polar- 
ization component in strong magnetic fields. In exactly the 
same manner, rotational diffusion does not influence the be- 
havior of the muon polarization in the absence of an external 
magnetic field. Oscillations of the muon polarization, with 
frequencies on the order of lo6 s-', should be observed. As 
shown in Ref. 22, six oscillation frequencies will be observed 
in the general case, and three in parahydrogen, 

Note that, strictly speaking, the question of the influ- 
ence of a very small admixture of a MuH fraction (or of a 
free muon) remains at present experimentally unanswered. 
Over long times t 2 lo-' s, the polarization would asymp- 
totically reach a small constant value. 

The experimentally observed abrupt decrease of the de- 
polarization on going into the liquid phase is interpreted as 
the result of Brownian rotation of the ice sphere produced 
around the The increase of the depolarization rate 
with decrease of temperature is apparently due to a de- 
creased rate of rotational diffusion. The observed tendency 
of the depolarization rate to decrease at T S  4 K can be con- 
nected with quantum effects in rotational diffusion of the 
(H+)  + ion. Answers to these questions can be provided by 
more accurate experiments. 

"Of importance for the subsequent solution of the problem is only that the 
diffusion has the same velocity along the three positions that replace one 
another upon rotation. 

"Equation ( 2 3 ) ,  which is valid for the case of "incoherent" diffusion 
P, ( t  + T )  = S, ( t  + T ) P ,  (T), can be used for our problem, since the in- 
teractions that determine the functions S, in various equilibrium posi- 
tions of the ion are not related to one another. 
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