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A theory is developed of the emission of a photon by a charged high-energy particle in an 
oriented crystal. At low angles of incidence the theory describes the emission of radiation in a 
continuous potential of a crystal axis or plane, but at sufficiently high angles it reduces to the 
standard theory of coherent bremsstrahlung. A modification of the theory of coherent 
bremsstrahlung is obtained for a wider range of angles of incidence. The adopted approach 
makes it possible to find the orientational dependence of the total radiation intensity for any 
particle energy and, at sufficiently high energies when the synchrotron radiation description 
becomes valid at low angles of incidence, to calculate any characteristics of the radiation for an 
arbitrary angle of incidence. 

1. INTRODUCTION 

The emission of a photon by a charged particle accom- 
panied by creation of an electron-positron pair by a photon 
in the case when the initial particle moves at a low angle 6, 
relative to the direction of an axis or a plane in a single crys- 
tal is quite different from the corresponding process in an 
amorphous medium. Processes of this kind are being active- 
ly discussed at present. Recently we developed an approach 
to the description of the creation of pairs by high-energy 
photons in single crystals which is valid at any energies and 
angles of incidence of the photon. This approach is based 
on a general semiclassical formalism'' for the description of 
phenomena in external fields (Chap. 3 in Ref. 4).  A similar 
approach will be applied below to the problem of radiation 
emission. Several new aspects have to be faced and, in partic- 
ular, it is necessary to allow for a redistribution of a flux of 
charged particles in a crystal. 

We shall consider qualitative features of the emission of 
radiation in an oriented single crystal. It is well known (see, 
for example, Sec. 1 in Ref. 4) that the features of this process 
depend strongly on the ratio of the characteristic emission 
angle 9, = m / ~  = l/y (m is the electron mass2' and e is the 
electron energy) to the angle of deflection of a particle on its 
trajectory 02- ( ( A v ) ~ )  = (v2) - (v2)', where (...) de- 
notes averaging with respect to time. The relevant parameter 
p was introduced in Ref. 7 (see also Refs. 3 and 8):  

p=2y2( (Av)'). (1.1) 

We recall that for the values of the parameter in the range 
p g 1 the radiation is of dipole nature and it appears in a time 
of the order of the period of motion, whereas forp) 1 it is of 
synchrotron nature (for frequencies contributing to the in- 
tensity) and it is emitted from a small part of the trajectory. 

The motion of a particle and, consequently, the param- 
eterp depend on the angle 9, at which a particle is incident 
on a crystal compared with the characteristic channeling 
angle 9, = (2 V,/E) 'I2, where V, is the scale of a continuous 
potential of an axis or a plane relative to which the angle 6, 
is defined. At angles of incidence in the range 6,s a,,  elec- 
trons falling on a crystal are captured by channels or low 
above-barrier states, whereas for 6,) 6, the incident parti- 
cles move well above the barrier. In the latter case we can 
describe the motion using the approximation of a rectilinear 
trajectory, for which we find from Eq. (1) the following 
estimate 

For angles of incidence in the range 6,s 9, the transverse 
(relative to an axis or a plane) velocity of a particle is u, 5 6, 
and the parameter obeys p sp , ,  where 

It is clear from Eq. ( 1.2) that the problem has another char- 
acteristic angle 9, - V,/m, where p, = (26,/9, ) 2  (the 
same characteristic angle occurs also in the problem of pair 
creation by photons in single crystals3). 

It is shown in our earlier paper8 that for a given frequen- 
cy of motion w, the characteristic frequencies of the emitted 
photons are described by 

When a charged particle moves near an axis (plane) of a 
crystal we can assume approximately that 0,-v, /as - Vo/ 
masp'12, where a, is the size of the region of action of the 
continuous potential. It then follows from Eq. ( 1.4) that 
u - ( 1 + l /p) ' 1 2 ~ s ,  where the parameter 

y,.=Voelm3a. (1 .5)  

represents quantum effects in the course of emission of radi- 
ation. In fact, our estimate (valid up to x, - 1) shows that 
the ratio w / ~ g  1 for characteristic emission frequencies, 
which allows us to ignore the recoil and to use the classical 
theory of emission of radiation, may be satisfied only if X, 
( 1. However, in this case the validity of the classical de- 
scription of the emission of radiation breaks down for 

5 x s ,  i.e., for 9, k V0/mx, = ma,/y=S,. It should be 
pointed out that a typical value for crystals is ma, - lo2% 1. 

At sufficiently high angles of incidence 9, we can apply 
the theory of coherent bremsstrahlung-CBS (see Chaps 1 
and 2 in Ref. 9 and Chap. 8 in Ref. 10; the criterion of validity 
of the theory of CBS is discussed in Ref. 11 ), which repre- 
sents essentially the Born approximation to the potential ofa 
crystal and its validity requires (in our terms) that the con- 
dition of the emission of dipole radiation is satisfied simulta- 
neously with the condition of validity of the rectilinear tra- 
jectory approximation. 

We shall now consider the dependence of the emission 
pattern on the particle energy. At low energies (up to several 
megaelectron-volts in the axial case and up to several tens of 
megaelectron-volts in the planar case) the radiation is domi- 
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nated by transitions between energy levels in the relevant 
potential well. We shall consider the range of energies when 
the number of these levels is high and the particle motion can 
be described classically. 

As long as the conditionp, < 1 is satisfied (we then have 
9, (9, 49, 49, ) the radiation is of dipole nature for all 
angles of incidence of a particle on a crystal. The parameter 
,y is small; X, = p, /2ma, gp ,  < 1 and X, /p, ' I 2  < 1, i.e., the 
classical description of the radiation is valid and, although it 
does break down for angles 9,-9, , at these angles we can 
already apply the CBS theory which is then valid if 9,s 9,. 
At higher energies the conditionp, - 1 begins to apply, i.e., 
we now have 9, - 8, - 9, < 9, , but all that we have said so 
far about the nature of the emitted radiation remains valid 
except that at low angles of incidence 9, 5 9, the radiation is 
no longer of the dipole nature. Finally, when p, > 1, which 
corresponds to 9,< 9, < 9, , at angles of incidence 9, < a , ,  
the synchrotron radiation description applies (p  , 1 ) and 
the CBS theory can be used in the opposite case when 9, > 9, 
[if 9, - a , ,  we find from Eq. ( 1.2) that p - 1 and the dipole 
emission condition is no longer obeyed]. At energies of this 
kind the parameter X, can no longer be regarded as small 
(for example, already for x, = 0.1 the classically calculated 
total intensity in a constant field is approximately 1.5 times 
greater than the correct result) and it becomes essential to 
allow exactly for the quantum recoil in the course of emis- 
sion of radiation. 

We shall obtain one further estimate of the length of 
formation If for angles of incidence 9,s 9,. Since If a&/ 

m2u, we find from Eq. (1.4) that if p, < 1, then 
If a lop, ' I2  a l/w,, where I, = a,/??, and the length If rises 

.proportionally when the conditionp, - 1 begins to be 
satisfied, this rise ceases and as long as u-x,, i.e., up top,  
- lo2, the length of formation of the radiation remains prac- 
tically constant: If -1,; on further increase in the energy we 
have u- 1 and I f  a&/m2;  at energies E -  10 TeV or higher 
this law changes to a slower one: If a lox, ' I 3 .  The value of I, 
is greater for lighter crystals and, for example, along the 
(1 11) axis it varies from 5.7 x 10 - 5  cm for diamond to 
2 . 6 ~  10 - 6  cm for tungsten. When the energy is E -  10 TeV, 
the length of formation of radiation becomes of the same 
order of magnitude for different substances: If - 10 - ' cm. 
We shall assume that the thickness of a crystal L satisfies the 
condition L , If. 

We shall assume that our crystal is thin, i.e., we shall 
ignore the change in the distribution function in the trans- 
verse phase space during the passage of a particle through 
the crystal. This approximation is justified if (for a discus- 
sion see Ref. 12) the thickness of the crystal is less than the 
characteristic dechanneling length and the characteristic en- 
ergy loss length LC, : 

where I ( & )  is the total radiation intensity. An analysis (see 
Ref. 12 and Sec. 3 below) demonstrates that the range of 
thicknesses in which a crystal can be regarded as thin and the 
condition L )If be still satisfied can be found at any energy. 
On the other hand, in the range of energies under discussion 
(p, % 1 ), for a thick crystal satisfying the condition 9,s 9, 
there is always a specific electromagnetic shower (see Ref. 
2) .  Then the description of the emission of radiation in terms 

of one particle is no longer satisfactory and it is necessary to 
solve the appropriate equations of the cascade theory in 
which the kernels are the expressions obtained below for the 
description of the emission of radiation and the expressions 
describing the creation of pairs by a photon obtained in Ref. 
3. 

In the majority of recent investigations only some 
aspects of the theory of emission of radiation in oriented 
single crystals have been discussed. Studies have been made 
of coherent bremsstrahlung and of the emission of radiation 
by particles in channels moving above a barrier, with most of 
the treatments dealing with the range p,  5 1. The quantum 
recoil during the emission of radiation has been usually ig- 
nored when dealing with the rangep, , 1. 

We shall develop a theory of the emission of radiation 
by electrons and positrons in thin crystals for the range p,  
$1 (&)m2/V0) and we shall allow for the quantum effects. 
The results obtained will then be valid for any angle of inci- 
dence 9,. In the range 9,<9, these results reduce to the 
theory of emission in axial fields in the synchrotron radi- 
ation limit (this range is analyzed in Refs. 1 and 13; see also 
Refs. 5 and 6 ) .  We shall also find the correction (mS,/V,) * 
which applies in this range (Sec. 3). For 9,2 a , ,  the general 
formulas yield an expression for the probability representing 
a modification of the standard theory of CBS, whereas for 
9,)9, , we obtain the standard theory of CBS rather than its 
modification (Sec. 4).  The general expression obtained for 
the description of the orientational dependence of the total 
intensity of the emitted radiation is found to be valid at any 
energies at which we can apply the semiclassical theory of 
the emission of radiation (i.e., it is valid whenp, 5 1 ). 

2. SEMICLASSICAL DESCRIPTION OF THE EMISSION OF A 
PHOTON BY A CHARGED PARTICLE IN A SINGLE CRYSTAL 

The most satisfactory approach to the problem of emis- 
sion of radiation by relativistic particles is the formalism 
utilizing the semiclassical operator method developed by 
two of the present authors (see Ref. 4 ) ,  because it is valid for 
all types of external fields, including inhomogeneous and 
alternating fields. For the majority of-quantum numbers of 
motion (corresponding to the semiclassical condition) this 
method can be used to go over from the exact quantum ex- 
pressions by a series of transformations to quantities on a 
classical trajectory of a particle when the recoil due to the 
emission of a photon can be allowed for exactly. The general 
expression for the energy of the emitted radiation is (see 5 10 
in Ref. 4)  

d3k 
dE=e' - 

(23%) 
I j dt  R ( t )  eik'"" I ' . 

where 
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e is the polarization vector of the emitted photon, and q i  and 
pf are spinors describing the initial and final spin states of 
the incident particle. Equations (2.1 ) and (2.2) describe all 
the characteristics of the emitted radiation, including the 
spin and polarization parameters. The formulas for unpolar- 
ized electrons, but allowing for the photon polarization, ob- 
tained from Eq. (2.1 ) can be found in Refs. 4 and 8. In this 
case, integrating over the angles of emission of a photon, we 
find that the spectral distribution of the emitted energy is 

where 

Here, 

The particle velocity can be represented in the form 
v( t )  = v, + Av(t,v,), where v, is the average velocity. The 
zero subscript refers to the expression which is summed over 
the photon polarizations. The polarization vectors are se- 
lected as in Ref. 8: 

The Stokes parameters f ' j )  are described by 6") = dE'" / 
d E  ''I. It should be noted that the expressions for A ,  and T ' O )  
are not affected by the substitution Av- Av + b, where b is 
any vector independent of time. 

We shall generally assume that a crystal is thin and the 
condition p, ) 1 is satisfied. In this case the extremely diffi- 
cult task of averaging Eqs. (2.1 ) and (2.3 )-derived for a 
given trajectory-over all possible trajectories of a particle 
in a crystal simplifies radically. In fact, ifp, $1 then in the 
range where the trajectories are essentially rectilinear 
(9,s if., u, -if, ) the mechanism of emission of radiation is 
of the synchrotron nature and the characteristics of the radi- 
ation can be expressed in terms of the local parameters of 
motion. The averaging procedure can then be carried out 
simply if we know the distribution function in the transverse 
phase space dN(p,v, ), which for a thin crystal is defined 
directly by the initial conditions of incidence of particles on a 

crystal. For a given incidence angle if, (which is the angle 
between the momentum of the incident particle and the crys- 
talaxis of the plane), we havedN /N = d 3rF(r,ifo)/V, where 
V is the volume of a crystal and N is the total number of 
particles. In the axial case the function F(r,if, ) is of the form 

where U(p) is the continuous axial potential dependent on 
the transverse coordinate p normalized so that U(p)  = 0 at 
the boundary of a cell; U, is the depth of the potential well; 

8 ( x )  is the Heaviside function: 8 ( x )  = 0 when x < O  and 
B(x) = 1 when x > 0. In the planar case, we have 

where U(x) is the continuous potential of a plane dependent 
on the transverse coordinate x, U, is the depth of the poten- 
tial well, V ( E ~ , ,  X )  = [ 2 ( ~ ~ ,  - U(X))/E] ' I 2  is the transverse 
velocity of the particle, and a,, = 4 do2 + U(X,). It should 
be noted that in the case when (p,) > U, (above-barrier 
particles) the distribution (2.5) becomes uniform, whereas 
the distribution (2.6) becomes uniform only if a,, ) U,. We 
shall represent the crystal potential in the form 

The quantities G ( q )  are defined in Ref. 3 [see Eqs. (5.1 )- 
(5.4) I .  We shall use a potential which is averaged over ther- 
mal vibrations, which in fact excludes from consideration 
the emission of radiation in accordance with the Bethe- 
Heitler mechanism. This is again a result which is different 
for crystals from that for amorphous substances (see, for 
example, Ref. 9 dealing with the theory of CBS). If if, (<if,, 
we find Av(t) using the rectilinear trajectory approxima- 
tion: 

where q,, = qv,, qL = q - v,(qv,). Ifp, ) 1, there is a range 
of angles if, which satisfies if, gif,<if,, i.e., when both the 
synchrotron description and the rectilinear trajectory ap- 
proximation can be applied. However, since the synchrotron 
approach provides the same description for all angles 
9,<9,,  the formulas obtained in this range of if, remain 
valid (as shown in the next section) right up to if, = 0. In the 
range if, 2 if,, the rectilinear trajectory approximation is 
known to be valid forp, $1. Substituting Eq. (2.8) into Eq. 
(2.3) and summing over the trajectories of particles in a 
crystal subject to an allowance for the redistribution of the 
flux [Eqs. (2.5) and (2.6) 1, we find that simple transforma- 
tions yield a general expression for the intensity of the radi- 
ation valid for any angle of incidence if,: 
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I = - = -  dz  dE@" ! w d o  $ F (r, 1P.) 5 x{ 1 
d t  2ne2 - CC 

where 

sin qllz sin qllfz - -- 
QllT 4uf7 

Similar expressions are obtained also for the quantities de- 
scribing the polarization of the emitted radiation; for exam- 
ple, if I (2' = dE (2'/dt, we find that 

sin qllfz XI-{*: z G(q)G(q') 
[ qq t~v .  [sin q,,r(cos q I r r  - -) 

q q J  ~1,911~ 911 

sin qllz 
-sin qllpr (ces qllr --)I e-"q+qt'.. (2.10) 

QllT 

In Eqs. (2.9) and (2.10) we have made the substitution 
7-27. We shall assume that the thickness of a crystal is 
considerably greater than the length of formation of radi- 
ation I/., so that we can consider a description in terms of the 
intensity. 

It is known that there is a relationship between the dif- 
ferential probabilities of the emission of a photon by a 
charged particle and the creation of a pair by a photon in 
quantum electrodynamics. The probabilities integrated over 
the angles of emission of the final particles do not generally 
exhibit such a relationship. However, we can show that in 
view of the smallness of all the characteristic angles of the 
problem, such a relationship applies in our case also to the 
spectrum of the final particles. Therefore, Eq. (2.9) can be 
obtained from Eq. (2.13) of Ref. 3 by means of the substitu- 
tions E + - E, w - - w, E' +E ' ,  E ~ ~ E  + - w2dw allowing for 
a redistribution of a flux of charged particles and using the 
self-evident relationship between the intensity and the prob- 
ability d l  = wd W. We shall apply this relationship exten- 
sively in the treatment given below. 

Equation (2.9) describes the spectral properties of the 
radiation (these properties are obtained by dropping the in- 
tegral with respect tow) for the range 8,)8, and any value 
ofp,, whereas if 8,s 8, , such a description is obtained if the 
condition p, ) 1 is obeyed. However in the case of the total 
(integral) intensity of the radiation the range of validity of 
Eq. (2.9) is wider and it is the same as that of the semiclassi- 
cal approximation. This situation arises because at energies 
when p, 5 1 and the synchrotron radiation description 
ceases to be valid, the classical theory of the emission of 
radiation can be used for angles 8,s 8, and the total intensi- 
ty then depends only on the local characteristics of the mo- 
tion of a particle. 

We shall show below that if 8,<8,, then Eq. (2.9) de- 
scribes the emission of radiation in the synchrotron limit, 
whereas for 8,)8, we obtain the familiar expressions for 

coherent bremsstrahlung (CBS). In the intermediate range 
of angles one should use directly Eq. (2.9). 

3. INTENSITY OF RADIATION FOR 9, $9,. CORRECTIONS 
TO THE SYNCHROTRON RADIATION LIMIT 

If 8,< a , ,  the above substitution rules can be used to 
derive the spectral distribution of the radiation intensity dIF 
(0) from Eq. (3.6) of Ref. 3: 

where 

K ,  ( A )  is a modified function of the second kind; U(p) is a 
continuous axial potential, which depends only on the trans- 
verse coordinate p: 

the index t denotes that component of the vector which is 
perpendicular to the axis: p = r,. (We shall assume from 
now on that the vector n = vo/lvol does not lie near crystal- 
lographic planes. The problem of emission of radiation in the 
planar regime will be discussed separately.) Since the 
expression for dIF is independent of z (which is the coordi- 
nate r along the axis), it follows that $ d 3r/V+$ d 2p/S, 
where S is the cross-section area per axis. The first two terms 
in Eq. ( 3.1 ) independent of n = v,/l v,l represent the spec- 
tral distributions of the intensity in the synchrotron radi- 
ation limit (see, for example, 5 10 in Ref. 4) if we allow for a 
redistribution of the flux of charged particles; the other 
terms represent a correction proportional to -6 [see Eq. 
(4.16) of Ref. 81. Equation (3.1 ) allows for the fact that in 
the range 6, -6, we have (m80/Vo)Z- l/p, and retention 
of terms of this kind in Eq. (3.1 ) would represent unneces- 
sary precision, because these terms are dropped in the deri- 
vation of Eq. (2.9). Therefore, corrections proportional to - (m80/Vo)2 need be included only if E, > U,, when we 
have F(r,8,) = 1. Then, the potential of an axis (for a dis- 
cussion see Sec. I11 in Ref. 3) can be regarded as axially 
symmetric, U = U(p2), and integration with respect to the 
angles of the vector p is carried out in Eq. (3.1 ): 
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4) Note. Here, C ( d )  denotes diamond; u ,  is the amplitude of thermal vibrations; u,, 7, a,, andx, 
are the parameters of the potential described by Eq. (3.5);  X, is the parameter representing the 
magnitudeof the quantum effects of Eq. ( 1 . 5 ) ; ~ ~  is the parameter which determines the multi- 
polarity of the radiation of Eq. ( 1.3); is the maximum magnitude of the effect estimated on 
the basis of Eq. (3.12). 

TABLE I. Parameters of potential and some quantities characterizing emitted radiation. 

where we have adopted a new variable x = p2/a,2; 
x,- ' = n-a, 'nd; d is the average distance between the atoms 
of a chain forming the axis; n is the density of atoms in a 
crystal; 

4 

&?YoZ 
Y O ( & L ( Y ) ) =  5 ~ ~ ( & L ( Y ) - U ( X ) ) I  81(~)=1+u(~) .  

0 

The notation U1(x)  = V,g(x) is used in Eq. (3.3), so that 

m30a. - U 
- vo~ o 

h = x b = - ,  u = -  
~ E E ' V O X ' ~  1 gI 3 ~ ~ x  (g l  m3a, E' ' 

(3.4) 
The above expression (3.3) represents the spectral distribu- 
tion of the radiation intensity (after integration with respect 
to w ,  it gives the total radiation intensity) for an arbitrary 
form of an axially symmetric potential of the selected axis. In 
specific calculations we shall use a potential found to be fully 
satisfactory in specific problems of emission of radiationI4 
and pair-production1-3 discussed by us earlier: 

where, ~ ( x )  is the local value of the quantum parameter y 

(at a distance x = p2/a, from the axis). The parameters of 
the potential (3.5) are given in Table I. 

Equations (3.1 ) and (3.3) are derived from the intensi- 
ty equation (2.9) within the range of validity of the latter 
(ifO$.if, ). However, the intensity changes only slightly on 
further reduction in the angle if,, as demonstrated by Eq. 
(3.3). Hence, it follows that Eqs. (3.1 ) and (3.3 ) and, there- 
fore, Eq. (2.9) are all valid up to 9, = 0. 

In this limit in all specific calculations and estimates we 
shall assume, for the sake of simplicity, that the distribution 
is uniform along the transverse coordinates (which is true in 
the case of large angles of incidence if0 > if, and approxi- 
mately correct in the case ofbeams with a large angular scat- 
ter At?, - $= ). Numerical calculations were carried out for 
the potential of Eq. (3.5). The influence of a redistribution 
of a flux on the orientational dependence will be discussed in 
Sec. 5. 

The results are illustrated in Figs. 1 and 2. Figure 1 
gives the reciprocal of the characteristic length of the loss of 
energy by a particle in the synchrotron radiation limit 

Px 
s.IOGeVI 

2.22 
4.14 
5.36 
6.97 
8.43 
8.77 

31.94 

as a function of the electron energy for some semiconduc- 
tors. We can see that if E z 1 TeV, the value of L 2 ' reaches 
its maximum near which the energy dependence of L , ' is 
fairly weak and the value of LC, is several times less than the 
radiation wavelength in the corresponding amorphous sub- 
stance [for example, in the case of Si ( ( 1  10) axis), we have 
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FIG. 1 .  Energy dependence of the reciprocal of the characteristic energy 
loss length L 2 = F (E) /E for Si ( 1  10) at T = 293 K (curve 1 ), for dia- 
mond( l l1)  at T = 2 9 3 K  (curve2),forGe(110) at T = 2 8 0 K  (curve 
3),  and for Ge (110) at T =  100 K (curve 4 ) .  
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FIG. 2. Spectral dependences of the intensity of the radiation obtained for 
a given energy in the case of Si (1 10) at T = 293 K: E = 100 GeV (curve 
1 ), E = 700 GeV (curve 2), E = 5  TeV (curve 3 ) .  The dashed curves give 
thecorresponding results for Ge ( 110) at T = 280 K: E = 100 GeV (curve 
4) and E = 3 TeV (curve 5 ) .  

(L,,/L,, ),,, ~ 7 5 1 .  Figure 2 shows the spectral distribu- 
tion of the intensity dF/dw (in the synchrotron radiation 
limit) of the emitted photons calculated for different elec- 
tron energies along the (1 10) axis in silicon and germanium. 
We can see that if the energy is E = 100 GeV, then the value 
of d F  /dm has a maximum at w / ~ /  & 1 and it falls rapidly on 
increase in the frequency. However, as the energy is in- 
creased, the distribution becomes more uniform over the 
whole spectrum right up to w ZE.  

The spectral characteristics of the radiation depend 
very strongly on the relationship between the values of 
u = O/E' andx. If u $x, v - " ~ ,  the emission is exponentially 
suppressed, so that the emission spectrum consists mainly of 
the frequencies characterized by u 5X,7-1'2. If u &x, , we 
can obtain an explicit asymptotic expression for the spectral 
distribution of the radiation intensity, which is particularly 
convenient for the analysis in the range of high energies 
whenx, % 1. The range of integration with respect tox in Eq. 
(3.3) can be split into three parts: 1) O<x<x,&l; 2) 
x ,  <x<x,% I ;  3) x,<x<x,, if we assume that xo>x2$ 1, 
where R (x, ) & 1 and A (x,) & 1. Then, in the ranges 1 and 3 
we can replace g (x )  with approximate expressions at low 
and high values of x, and we can then integrate with respect 
to A ,  whereas in the range 2 we can use the expansion of K ,  
(R ) valid in the range R & 1. Fairly cumbersome calculations 
yield 

where 

wherep(u) = 1 + u + (1 + u)-', C =  0.577 ... is theEuler 
constant; I ,,, (7) = B (0)  - B ,,, (7).  The functions B,  

(7) and B, (7) occur in the asymptotic representation of the 
probability of creation of pairs by a photon in the case when 
xs $1 [see Eqs. (3.12) and (3.13) of Ref. 31. 

In the derivation of Eq. (3.6) the integration with re- 
spect to x is carried out between infinite limits. Since the 
main (logarithmic) contribution to Eq. (3.6) comes from 
the range x - (x, / u  ) 2" (range 3 ) , it is clear that the asymp- 
totic expression (3.6) is valid only if (x, /u),I3 <x0. 

We must bear in mind that Eq. (3.6) is not valid at low 
frequencies in the limit u-0 (for this reason it cannot be 
used to calculate the corrections to the total intensity and to 
the emission probability). The physical reason for the inad- 
missibility of the synchrotron approach for the description 
of the low-frequency radiation is that at low frequencies the 
radiation is formed throughout the particle transit trajectory 
along the axis. We shall now analyze this topic. The synchro- 
tron radiation approach is valid if the transferred momen- 
tum corresponding to an impact parameter x 'I2a, exceeds 
considerably the mass: 

A p ,  2V0x'" - z -------- dt 
- n V o  -- >> 1. 

m  ma, J ( x + t 2 ~ 0 2 i a ~ ) ~  mse. 

Substituting here x = (x, /u),I3, we can find the lower limit 
to the frequency range in which the synchrotron radiation 
descriptionisvalid [see Eqs. (3.1), (3.3), and (3.6)]:  

In connection with this criterion we must draw attention to 
the anomalously small [by a factor ( ~ , / u ) ~ / ~ ]  first correc- 
tion in the expansion of Eq. (3.6). It should be pointed out 
that ifx, & 1, then the asymptotic expression (3.6) describes 
the spectrum outside the range of fundamental frequencies 
[Eq. (3.6) applies when u &x,, whereas the main contribu- 
tion to the radiation intensity comes from u -x, 1, whereas 
forx, > 1 the condition u <x, is satisfied by frequencies with 
u- 1, which dominate the intensity. On increase in X, (E) ,  
the fraction contributed by frequenci& w -E become signifi- 
cant (x, - 1 ) and for X, $1 the frequencies o -E dominate 
the emission. At such high electron energies the spectral in- 
tensity of the radiation depends weakly on the frequency of 
an emitted photon. This follows from Eq. (3.6) and is illus- 
trated in Fig. 2. In the range under discussion the value of 
L ,  depends weakly on the energy (Fig. I ) ,  so that the 
situation is on the whole similar to the properties of brems- 
strahlung emitted by single nuclei (Bethe-Heitler mecha- 
nism), but the radiation lengths are now several tens of times 
less than the corresponding wavelengths in an amorphous 
medium. In the same range of energies an analogous situa- 
tion occurs in the process of creation of an electron-positron 
pair by a photon (see Refs. 2 and 3).  Hence, it follows that at 
low angles of incidence of a photon (or an electron) of suffi- 
ciently high energy on a single crystal a special electron- 
photon shower2 develops (over distances much shorter than 
in the corresponding amorphous substance) and the evolu- 
tion of such showers is in many respects different from the 
Bethe-Heitler mechanism, as shown separately below. 

We shall now consider calculation of the total radiation 
intensity. It is convenient to carry out integration of Eq. 
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(3.3) by parts with respect to the variable u (and then in 
some terms the integration by parts with respect to the vari- 
able x) ,  so that the final result is 

rn x, 

a m 2  u drc 
i t M  ( )  - -  ( 6 )  i ( )  = - - J - j ax 

3%~lx, (I+U)' , 

where 

As pointed out already, the range of validity of Eq. 
(3.9) is the same as that of the semiclassical approximation. 
At low energies (in the classical limit) it is well known that 
I ( x )  a x 2 ( x )  (see, for example, Ref. 4) irrespective of 9, 
and this remains valid right up to angles where the emission 
of frequencies w - y29,/a, -E becomes significant and the 
classical theory ceases to be valid. Therefore, at relatively 
low energies when X, 4 1, we can have i2/il 4 1. In fact, it 
follows from Eq. (3.9) that if X, 4 1, we find that i2/ 
i, axs 7 - 'I2. 

At high energies (x, $ I ) ,  the expression for 
LC, - ' = I (E)/E becomes: 

where 

61= (2/3)6.6"I'(2/3) -0.3925, 

It is clear from Eq. (3.10) that ifx, ) 1, then the synchrotron 
radiation description is valid in the range where xS4l3/ 

p(9,) ( 1. This is in agreement with Eq. (3.8) if we bear in 
mind that for these values ofx, the main contribution to the 
intensity comes from u - 1. 

The quantity F(x, ) in Eq. (3.10) reaches its maximum 
at a pointx, O = exp (3  - go), near which it varies extremely 
smoothly. Since X, O 2 e3 ) 1, this justifies the use of Eq. 
(3.10) in the region of the maximum. In view of the smooth 
variation of F(x,) near the maximum, the energy E ,  ob- 
tained from xS) represents only an estimate. However, the 
value of (L $ I),,, given by Eq. (3.10) is quite satisfactory 
and it is in good agreement with the results of a numerical 
calculation carried out on the basis of Eq. (3.3): 

It is interesting to compare Eq. (3.11 ) with the maxi- 

mum probability of creation of pairs by a photon [Eq. ( 3.14) 
in Ref. 31. We have the relationship W y  

- 1 L C  ),,, .0,72; however, we must bear in mind that the 
characteristics of pair creation and emission of radiation 
have maxima at different'energies. At very high energies the 
values of We and L 2 ' become very close to one another 
irrespective of the nature of the medium: 
We LC, z 5.3T3(2/3)  ( 7 . 2 ' ~ ~ )  -'= 1,023. Although the 
product of these quantities is, as in the Bethe-Heitler case, a 
constant (the constants are different: 1.023 and 0.778), the 
quantities We and L , ' themselves depend on the energy, in 
contrast to the Bethe-Heitler case. It should also be pointed 
out that the factor exp[ - 1, (q) /3]  depends weakly on the 
medium and it varies (for the usually investigated sub- 
stances) in the range 0.90-0.75 as 7 changes from 0.025 for 
diamond to 0.15 for silicon. 

The maximum excess of L,, above LC, in the corre- 
sponding amorphous substance is of considerable interest: 

ma, - 
3Za In (183%- ) ' 

where the second (simplified) estimate is fairly rough. 
Hence, we can see that (Y increases on reduction in Z and 
on increase in a,. The greatest enhancement (among the in- 
vestigated substances) is achieved for diamond (ryx- 160); 
the values of are listed in Table I. 

We shall now consider calculation of the total probabil- 
ity of emission of radiation which determines the total num- 
ber of emitted photons and we shall do this in the synchro- 
tron radiation approximation. Then, the potential of Eq. 
(3.5) obtained for the case when X, 4 1 corresponds to the 
total probability 

S" 

5am2 j" I O ~ V ~  
W ;  (xP<cl) = 7 dx x (x) = 

2 . 3  X o E  , 3"n,mxo 

In the other limiting case ofx, ) 1 we can integrate Eq. (3.6) 
bearing in mind that dw = E (  1 + ~ ) - ~ d u ,  i.e., we can inte- 
grate @: with respect to u with the weight ( 1 + u) -', which 
gives 

where 

3 + - - 1, (q) =3.8765-11 (q) . 
28 

An analysis of the above expressions for the intensity and the 
total probability shows that a large number of soft photons is 
emitted and they do not affect significantly the loss of energy 
by the particle. At high particle energies (x, 2 1 ) these pho- 
tons can nevertheless manifest their presence on experi- 
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E ,  GeV 

FIG. 3. Energy dependences of the total probability of emission of radi- 
ationinsi (110)at T = 2 9 3 K  (curve l) , indiamond (111)at T = 2 9 3 K  
(curve 21, in Ge (110) at T = 2 8 0  K (curve 3) ,  and in Ge  (110) at 
T =  100K (curve4). 

ments. In particular, they can form (as a result of the Bethe- 
Heitler mechanism) secondary pairs of charged particles, 
the number of which is determined by the probability de- 
scribed by Eq. (3.14). Figure 3 shows the dependence of the 
total probability W ;  on the energy of particles in different 
substances. We can see that the probability on the left-hand 
side of the graph exhibits a plateau (when the probability of 
emission in external field is practically independent of the 
energy fo rx  < 1 ). This is followed by a region of logarithmic 
fall where the falling curve can be approximated satisfactori- 
ly by a straight line. Figure 4 shows the probability of the 
emission of a photon integrated over the frequencies in the 
range w, - E for different values of E considered as a func- 
tion of o, : 

The fact that even for w, -E this probability obeys Ws 
- 1 (w,-E) a LC,, confirms the conclusions reached above on 

the contribution of soft photons. 
We shall conclude this section with a theoretical analy- 

sis of the case when the contribution of the range x $  1 be- 
comes important. In the above approximation we used the 
potential of Eq. (3.5) characterized by g ( x )  = x L 2  when 
x $1. We shall first assume that the law describing the fall of 
the potential in the range x %  1 is different: g ( x )  cc x - 'p + I '  , 

FIG. 4. Dependences of the probabiity of photon emission W ;  (o , )  of 
energy w>u,, on uo for Si (1 10) at T= 293 K: E = 100 GeV (curve I ) ,  
E = 400 GeV (curve 2) ,  E = 2 TeV (curve 3) .  

so that ~ ( x )  c c x , x  'I' + 'I2' [see Eq. (3.5)]. I f x , $ l ,  the 
rangex(x) 2 1 lies to the left of the point x -X2i'2p + - =xb.  
The contribution to the total intensity from the range x-x, 
is IaXs2"2~+ ' )  , whereas the contribution of x -  1 is 
Ia~s2'~. Therefore, in the case of the potential which falls 
faster than x ' ( p  CL. 1 ) , the radiation intensity is governed 
by the rangex- 1. In this case the characteristics of the radi- 
ation behave in the same way as in the synchrotron radiation 
approach and, in particular, the total intensity obeys 
I ~ x ; ' ~ ,  where the criterion of validity of the approach is 
a,< 8 ,~;  I". However, ifp < 1, then for x, $ 1 the contribu- 
tion of the rangex-x, becomes predominant and the crite- 
rion of validity of the synchrotron radiation description is 
then 8, <aUx; + " . As the energy is increased, the val- 
ue of x, becomes comparable with x, (it becomes a bound- 
ary of the area per one axis) and there is a change in the 
physical situation. If x, %x, [ ~ ( x )  $ 1  for all values of x ] ,  
we have and the criterion of validity becomes 
$0$8,xs 113 x, (21'- ~ i z ) / '  . For the potential of Eq. (3.5), 

we have p = 1 and if X, & 1, then I ccX;i31n X,. The appear- 
ance of the logarithm is due to the fact that the whole range 
1 5 x  S x, contributes. In this case the change in the physical 
situation is that in the total intensity we now have In X, - 3/2 In x, . Moroever, if x, 2 x,, the potential on the axis 
can no longer be regarded as axially symmetric and instead 
of Eq. (3.3) we have to use Eq. (3.1 ) . It should be pointed 
out that for the potential of Eq. (3.5) the value ofx, becomes 
comparable with x, at an energy E - 10-20 TeV, which de- 
pends on the substance. 

4. INTENSITY OF RADIATION FOR 6, >a,. MODIFIED 
THEORY OF COHERENT EMISSION 

We shall now consider the range of relatively large an- 
gles of incidence of the particles. The general expression 
(2.9) yields formulas for the spectral distribution and the 
range of their validity at high values of x is wider than of the 
standard theory of coherent bremsstrahlung (CBS). 

We shall find a modified expression for the spectrum of 
the radiation which is emitted by applying the substitution 
rules to Eq. (4.7) of Ref. 3. We find that 

here, 

If a,$ V,/m ( p  < 1 ), then Eq. (4.1 ) becomes identical with 
the results of the standard theory of CBS. 

It is known9 that in the standard theory of CBS the 
angular dependence of the intensity of radiation of a given 
frequency w has maxima for angles of incidence 

(where I is the lattice constant). As just pointed out, we 
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should have 9,) V,/m, so that the standard theory of CBS is 
valid throughout the region of its maximum only ifx, /u < 1. 
Hence, it follows that if X ,  k 1, then the standard theory of 
CBS ceases to be valid in the main part of the spectrum near 
the angular maxima. Similar restrictions apply then to the 
creation of electron-positron pairs by a photon. 

The appearance of m corresponds to the adoption of the 
effective mass concept in discussing the problem of emission 
of radiation in the field of a plane electromagnetic wave (see, 
for example, Ref. 15). In the problem of emission of radi- 
ation we must ailow for the difference between m and m. 
when p/2 2 1, i.e., when the radiation is no longer of the 
dipole nature. After the integration with respect to w in Eq: 
(4.1 ), we find that the total intensity of the radiation is given 
by 

where 

When calculations are carried out using Eqs. (4.1 )-(4.3 ), 
special attention must be given to a satisfactory allowance 
for the contributions of higher-order planes when the vector 
n = v,/lv,l is accidentally in one of these planes. 

At relatively low particle energies and not too large an- 
gles of incidence on a crystal, when z < 1, we find that expan- 
sion of Eq. (4.3) as a function of z and retention of the lead- 
ing term (proportional to z2) gives a classical expression for 
the total radiation intensity. The higher terms of the expan- 
sion represent the quantum corrections and the values of 
these corrections can be used to judge the range of validity of 
the classical expression. In estimating these corrections we 
shall bear in mind that the terms with additional powers ofz 
are proportional to lql, / and contain in the sum of Eq. (4.3) 
the factor lqli I in the numerator. Consequently, the contri- 
bution to the sums is generally made by the higher harmon- 
ics [when summation in Eq. (4.3) can be replaced approxi- 
mately with integration] and the contribution of these to the 
sum of Eq. (4.3) is truncated at the amplitude of thermal 
vibrations u, ( Iqlu, 5 1 1, so that these corrections consist 
effectively of X, = X, a, /u, and the relative values of the 
correction terms are described by the parameter 

We shall consider the spectral intensity of the radiation in 
the extreme quantum limit, when the parameter in question 
has the value 

In this case the maximum of the intensity of the coherent 
radiation is attained at such values of 9, that the theory of 
coherent emission becomes invalid. Bearing in mind that if 
Am ) 1 and 9,- V,/m, then X, -Am $ 1, we can use conve- 
niently a modified theory of coherent emission when the 
spectral distribution becomes 

dlrn coh 

do 48 

where 

The spectral intensity described by Eq. (4.5) has a sharp 
maximum near the end of the spectrum at 
WZEA, ( 1 + A m  ) -' with a relatively small (in terms of 
A ; ) width A w - ~ ( 1  +p/2)/Am = m2(1 +p/2) /  

2lqll \mi": 

We can see that both the amplitude of the maximum of the 
spectral curve and its effective width are independent of the 
energy. However, in calculating the total radiation intensity 
we find, as demonstrated by Eq. (4.3), that there is a weak 
(logarithmic) dependence of the intensity on the particle 
energy: 

This behavior of the spectral and total intensities of the emit- 
ted radiation is typical in the theory ofundulator radiation in 
the extreme quantum case and is in full agreement with the 
results obtained by us earlier [Eqs. (34)-(38) in Sec. 3 of 
Ref. 161. These features of the emission spectrum are asso- 
ciated with the dominant contribution of the higher harmon- 
ics to the spectrum of equivalent photons in the case when 
A m  $1 and then its discreteness becomes important. This 
behavior of the spectrum of equivalent photons differs radi- 
cally from the corresponding spectrum in the Bethe-Heitler 
case, when this spectrum is continuous and extends without 
restriction to frequencies as low as we please to choose. 

The spectral curves obtained in Ref. 17 (see Figs. 7 and 
8)  for various (large) values of A, in the case when p < 1 
illustrate excellently these features of the spectral distribu- 
tion of the radiation in the range under discussion. Unfortu- 
nately, the published treatment of this range of CBS (see, for 
example, Ref. 18) has been used to draw an incorrect conclu- 
sion that the probabilities of the radiation and pair produc- 
tion in a crystal differ only by a numerical factor from the 
corresponding probabilities of radiation and pair production 
in an amorphous medium, whereas the form of the spectrum 
and the energy dependence of the total radiation intensity 
are very different in these two cases, as shown above. 

5. ORIENTATIONAL DEPENDENCE OF THE RADIATION 
INTENSITY. DISCUSSION OF RESULTS 

The orientational dependence of the spectral distribu- 
tion and of the total intensity of the radiation is given by Eq. 
(2.9). The calculation carried out using this formula is a 
fairly complex computational task. On the other hand, it is 
relatively simple if we use approximate expressions derived 
from Eq. (2.9) for the case of low angles of incidence, repre- 
senting the synchrotron description with a correction [Eqs. 
(3.1), (3.3), and (3.9)],  and for large angles, which is the 
modified theory of CBS Eqs. (4.1) and (4.3) 1. Therefore, 
the general formula (2.9) should be used only in the inter- 
mediate range of angles 9,- V,/m. Moreover, the interpola- 
tion procedure described in Ref. 3 can be used and,in the first 
approximation, we can employ the above simple formulas to 
find the orientational dependence of the emitted radiation. 
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We shall consider in greater detail the orientational de- 
pendence of the total radiation intensity. As pointed out al- 
ready, the range of validity of Eq. (2.9) is then independent 
of the parameterp, and it is the same as the range of validity 
of the semiclassical approximation. If 9,s 6, ,  the orienta- 
tional dependence for a thin crystal is related to a redistribu- 
tion of the flux of incident particles, i.e., it is related to a 
change in the distribution function F (r,9,) [see Eq. (2.5) ] 
in the dependence on the angle 8,. This distribution is found 
to be different for electrons ( - ) and positrons ( + ), so 
that the emission of the radiation in the range alf, 5 9, de- 
pends on the sign of the charge of the particle. If 3, = 0, we 
find from Eq. (2.5) that in the case of an arbitrary axially 
symmetric potential 

F:'(p2, 0) = ln ( x o / x ) ,  

Ifx, 5 1, the contribution to the total intensity comes from 
the range 7 5 x 5 1, which is characterized by FA; ' '>, In x, 
and FL: '-xOp', from which it follows that-compared 
with the case of a uniform distribution over the transverse 
coordinate-the intensity I' - ' is enhanced at 9, = 0 by a 
factor of approximately In x, and the intensity I' + ' is weak- 
ened approximately by a factor x,. When the angle 9, is 
increased, the distribution FL; ' (p2,9,) rapidly becomes 
uniform, whereas F::' (p2, 9,) varies quite slowly. This 
can be deduced also from the results of Ref. 14 [Eqs. (30)- 
(35) 1, where it is shown for the casex, 4 1 that I' - ' is maxi- 
mal at 9, = 0 and an increase in the angle of incidence 
causes rapid approach to the value I"" given by Eq. (33) of 
Ref. 14, whereas I' + ' has a minumum at 9, = 0 and be- 
comes comparable with I"" near 9, = 9,. The nature of the 
distribution F (r,9,) becomes important when we discuss 
the emission of radiation from a beam of electrons character- 
ized by a finite angular width ha,, since already for 
Ad,=: 1/28, approximately 80% of the electrons are in sub- 
barrier states and, naturally, are distributed uniformly be- 
tween the transverse coordinates. Moreover, we should bear 
in mind that in view of the above-mentioned redistribution 
of the flux, multiple scattering of electrons is enhanced and 
that of positrons is weakened in the range 9, < a, ,  so that we 
can have a situation in which a crystal is thin for positrons 
but not for electrons. If 9,>9, and X, 4 1, the radiation in- 
tensity has a plateau (uniform distribution) and the orienta- 
tional dependence is described by formulas from Ref. 14 
right up to angles 9,- V,/mx,, which is followed by a fall of 
the intensity3' described by Eq. (4.3). The intensity of the 
radiation emitted by electrons and positrons is the same for 
3, > 9,. The ranges of validity of Eqs. (3.9) and (4.3) forx, 
( 1 overlap, so that ifx, < 1 the orientational dependence of 
the radiation intensity is described completely by these sim- 
ple formulas (the orientational dependence in the case of 
planar channeling was considered by us for this situation 
some time ago7). As the parameterx, increases, this plateau 
becomes narrower and it disappears completely when 
xu = X, a, / u ,  - 1. If X, X 1, the intensity of the radiation 
emitted by electrons is still maximal at 9, = 0 and falls mo- 
notonically on increase in 9,. In the case of positrons a mini- 
mum of the intensity I' + ' remains at 9, = 0; as 9, is in- 
creased, the value of I' + ' rises and reaches its maximum at 

dl/dw, crn - 1  

"r 

FIG. 5. Spectral dependence of the intensity of the radiation in Si (1 11) 
obtained  for^ = 10 GeV. The experimental results are taken from Ref. 22. 

9, =ac and in the range 90>9c it is identical with the 
expression describing the radiation emitted by electrons. It 
should be pointed out that on increase inx, the contribution 
to the intensity made for 9, < 9, comes from increasing val- 
ues of x. Consequently, the difference between the intensities 
of the radiation emitted by electrons and positrons decreases 
and for sufficiently high values in the rangex, - X , ~ ' ~ S  1 the 
difference practically disappears. 

Experiments were recently carried out on the orienta- 
tional dependence of the intensity of the radiation emitted by 
electrons and positrons of E = 150 GeV energy incident on a 
Ge crystal near the (1 10) axis when the crystal temperature 
was T = 100 K (Refs. 19 and 20). In this situation we found 
that X, - 1. We used the above theory to analyze these ex- 
perimental  result^.^' It was found that the theory accounted 
quite satisfactorily for all the available experimental data. 

It should be pointed out also that if 9,s 9, whenx, -4 1 
then even in the case ofp, $1 the maximum of the spectral 
intensity occurs at frequencies such that u - urnin, where the 
bremsstrahlung description becomes invalid. Nevertheless, 
it can be used at frequencies in the range w k EX,. Such a 
situation occurs, for example, in the experimental results of 
Ref. 22 when a crystal of silicon was used near the (1 11) axis 
and the energy of the incident particles was E = 10 GeV. 
Using Eqs. ( 1.4) and (3.8), we found that the main frequen- 
cy is w-EX, ~ 2 7 0  MeV and also that wmi, -&urnin ~ 9 0  
MeV; p, - 4.1. Figure 5 shows the results of a calculation of 
the spectrum carried out for this case in the synchrotron 
radiation approximation allowing for the effective diver- 
gence of the beam and the experimental data of Ref. 22. We 
can see that the theoretical curve describes quite satisfactori- 
ly the experimental data-the photon frequency range 
w > 300 MeV. 

"In Refs. 5 and 6 we used the initial formulas of the treatment given in Ref. 
4 and all the other calculations were carried out numerically. 

''We shall use a system of units such that f i  = c = 1. 
3'We can see from the discussion in Sec. 4 that in fact the parameter in this 

case is A,, defined by Eq. (4.4). 
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