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We study the mechanism for exciting monochromatic Langmuir waves in a plasma by resonant 
coherent effects of light pressure in a biharmonic field when the beat frequencies of the field 
are close to the nutation frequency in a strong optical field and to the electron plasma 
frequency. On the basis of the procedure used here, of separating fast and slow variables, 
taking into account parametric Rabi resonance and collective motions, we obtain equations for 
induced plasma oscillations, and we find their main characteristics. We show thus that the 
manifestations of the effects of the coherent optical perturbations of the translational degrees 
of freedom of the resonant particles which were considered by Krasnov [Sov. Phys. JETP 62, 
238 ( 1985) ] may be appreciably enhanced in a plasma medium. In particular, they can cause 
buildup of parametric plasma instabilities. 

I. INTRODUCTION 

Dubetskii et al.' were the first to draw attention to the 
possibility to apply resonance radiation presure (RRP) 
methods2s3 for the optical excitation of coherent motions in a 
system of non-interacting atoms. It was suggested to use for 
this the Kapitza-Dirac effect and an atomic beam interact- 
ing with spatially dispersed standing waves. 

It was shown in Ref. 4 that quasi-stationary coherent 
perturbations of a collisionless gas can be induced by using a 
biharmonic field under the conditions for Rabi resonance. 
They are manifested first of all in the form of a travelling 
wave with a directed velocity which is propagating through 
the gas: 

v=v, sin (Got--QR+@),  

where 6w is the mismatch of the field frequencies relative to 
one another. 

We show in the present paper that such perturbations of 
ions which are in resonance with optical radiation may be 
appreciably enhanced in a plasma medium if their frequency 
is close to the frequency of the collective plasma oscilla- 
tions-the electron Langmuir frequency Sw -wpe . The in- 
duced monochromatic oscillations of the macroscopic plas- 
ma characteristics which then appear may have a level which 
is sufficient for the development of parametric in~tabilities.~ 

In constrast to other methods for exciting plasma oscil- 
lations by electromagnetic radiation the mechanism consid- 
ered here is not connected with any direct action on the elec- 

in a field of biharmonic radiation with an intensity 2 kW/ 
cm2. For such intensities the oscillations of the electrons and 
ions at the optical frequency have a small effect on the state 
of the plasma as compared to the processes considered. 

The ion collisions with a frequency vi 4 S o  do not inhi- 
bit the main effect of the bare coherent perturbations of the 
ion motion, and outside the regions of parametric instability 
they guarantee, together with the electron collisions (or 
Landau damping in the short-wavelength case), that the in- 
duced plasma oscillations are stationary. 

2. BASIC EQUATIONS 

We consider first of all the propagation of a longitudinal 
electrostatic wave i9 in a plasma with an ion component 
which is in resonance with an external biharmonic field at an 
optical frequency which is considerably higher than the elec- 
tron Langmuir frequency: 

We shall describe the motion of the electrons in the 
plasma by the hydrodynamic conservation laws, neglecting 
the electron oscillations at the optical frequency: 

e V p ,  an. 

trons, but is caused by the excitation of an alternating ion 
where n , ,  v,, me, p,, e, Y ,  and $ are, respectively, the current at the electron Langmuir frequency with a coherent 

transfer (due to a recoil effect) of momentum from the bi- electron density, directed velocity, mass, pressure, electrical 

harmonic optical radiation. Participation of the electrons in charge, collision frequency, and the electrical field strength 

this process leads to buildup and establishment (in the sta- in the plasma wave. We assume the electrons to be adiabatic 

bility region) of plasma oscillations with an amplitude and so that 

phase which are determined by the coherent optical field. Vp,=TeyeVn. ,  ye=3, 
The optical radiation is here in a region where the plasma is 

(2.3) 

transparent (w,$wPe ), which makes it possible to excite where T, is the electron temperature in energy units. 
Langmuir oscillations in plasma media of large dimensions. The electric field strength in a longitudinal wave is con- 
In actual fact one is dealing with a plasma with electron nected with the electron and ion current density through the 
densities n, - 10'0-10'2 cm-3 (ape - 6 x lo9- 6 x 10" Hz) Maxwell equation 
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where ni and vi are, respectively, the ion density and direct- 
ed velocity. 

The evolution of the ions is described by the equations 
for the Wigner density matrix; = 6 (p,R,t) which in the res- 
onance approximation can be written, as in Ref. 4, in the 
form 

where we have introduced the column vector 

h h 

the operators (A^,/p), A,, and r are, respectively, deter- 
mined by the field and relaxation terms, and their explicit 
form is given in Ref. 4, (A/p) = diag ( 1, - 1,0,0)A, 
A = w, - a,, is the mismatch of the strong field. The formal 
small parameter ,u < 1 in (2.5 ) assumes the following scaling 
of the Rabi frequency of the strong field and of the mis- 
matches: 

dEa 620 
-=- 

A0 
, b ~ = ~ o - ~ i  = -+ 80, 

A P P (2.6) 
Af A = - -  , 1 ~ ~ 1 - ~ ~ ~ ~ - 1 ~ ~ 1 - 1 ~ ~ 1 ~  
P 

which guarantees that the inequalities necessary for the real- 
ization of the parametric Rabi-resonance regime considered 
here are satisfied: 

where y, y, are the longitudinal and transverse relaxation 
rates, and vi, M, and p, are, respectively, the characteristic 
collision frequency, the mass, and the thermal momentum of 
the ions. The terms in (2.5) which are new as compared to 
Ref. 4, e$  (az/dp) and L, (z) take into account the effect of 
the field of the Langmuir wave and of the collisions on the 
ion motion. In a weakly ionized plakma where collisions with 
neutral atoms play the main role, L, is a linear operator: 

E ,  (z) = col (0, 0, I:+) (z$) + I!-)  (&), I!+) (z,) + I!-' (24) ) . 
(2.8) 

Here z, is the m-th component of z(m = 1 - 4), 

where vl, KI (p,pl) are the frequencies and kernels of the 
collisions in the states 1 = 1,2. 

Equations (2.2) to (2.5) are closed by the expression 
for the ion current density 

One can take the Landau damping phenomenologically 
into account, similarly to what is done in Refs. 6 ,7  through 
the substitution 

where A, = (Te/mewi, )'I2 is the Debye radius and Q the 
wave number of the excited Langmuir oscillations. 

3. ION MOTION 

The coherent perturbations of the ion component of the 
plasma by the optical field reach their largest value when the 
mismatch of the field frequencies is (with a relative accuracy 
-p) close to the nutation frequency in a strong field:4 

For an effective excitation of a plasma wave it is neces- 
sary that the frequency of the optical perturbations be in 
resonance with the electron Langmuir frequency ope, which 
we scale by analogy with (2.6): w,, = (oL,/p) + 8, .  We 
shall therefore assume that the second resonance condition 
is satisfied: 

The solution of Eqs. (2.5) under the conditions (2.7) 
contains fast oscillating and slow components. The separa- 
tion of the fast and slow motions, taking recoil effects into 
account, can be accomplished by using the methods of the 
theory of singular perturbations on the basis of the proce- 
dure, described in Ref. 4, of expanding in the small param- 
eter p :  

z = Po-,', (20)  (a, R, t) + p2') (a, R, t) + . . .) , (3.3) 
h 

where PEL is the inverse Fourier transform operator, 

which accomplishes the transition from the {u,R) represen- 
tation of the density matrix to the initial { p , ~ )  representa- 
tion, and t is the time-variable vector which includes both 
fast and slow variables. In contrast to Ref. 4 it is necessary to 
include terms of first order inp, since the effect of the excited 
Langmuir wave on the high-frequency (hf) and slow com- 
ponents of the density matrix can only be taken into account 
in higher orders of the perturbation theory. We can con- 
struct the expansion in the small parameter in such a way 
(see Appendix) that the hf components are subject to slowly 
changing variables satisfying homogeneous differential 
equations which are fully coupled with one another in view 
of the resonance conditions (3.1 ) and (3.2), and which take 
into account the reaction of the excited hf motions to any 
order in p. The main term of the expansion (3.3) then has 
the form4 

whereh pi (a^) are the eigenvectors of the operator 
2 = (A, + iA) in the {a-R) representation, t ,,, = ( + iGt,/ 
p ), t l  = t - koR/cl k,l, t ,  > 0. In the reduced set of basic 
equations, the slow and fast motions are separated to any 
order in p :  
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- 
-= dam 2;' (h) + p;A2:" (G) +. . . , a = ( a t ,  az, a39 a4)r 

d  t 

f ( A , = i ' k '  (a, t) , Z ( k )  1 t=o=O, 

where 2:' and i'k' are linear operators. 
The use of specific physical conditions and of uniform 

expansions leads to the following simplifications. For typical 
characteristics of the dilute plasma considered here, the ion 
collision frequency, the photon momentum, and the recoil 
energy are small, respectively, compared with the radiative 
relaxation rates, the ion thermal momentum, and fiy: 

Estimates of the terms a p  in the complete Eqs. (3.5) 
show that the reaction of the excited plasma oscillations on 
the slow motions can be neglected subject to physically ob- 
vious limitations on the magnitude of the ion-momentum 
oscillations and the corresponding Doppler shifts in the elec- 
trical hf field 8: 

where J - e/w,, , Q = I k, - k ,  1, R, = dEl/fi. In the major- 
ity of the cases the manifestation of fluctuations in the RRP 
force 

mar (v,, +) w (fikolpo) 'l. (3.8) 

where r is the characteristic time of action of the optical 
fields, is unimportant. The spatially periodic correction to 
the RRP force a p  due to the smallness of trapped particles 
is also unimportant, for in the majority of interesting situa- 
tions 

(which for R, - (kopo/M) is equivalent to the inequality 
ERM(Sw)<l) .  

Taking into account all conditions which we have listed 
and turning to the {p*R) representation we have a set of 
contracted equations (to fix the ideas we put Ao>O in 
(3.1))" 

d d p d  -- -- +-- 
dt, a t ,  M d R  ' 

+ 2 i Q o '  hQ2 ( ~ , a , - ~ , * a ~ )  + 1:" ( a , )  
G d p  

where we have introduced the variables a, = a,  (p,R,t, 1: 
-1 - a1,2=Po.+pal,z ,  a s , b = B s , a  e x p [ ~ i ( G , t ~ - Q I R )  1, 
- 1 

as,&= Po+pti\~ 

and modified the relaxation constants, the Rabi frequency, 
the mismatch, and the wave vectors: 

~ + = ~ / ~ y ~ ( l +  A"/GZ)+y lQO lZ /G2 ,  ~ l = y + a 0 - Z + y A ' 2 / G 2 ,  

The ion momentum distribution function (DF)  can be writ- 
ten as a sum of slow and hf components: 

2i (-) 
f a = -  - ( I .  ( a 3 )  el3 - I,'-' ( d l )  e t ' ) ,  

G 

where 2o is the amplitude of the electrical field in the plasma 
+ + 

wave 2? = ( 2?,et" c.c). The hf components of the D F  
@,,TI ),x ,fg connected, respectively with the recoil effect, 
the difference of the collision frequencies in the ground and 
the excited states, and with the field of the Langmuir wave 
give contributions to the hf ion current (see (2.9) ); 

We assume in (3. lo),  (3.11 ) that the collision integral has 
the form (2.8). When t1,y-' it follows from Eqs. (3.10), 
(3.11 ) (cf. Ref. 4) that the slow part of the D F ~ ,  satisfies the 
kinetic Boltzmann equation with a force which depends on 
the momentum and completely determines the hf motion: 

a , = M , , ( p ) f ~ ,  m=3, 4 ,  (3.12) 

where 

M,,=iA1 lClO1 LIGty j j /2GZ,  M,2=M3,*, 

~ = ( y t + I G t 1 ~ 9 ' ) - ' ,  

L ,= (y++ i6 ) - ' ,  9 = 7 + / ( 9 + " 6 ' ) .  

In situations where ion-ion collisions play a large role the 
kinetic Eq. (3.12) also has a meaning, but with the modified 
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non-linear collision integral (Stv,). One shows easily that 
taking low-frequency electrical fields $7, (with frequencies 
5 <up, ) into account with the moderate intensity eg ,  (dfo/ 
dp)/f,(y is accomplished by modifying the force term in 
(3.12): 

As the wavelength of the excited Langmuir wave 
A, - l/Q must be bounded from below by the Debye radius 
A, gA, , for typical values of the electron densities and tem- 
perature (n,  - 10'0-1012 ~ m - ~ ,  T, 2 1 eV) one must require 
that JQJ = ]k, - k,  1 4 k, ("unidirectional geometry" of the 
fields) which enables us to write down a simplified expres- 
sion for the RRP force (Ref. 4 contains the exact expres- 
sion) : 

4. INDUCED PLASMA OSCILLATIONS 

The hf component of the ion current is, after termina- 
tion of the transient processes ( t ,  < y- ' ), a functional of the 
D F ~  and-satisfies an equation following from (3.1 1 ) : 

a~ ( f  e )  a; i i=Sfod3pl 
at at 

aii, -- - e r p  i (Sot-QR) {ilk06w I Mszf0 d3p 
at 

(4. l a )  

Q = (ko-ki). (4. lb )  

Therefore, under the initial assumptions made here, the opti- 
cal fields produce a situation similar to the appearance of an 
extraneous ion current of density J,,, = iieii, oscillating 
with a frequency Sw -ape. For completeness we have in- 
cluded in (4.1 ) the ion current due to the difference in the 
collision kernels in the ground and excited states2' which is 
clearly unimportant in a strongly ionized plasma or in the 
case when the elastic scattering of resonance ions is deter- 
mined by the polarization interactions with neutral atoms 
( I :  - ' = 0)  .9 It can be compared with the contribution con- 
nected with recoil (first term in (4. lb))  in the case of a 
weakly ionized plasma with a high density of neutral parti- 
cles which are able to undergo charge exchange with excited 
and unexcited atoms, if jv, - Y ,  1 - jfikowp, /pol. However, 
in that case the condition for the excitation of a plasma wave 
is appreciably worsened due to the large magnitude of the 
damping since 

where s, - (Te/rn, ) ' I 2 .  For typical values for a weakly ion- 
ized laboratory plasma s, - lo8 cm/s, fik,/p,- we get 
vpe - X 0. lape.  

The largest amplitude of the light-induced extraneous 
hf current is obtained by choosing the radiation parameters 

so as to eliminate the "selectivity," in momenta, of the func- 
tion M,,(p) (see (3.12) ): 

We then get from (4. lb )  the estimate 

We consider the hf perturbations of the macroscopic 
plasma parameters Ce, E,, C,, ii relative to the steady-state 
slow motions F,, Fie, Fi, Fi for which we assume quasi-neu- 
trality (A, 41,), the absence of current, and quasi-homo- 
geneity: 

where I,, l/Q are characteristic spatial scales for the slow 
and hf motions. For instance, for a plasma in a closed tube 
Ei = 0 and the D F  differs little from a Maxwellian one 
((fik,/p,)yg~,) and from (2.2)-(2.4) and (3.12) there 
follow equations for the densities (cf. Ref. 10) 

(4.5) 

where the angle brackets indicate averaging over the hf oscil- 
lations and T, is the ion temperature. When (4.2) is satisfied 
we have thus 

Independently of the specific properties of the slow motions, 
which are determined by the actual physical conditions for 
satisfying (4.4), and of the inequalities 

the set of equations for the induced Langmuir oscillations, 
which follows from (2.2), (2.3 ), (4.1 ) after eliminating the 
hf field using the Maxwell Eq. (2.4), has the universal form: 

a I N L  ?z - .- f i e -  an, 
(ceV)ce-wpa2T~,, - = 

(4.7) 
at -Z div (V*), 

n at 

where 

The equations obtained correspond to the presence of an 
induced hf force 

acting selectively solely on the ion component. The electrons 
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are involved in that motion and the more efficiently the clos- 
er the frequency of the induced force is to the resonance 
frequency 

Using ( 3.2 ) and only the second harmonic of the oscillations 
we get from (4.4) the explicit expressions: 

i e z  [Gee exp ( i h t - i Q R )  + i,':'exp ( 2 i s o t - 2 i ~ ~ )  ] + c.c., 

where the subscript 0 marks the oscillation amplitudes and 
uio is determined from (4. l b )  . 

The amplitude of the wave of the directed ion velocity 
exceeds the amplitude of the bare coherent perturbations if 
(m,/M) (o,,/v,) > 1. The amplitude of the oscillations in 
the electron density Z,, is always considerably larger than 
the amplitude of the coherent perturbations of the ion den- 
sity when there are no collective effects4 n,$"- ( Q Z ~ , ~ / S ~ ) :  

As an example we estimate the maximum amplitude of 
the electrical field and the electron velocity oscillations in a 
strongly ionized plasma with Z-4x  10'' cmP3, T, - 1 eV, 
h o - 2  eV, (m,/M)-10-4: v,-5x 10' s-I, /FF,I-l V/ 
cm, / E d )  2 lo5 cm/s. In a weakly ionized plasma the esti- 
mates are impaired by the large frequency of collisions of 
electrons with neutral particles (for instance, for a neutral 
particle density ii- l0I5 cmP3, T, - 1 eV, o,, - 1016 cm2 we 
have v, - 6 ~  1G6 S-I). 

One can easily extend the consideration given here to 
the case where the vectors k,, k,, Q are not collinear, when 
the direction of the oscillations of the coherent optical per- 
turbations li - k, is not the same as their direction of propa- 
gation n, = (Q/Q). To do this we need use the complete 
Maxwell equations (instead of (2.4) ) and take the magnetic 
field into account. When (Qp,/M)<o,,, (see (2.7))  and 
(3.7) is satisfied, and one can neglect the effect of the Lor- 
entz force on the slow and fast motions, Eqs. (4.1) and 
(3.12) remain in force and on the left-hand sides of each of 
Eqs. (4.7) for 0,, f i  there appear new terms-respectively, 
c2 curl curl 0, and - cZ(m,/M) curl curl 0,. Therefore, 
apart from the longitudinal wave there is excited in the plas- 
ma a transverse electromagnetic wave propagating in the 
direction of Q. The amplitude of the oscillations of the elec- 
tron velocity in it is for c2Q 'Sw;, given by the relation 

where (u, ), is the component of the vector ii, in the direc- 
tion at right angles to nQ. For the longitudinal wave Eq. 

(4.8) is retained in which we must make the substitution 
uo-+(u,onQ InQ. 

When the propagation of the optical fields is not collin- 
ear, excitation of short-wavelength Langmuir oscillations 
with lQ 1 sSw/c and correspondingly an appreciable en- 
hancement of the relative perturbations of the electron den- 
sity 

is possible, but in this case Landau damping may be large 
(see (2.10) ), so that it is necessary to observe the restriction 
Q- '>A<, .  

The most important property of the induced monochro- 
matic Langmuir waves, induced by RRP, consists in the pos- 
sibility for a given frequency Sw to change their wavelength 
(there is no dispersion relation in contrast to free waves), 
phase, and amplitude by varying the parameters and the di- 
rection of propagation of the optical fields. 

5. PARAMETRIC INSTABILITY 

The problem of the stability of the induced plasma oscil- 
lations requires a detailed special consideration and is of par- 
ticular interest from the point of view of studying new possi- 
bilities to excite plasma turbulence." In the present paper 
we restrict ourselves to an analysis of the simplest situations 
which do not require considerable modifications of the exist- 
ing theories of parametric plasma in~tabi l i t ies .~-~ 

We consider the weakly selective case IS,/ > k,, p,/M 
(see (4.2) ), when there are no effects due to a non-equilibri- 
um ion DF (of the kind studied in Ref. 12). To describe the 
low-frequency (If) perturbations of the ion component 
oc exp i(5t - k ~ )  with 6, ( k p o / ~ )  < y we can use directly 
Eq. (3.12) (taking into account (3.12a) and the equations 
for the momenta corresponding to it. Therefore under the 
named conditions we can in the hydrodynamic approxima- 
tion easily obtain the well known set of equations (see, e.g., 
Refs. 6, 10, 1 1 ) for the parametrically coupled hf and If per- 
turbations with coupling coefficients a 6, ( t ) .  This enables 
us to use the results of Refs. 6 ,7  to estimate the threshold for 
the parametric instability. 

In a non-isothermal plasma (T, 3 Ti ) the lowest 
threshold is the one for the decay instability of the excited 
longitudinal wave (accompanied by the emergence of ion 
sound with a frequency w, = c, k and a Langmuir wave of 
frequency S o  - o, ) determined by the expression 

( 1  ucollse) - ( v , ~ e I ~ A ~ p e ) ' ~ ,  

where vi is the ion collision frequency which for estimates 
we can normalize to take into account the collisionless 
damping of ion sound when T, S T, : 

vi-+vi+ ( d 8 )  lbma (m, /M) '". 

Hence and also from (4.8), (4.3) we have for the minimum 
instability threshold at the maximum possible amplitude 6, 
connected with recoil 

Ako/Ms,28'" ( v i / o a )  (v, /ope)' /a.  (5.1) 

For instance, assuming the damping of ion sound to be colli- 
sionless, we have in a strongly ionized plasma with 
n, - 4 ~  10'0cm-3,v, -5X 105s-',m,/M-lo-", T, - 1.5 
eV, Ti ~ 0 . 0 3  eV the inequality (fik /M) > 0.5 cm/s which in 
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the optical range of the spectrum can easily be satisfied. For 
the case of the aperiodic instability the minimum threshold 
is higher: 

but also in principle attainable: T, - 1.5 eV, v, - 5 X lo5 s- ', 
fik,/M > 12 cm/s (light atoms and short-wavelength transi- 
tions). New situations arise for a rather large density of reso- 
nant ions when it is necessary to take into account the reac- 
tion of the medium on the optical radiation. From the 
equations for the optical fields we have to zeroth order inp in 
the limit 6, % (k, p,/M), y 

where 

y 2 A ' j  
r l o  = 7 2Zioo, qi'=2iiiooQo2G-2y2j 1 G O  I - I  sign (Go), 

z is the coordinate in the direction of Q, a; = d*E; /fi, E; is 
the amplitude of the field generated at the mirror frequency 
w, = 201, - w ,, it follows that when IRol 9 I G l 2  the follow- 
ing relation is possible between the characteristic spatial 
scales (I, is the plasma dimension in the direction of Q):  

l ~ l l l - ' ~ ~ ~ l l ' l - ' ,  Lo, lqol-'. (5.4) 

The main effect of the propagation of optical radiation will 
then be connected with the phase nlodulation of the field E l ,  
so that 0, = a,, exp( - i7,z) in a uniform plasma and we 
must therefore make in Eqs. (4.8) the substitution 
Q- Q + 7 ,, R,  -a,,. When considering an instability there 
appears an additional contribution to the parametric cou- 
pling between the hf perturbations of the electron velocity 
and the If perturbations of the ion density thanks to the de- 
pendence of the amplitude of the optical coherent perturba- 
tions on the field E l  which, in turn, is sensitive to the oscilla- 
tions in the ion density. The basic dispersion relation of the 
parametrically coupled longitudinal perturbations is then 
modified (cf. Refs. 10 and 7):  

Important changes in the spectrum of the small perturba- 
tions and in the growth rates arise in the long-wavelength 
limit lq,/k I % lCd /pie 1 and can, in particular, lower the 
thresholds of the above instabilities c (1; /q ,  ) I". 

In conclusion it is useful to compare the effect consid- 
ered here with thewell known mechanism, based upon pure- 
ly plasma non-linearities, for the excitation of plasma waves 
in a biharmonic field.l3*I4 Taking into account the oscilla- 

tions of electrons at optical frequencies leads to the appear- 
ance on the right-hand side of Eq. (4.7) for f, of an inducing 
term at the beat frequency Sw:m, laFe;,/at, where 

- 
F,=(ie2Q/m,co,o)o) (EIEo*) esp (i6ot-iQR) + c.c., 

The induced plasma oscillations caused by the coherent per- 
turbations of the ions dominate in the case of an almost uni- 
directional propagation of optical fields (cQ-w,,, ) under 
the condition 

For instance, for optical frequencies w, - w, =: 1.5 x 1015 Hz, 
and for a plasma withp,/M- lo4-10' cm/s and w,, 2 10'' 
Hz, the conditions (2.7), (4.2) are satisfied at intensities 
I- lo4-lo5 W/cm2. Then {=: 3 x 10-3-3 x cm/s and 
Ipio I -fik /M= 3 cm/s(M = 10 a.m.u., h0=: 1 eV. Hence, 
at the indicated intensities the effect considered dominates 
with a large margin, since it operates with non-linearities 
due to optical resonance with ion quantum transitions. 

APPENDIX 

Higher orders of perturbation theory 

We introduce fast time variables t,, t4 (see (3.4) ) and 
t, = A,r which are connected, respectively, with the spec- 
trum of the limiting problem and with the fast oscillating 
coefficients of Eq. (2.5), and also a set of slow variables 
T, =,urn t. Performing then the appropriate expansions of 
the der i~a t ive '~ . '~  and using (3.3) we have an equation of the 
n-th approximation in the {a-R) representation 

1 - 
Bt = @+A, (I,) ) + if (diva grad. - + e g  ( t2 )  0 )  + z8, 

M 

where i is the unit matrix and the bar over the operators 
indicate that they are written in the {a-R) representation. 
The right-hand side of (A. 1 ) must be written down taking 
into account all possible resonance relations corresponding 
to(3.1), (3.2):4mt,(t) +t,Jt) = t i ( t ) , i , j = 3 , 4 , 0 , t o = 0 .  
We introduce the operator P(Eti + mt, ) acting on an expo- 
nential of the form exp(mlt, + I 't, ) according to the rule 

When n = 1 we get from (3.4) and the condition that (A. 1) 
can be solved the equation 

dai/ato= (b i ,  Pi (B,??" (a, t3, t,) ) )=;i(') ( a ) ,  (A.2) 

where the angle brackets indicate a scalar product, the bi are 
the e i g e ~ e c t ? ~  o f 3  + forming~ith %e pi a bi-orthonormal 
system; Pi = P(t,  ) for i = 3,4, Pi = P(t,) for i = 1,2. Since 
the solution of the inhomogeneous equation is determined 
accurate to an arbitrary solution of the corresponding homo- 
geneous equation 

I 

- ( I ) - -  - z1 -2" (a, t,. t,, t,) + i I  (a) p l + i 2 ~ ) ~ 2 +  C a m  6) vmefm. 
n1=3 (A.3) 
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where the pi are arbitrary linear operators which are inde- 
pendent of the time, it follows that the solution is uniquely 
fixed by the initial conditions. Let similarly at the (n - 1)st 
step (n>2) 

- 
a ~ i / a ~ b = c > ~ )  (a), O< kGn-2;  
- y(k) ,a(~)  (a, t,, t s ,  t , ) ,  2(h)l,,,o=0, OGkGn- l .  

From the solvability condition for the problem of the nth 
approximation 

we get, using (A.4) 

Here the T'"' are found similarly to the 2". Once again, us- 
ing the representation d /dt = 2pm (d/drm ), we get (3.5). 
To take into account the finite velocity of propagation of the 
strong field we must use the substitution t-tt ,  = t - ( k d  
~ , c ) R . ~  

'I We use the set of eigenvectors {q , )  from Ref. 4. 
2, The possibility to excite sound oscillations in a gas in a biharmonic field 

Swg y taking this effect into account was analyzed in Ref. 8. 
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