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A model of a disordered system is considered in which the Fourier components of the potential 
are random quantities obeying a certain hierarchy: The greatest of them are of order V, the 
next greatest are of orderBV, and so on. As B- 1 such a model goes over into the usual 
Anderson model. For small f l  an expansion in the parameter B is constructed for the critical 
index v of the localization length for arbitrary dimensionality d; for P- 1 the expansion is 
found to be in qualitative agreement with the results fo rd  = 2 + E and d = W ;  for p-0 the 
value of v coincides with the value for incommensurate systems. The conductivity index s is 
related to v by the usual scaling relations = v(d - 2). The renormalization-group equations 
contain random parameters, and so the Anderson-transition point is determined not by a fixed 
point but by a stationary point of the renormalization-group transformation. This ensures 
agreement between the scaling and the recently discussed large fluctuations of the 
conductivity. 

The central problem of the theory of localization is the 
elucidation of the critical behavior of the conductivity CT and 
of the localization length ,$ of the wave functions near the 
Anderson For energies E near the mobility 
edge E, it is customary to describe the dependences CT(E) 
and ((E)  by power laws: 

while admitting the value 0 for the indices s and v; s = 0 
obtains in the case of a Mott minimum cond~ct ivi ty .~ At 
present the values of the indices s and Y are known in two 
cases: a )  for space of dimensionality d = 2 + E (Refs. 5-7): 

b) ford = w ( a  Bethe l a t t i ~ e ) " ~ :  

(for a discussion of the apparent contradiction between the 
results of Refs. 8 and 9, see Ref. 10). The results for 
d = 2 + E are in agreement with the one-parameter scaling 
hypothesis of Ref. 11; in particular, the following relation 
between the indices s and v is valid: 

Ford  = w the relation (4)  is not fulfilled, and therefore the 
results (2)  and (3 )  cannot be made consistent without the 
introduction of a special dimensionality d,, separating 
them; we shall call this the upper critical dimensionality (the 
lower critical dimensionality d,, = 2) .  For d,, the values 4, 
6,8, and a, have been suggested (Refs. 11-14); in view of the 
difficulties that the 2 + E  theory has recently experi- 
enced,l5*I6 the value d,, = 2 is also possible. As a result, it 
becomes unclear how a and 6 should be expected to behave 
in the three-dimensional case. 

In the situation that has been created it becomes essen- 
tial to develop methods that make it possible to consider 
spaces of arbitrary dimensionality d; such a method is pro- 
posed below. We shall define models that it is natural to call 
hierarchical (by analogy with the hierarchical models of Dy- 
son"); they are characterized by a certain parameterfl, and 

go over into the usual Anderson models as ,8+ 1.   or ~4 1 
we succeed in constructing an expansion of the critical in- 
dices in the parameterp, and one can attempt to extrapolate 
the results of this expansion to fl = 1. 

On the other hand, asp+  0 the models under considera- 
tion go over into periodic models, thereby effecting a smooth 
interpolation between maximally disordered and ordered 
systems. Therefore, values offl differing from unity can also 
be of physical interest. This is confirmed by the fact that as 
fl- 0 the values of the indices coincide with those for incom- 
mensurate systems,I8 for which a scaling theory of localiza- 
tion was constructed earlier by the authorI9; the latter theory 
has now received mathematical jus t i f i~a t ion .~~ .~ '  

1. IDEA OF THE METHOD AND PRINCIPAL RESULTS 

In the models under consideration the Anderson transi- 
tion already exists in the one-dimensional case. We shall ex- 
plain the idea of the method using the example of a one- 
dimensional chain described by the discrete Schrodinger 
equation 

The potential V, will be specified in the momentum repre- 
sentation: 

For complete specification of the potential on a chain of 2N 
atoms it is sufficient to specify its Fourier components for 
values of q of the form 2 ~ l / 2 ~ .  We shall do this as follows: 

etc. The most interesting model is that in which all the V(q) 
have Gaussian distributions," with 

(V(q))=O, (V'(q)V(q1))=0, qZq', (7 )  
< 1 V(q) (2>=(finV)2 for q = (21-l)n/2", L=1,2, . . . ,2". 

It is obvious that as fl+ 1 such a model goes over into 
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the usual Anderson model with a Gaussian distribution of 
levels. The extrapolation B- 1 should be performed before 
the thermodynamic limit is taken, since otherwise the model 
is not defined. Since the critical exponents will be deter- 
mined from the renormalization-group equations describing 
the relationship of the parameters for finite systems, the cor- 
rect order of the limits is achieved automatically. 

That the case of small P is indeed simple for analysis 
will be shown by constructing the zeroth approximation for 
Eq. (5)  with the potential 

With complete neglect of the potential V, the spectrum of 
Eq. (5) has the form E ( k )  = W cos k, and is a band of width 
-J. We separate out from the potential the largest Fourier 
component V(a) : 

and for the start of the calculation we neglect the potential 
V;. Then Eq. (5)  describes a periodic system and its spec- 
trum consists of two bands: 

&,,*(k) =* [VZ+2J2(I+ cos 2k)Iih 

-&[V+(J2/V) cos 2k+ . . . I .  (10) 

We have performed the expansion assuming that V%J. 
Thus, to within a trivial scale transformation, the spectrum 
of each of the bands coincides with the spectrum of the origi- 
nal band; the spacing between the bands is - V, and their 
width is -J2/Vg V. In the potential it is now necessary to 
take into account the remaining part V ;, whose amplitude is 
-8V and is small in comparison with the spacing between 
the bands; therefore, in the zeroth approximation we can 
regard the bands as independent and write for each of them 
its own Schrodinger equation. 

By analogy with the derivation of Eq. ( 1) from the con- 
tinuous Schrodinger equation, we introduce Wannier func- 
tions describing the distribution of the amplitudes near a 
pair of sites, and seek the wavefunction of the whole system 
in the form of a superposition of Wannier functions with 
expansion coefficients b, ( m  is the label of a pair).+Fdr the 
quantities b, we set up an equation analogous to (5) :  

For V$J the Wannier functions of the first band are local- 
ized mainly at even sites, and those of the second band at odd 
sites, and therefore u, (the average value of V; for the cor- 
responding Wannier function) coincides with V;, or 
V;, + , , respectively. As is clear from (8 ) ,  the potential V; 
taken at even or odd points coincides with the original poten- 
tial V, , but with the constant V replaced by V' = PV. The 
relationship of J '  to the parameters of Eq. (5)  is established 
from the condition that, in the absence of V ;, the spectrum 
of ( 1 1 ) coincide with ( 10). As a result, ( 11 ) has the form of 
Eq. (5) in which, in place of Vand J ,  new parameters V' and 
J ' appear: 

The quantity b, can be regarded as the amplitude for find- 

ing an electron at the mth pair of sites. Thus, in going from 
(5)  to ( 1 1 ) we have reduced the description: The wavefunc- 
tions are coarsened on scales of two interatomic distances, 
rather than one as in Eq. (5) .  Continuing this reduction of 
the description further, in place of ( 12) we obtain 

where J'"' and V'"' are the parameters of Eq. (5)  at the nth 
stage of this procedure. The fact that the coarsened wave- 
functions satisfy Eq. (5)  with changed coefficients implies 
the existence of scaling: Upon change of the parameters of 
Eq. (5) ,  the envelope of its wavefunctions changes while 
remaining self-similar. 

Since the form of the wavefunctions of Eq. (5) depends 
only on the ratio2' IJ/V I, it is convenient to introduce the 
quantity 

which is the Thouless parameter" for a block of size 2". 
From ( 13) it is easy to obtain for g'"' the renormalization- 
group equation 

which has the same functional form as that postulated in 
Ref. 1 1. Equation ( 15) has a fixed point g, = 28; for go > g, 
the ratio I J'"' / V n '  1 increases, and for large n the scattering 
potential V:"' becomes unimportant; for go <gc the ratio 
IJ'"' /Vn '  I decreases, and for n > 1 we can neglect the over- 
lap integral J'"' . The first case corresponds to delocalized 
states, and the second case to localized states, i.e., the point 

is the Anderson-transition point. For smallp near the tran- 
sition we have J'"' g V'"' , which justifies the assumption 
made. 

Linearizing ( 15 ) about g, , 

and taking into account that the unit of length is doubled 
with each step, we find that the characteristic scale on which 
the deviation of g'"' becomes of order unity is 

In the region of localized states, coincides with the local- 
ization length, and, consequently, for the index v we obtain 

this completes the construction of the zeroth approximation. 
For the Gaussian model (7)  the first of Eqs. (13) is 

preserved, but the second is valid only in a statistical sense: 
V'" + ')  has the same distribution as aV'") with a certain 
a - 1. Changing the unit of measurement of energy at the nth 
step in such a way as to make all the D'"' statistically equiva- 
lent, in place of ( 15) we obtain 

The renormalization-group equation acquires an important 
qualitative feature: A random parameter appears in it. 
Therefore, the Anderson-transition point is determined not 

807 Sov. Phys. JETP 65 (4), April 1987 I. M. Suslov 807 



FIG. 1. FIG. 2. 

by a fixed point, but by a stationary point of Eq. (20), i.e., by 
the condition that the sequence G'"' is a stationary random 
process. The distribution of g'"' at the stationary point is 
shown in Fig. 1. In order of magnitude, g'"' coincides with 
the total conductivity of a block of size 2" (Ref. 11 ) in units 
of e2/fi. Consequently, the conductivity fluctuations at the 
mobility edge turn out to be of the order of the average con- 
ductivity, in agreement with the qualitative conclusions of 
Ref. 22 (the author of Ref. 22, however, studied the standard 
deviation ofg'"' , which, as is clear from Fig. 1, can be signif- 
icantly greater than the width of the distribution). Fluctu- 
ations of g'"' do not impede the existence of scaling, and, 
moreover, do not change the result ( 19). 

The result (19) turns out to be valid for an arbitrary 
dimensionality d of space. Starting with this result, we can 
construct an expansion of the exponent v in the hierarchy 
parameter & in this paper we calculate the first nonvanish- 
ing correction: 

In the calculation with this accuracy the renormalization- 
group transformation becomes substantially more compli- 
cated: In Eq. ( 1 1 ) overlap integrals between next-nearest 
neighbors appear, the potential u, becomes nonlocal, and, 
in addition, the two bands ( 10) become coupled (in the d- 
dimensional case one has to take into account coupling 2d 
bands). Despite the constructive many-parameter character 
of the renormalization-group thus obtained, the final results 
do not contradict the hypothesis of one-parameter scaling; in 
particular, the relation (4) between the exponents s and v is 
preserved. It is evident that by an appropriate change of vari- 
ables the renormalization group can be transformed to an 
explicitly one-parameter form. 

The extrapolationfl-. 1 is most reliable in that region in 
which the correction to the zeroth approximation is small, 
i.e., for d r 4 .  Therefore, the main prediction that can be 
made for fl = 1 is 

v = l  for d z 4 .  (22) 

From the 2 + E theory ( v  = I/&) and the numerical calcula- 
tions of Ref. 23 ( v  = 1.2 + 0.3 ford = 3) it follows that the 
value of d for which v = 1 is close to 3. In view of the loga- 
rithmic accuracy of formula (21), such a discrepancy can 
scarcely be regarded as important. The decrease of v with 
increase of d predicted by formula (2  1 ) is also in qualitative 
agreement with the results (2)  and (3).  

The postulated phase diagram in the (d, fl) plane is 
depicted in Fig. 2. For small values of d there exists a singu- 
lar line AB, above which all states are localized: For large 
values of d the singular line CD bounds the region of one- 

parameter scaling-above this line the relation (4 )  is violat- 
ed. The large coefficient offl In ( I//?) in formula ( 2  1 ) sug- 
gests a small radius of convergence of the expansion i n p  for 
large values ofd; it is natural to suppose that it is bounded by 
the line CD, the equation of which for d - +  w is P-2 
Near the line EF, on which v = 1, the radius of convergence 
of the fl-expansion is a maximum, and in the neighborhood 
of d * s 3 the region of one-parameter scaling emerges onto 
the line fl = 1. The curves AB and CD intersect with the 
straight line fl = 1 at the points d,, and d,, , which must be 
identified with the lower and upper critical dimensionalities. 
On the line AB the exponent v becomes infinite. If the pro- 
posed picture is correct, calculation of further terms of the 
expansion (21) will make it possible to obtain a satisfactory 
theory for the three-dimensional case. 

It is possible to define hierarchical models in which the 
site energies have distributions with infinite variance (Sec. 
3).  In this case the coefficients of f12 In( l/fl) in (21) 
changes; in particular, the value of d at which it vanishes 
turns out to be smaller, and it is possible that this implies a 
lowering of d,, and d,, . 

2. DEFINITION OF THE MODELS 

We shall consider models describable by a discrete 
Schrodinger equation: 

where m labels the sites of a d-dimensional cubic lattice, and 
e, ( i  = 1,2, ..., d )  are the basis vectors of the lattice; for the 
following it is convenient not to fix the direction of e,, since 
the choice of e, will always be clear from the context. We 
shall specify the potential V ,  in the momentum representa- 
tion: 

It is convenient to assume that the thermodydnamic limit is 
taken over a sequence of systems having the shape of a d- 
dimensional cube with side of 2N atoms; then the momen- 
tum space can be assumed to be discrete, and the compo- 
nents of the vector q take only values of the form TI /2" - ' , 
with 1 = 0, 1, ..., 2" - 1. 

We introduce in momentum space a set of points K', 
( p  = 0, 1,2, ...) as a set of vectors of the form 

The set of points contained in I', + , but not in I?, will be 
called a, : 
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3. FORMAL CONSTRUCTION OF THE RENORMALIZATION 
GROUP 

FIG. 3. Sets 0, for the two-dimensional case: 0 )  R,; 0 )  R , ;  x ) f1,. 

The sets i2, for the two-dimensional case are shown in Fig. 
3. We note two indentities that follow directly from the given 
definition: 

The Fourier component with q = 0 in (24) can be as- 
sumed to be equal to zero, since it leads only to a shift in the 
energy origin. We subject the remaining Fourier compo- 
nents to the hierarchy 

~ ( q )  - f i P  V for q~i2,  . (27) 

For the main part of our account we do not need any assump- 
tions about the properties of V(q), apart from the condition 
,!I( 1. Concrete quantitative results will be obtained for the 
Gaussian model, in which all the V(q) have independent 
Gaussian distributions, with 

< V ( q )  >=o, ( v ( q )  V ( q ' )  ) =o, q#q'; 

( I V ( q )  12)=( pnV)=, w a n .  (28) 

As 0- 1 such a model goes over into the Anderson model 
with a Gaussian distribution of levels. In Sec. 8 we define 
models in which the distribution of levels has an infinite vari- 
ance. 

We denote the analogs in coordinate space of the sets I?, 
and R, by y, and w, : 

y P :  m= ( m , ,  m,, . . . , md) ,  m,=O, I ,  . . . , 2p-I; 

For the following it is convenient to define the n-periodiza- 
tion operator Q :, which transforms a function f (k )  that is 
2~-periodic in all its components into a n-periodic function: 

We shall often find it convenient to write sums over all q in 
the form 

1. We shall elucidate the general structure of the renor- 
malization group for arbitrary 8. The calculations are con- 
veniently performed in the momentum representation, in 
which Eq. (23 ) has the form 

d c" 

( L 2 j  cos ki) a ( k )  + y, y, ~ ( q )  a ( L + ~ )  = ~ o  ( k )  . (29) 

At the nth step of the renormalization group we retain in 
(29) the Fourier components withp = 0, 1, ..., n - 1; since 
V(0) = 0, the equation takes the form 

d 

Shifting the argument k by all possible k , ~ r ,  and taking into 
account that q + k,, after reduction to the interval (0, 2n), 
belongs to T, , we obtain a system of 2"d equations for the 
2nd quantities a ( k  + k,), koeTn . Solving this system we find 
the eigenvalues E, ( k )  and eigenfunctions as (k) ,  s = 1,2, .. ., 
2nd. We shall seek the solution of (29) in the form 

Substituting into (29), using the orthogonality relations for 
a ,  (k) ,  the relation (26),  and the n/2" - -periodicity of the 
spectra E, ( k )  : 

introducing the notation 

and performing the scale transformation 

b , ( k )  =zs (2"k) ,  E ,  ( k )  = E ,  (2"k) ,  2"k=k, (33) 

we obtain, omitting the tildes, 

(below, in this section, an analogous transformation is car- 
ried out in more detail). The meaning of these transforma- 
tions was explained in Sec. 1 for a simpler example: We have 
eliminated those Fourier components of the potential with 
period smaller than 2" (in the definition (32) of V,. , only 
those V(q) with qeR, forp>n appear), we have reduced the 
description by going over to the amplitudes b, (k ) ,  coarsen- 
ing the wave functions on the scales 2", and we have per- 
formed the scale transformation (33), increasing the unit of 
measurement of length by a factor of 2". 

Equation (34) is the Schrodinger equation at the nth 
step of the renormalization group. In appearance it is analo- 
gous to the original equation (29), differing from it in the 
following features: a )  It describes not one but 2"d coupled 
bands; b) each band has a spectrum of the general form 
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E, ( k ) ,  in place of the simple cosinusoidal spectrum of Eq. 
(29); c)  the potential in the coordinate representation is 
nonlocal, as is manifested in the dependence of its Fourier 
transform V,. ( k , q )  on k. The latter two circumstances are 
easily taken into account by extending the functional form of 
the equation, but the first presents a more substantial diffi- 
culty, since the number of bands increases with each step of 
the renormalization group. If the coupling between all these 
bands were important, the renormalization group could not 
have fixed points and we could not speak of any scaling. 
However, it is clear intuitively that only a few bands near the 
energy level under investigation are important. Therefore, a 
natural algorithm is as follows: We confine ourselves to a 
finite number N  of bands, near the energy value being stud- 
ied, discarding all the other bands that arise in the renormal- 
ization-group transformations; we find a fixed point and the 
critical indices; if with increase o fN the values of the indices 
converge to a constant limit, the scheme adopted is correct; 
but if this does not happen, there is no scaling in the system. 

In the hierarchical models studied below the numbers 
of bands are restricted in a formally rigorous manner in the 
small parameter @: In zeroth order and first order in @ it is 
sufficient to confine ourselves to one band, while in calcula- 
tions to order@ one must retain the 2d bands that are near- 
est in the hierarchy. 

2. We derive formulas relating the parameters of the nth 
and (n + 1 )th steps of the renormalization group, while re- 
taining N  coupled bands in ( 3 4 ) .  In accordance with what 
has been said, the Schrodinger equation at the nth step of the 
renormalization group has the form 

IP 00 

a. ( k )  [ 6:' ( k )  -El + yl yl y, v:? (k ,  q )  as, (k+q) =O, 

where the quantities Vss. are expressed in terms of Fourier 
components of the original potential [compare with ( 3 2 )  ] : 

It is necessary to find an algorithm for calculating ~ j "  + " ( k )  
and A $+ ' ) ( k , q )  from known ~ j " ' ( k )  and A $ ' ( k , q ) .  We 
retain in ( 3 5 )  the leading terms in the hierarchy: 

a. ( k )  [cy' ( k )  -E]  + y, y, v$' (k ,  q )  a,, (k+q) = O  ( 3 7 )  
a'=1 q = R O  

Shifting the argument k  by all possible k,€T,, we obtain a 
system of 2dN equations for the 2d N quantities a, ( k  + k,)  
(S  = 1 ,  2, ..., N  and k , ~ l ? , ) .  Let p, ( k )  and 1 ,  ( k )  be the 
eigenvalues and eigenvectors of ( 3 7 )  ( v  = 1,2, ..., 2d N )  ; the 
1 ,  ( k )  are columns Ilc,, ( k  + k , )  ( 1  with components labeled 
by the indices s = 1, 2, ..., N  and k,cT,.  We shall seek the 
solution of ( 3 5 )  in the form 

Substituting this into ( 3 5 )  and making use of the orthogo- 
nality relations 

we obtain 

Applying formula ( 2 6 )  with n = 1 to the summation over q, 
making the replacement k -  k / 2 ,  and introducing the nota- 
tion 

we obtain 

[E?') (k )  - E ]  av (k )  

Retaining in the sum over v' the Nbands closest to the ener- 
gy level being studied, we obtain the Schrodinger equation of 
the (n + 1 )st step of the renormalization group. From ( 36) 
and (41 ) with the use of ( 2 5 )  we obtain the relation between 
A !,'I + I '  and A ,':I' : 

The formulas ( 4 0 )  and ( 4 2 )  solve the problem of the deter- 
mination of A ,':+ '' ( k , q )  and c j n ) ( k ) .  

3. It is convenient to carry Eq. ( 3 7 )  over into the coor- 
dinate representation. We set 

For D y ( k )  it is not difficult to obtain the eigenvalue equa- 
tion 

y1 d... ( k )  =Ed.'(k) , 

where we have introduced the notation 
mm' m'-m 

Hssr = [ 6 ,sc~S  ( k )  +w:,' ( k ;  mt -m)  ] exp[ ik (mf -m)  1 ,  
( 4 4 )  

where 

, .- r 
1 w:" ( k ;  m )  - ,F, v,?) (k+k,, q )  erp (ikom+iqn). - qt.% k o t r s  

If d ,", is the normalized eigenvector ( 4 3 ) ,  the normalized 
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c,, (k )  are determined by the formula 

1 
c.. (k) = - z dSvm (k) eikm. 

2 d / 2  

The convenience of Eq. (43) in comparison with (37) lies in 
the fact that in hierarchical models with fl4 1 the nondia- 
gonal matrix elements of the Hamiltonian H in(43) are 
small in comparison with the spacings between its levels, and 
this makes it possible to use ordinary perturbation theory (in 
the Brillouin-Wigner form) to calculate its eigenvalues E, 
and unnormalized eigenfunctions 9, (v  = (rn, s) ): 

We formulate the final algorithm for passing from the 
nth step to the (n + 1)st step of the renormalization group, 
performing certain transformations and changes of notation 
on the way. 

1 ) At the nth step the quantities & S n )  (k )  and A ::' (k,q) 
(s,st = 1, 2, ..., N) are known. 

2)  We use formula (36) to calculate V$'(k,q) and for- 
mula (45) t oca l cu l a t e~~(k )  and,W;'(k;m) (m ,n~y , ) ,  after 
which we construct the Hamiltonian H from its matrix ele- 
ments: 

- mm' mr-m 
H..,  = 6 s , , ~ .  (k) f'~:,' (k; m'-m). (47) 

3) The quantities E, (k )  and T,,,. (k )  are given by the 
following formal series (v  = (m, s ) ,  v' = (m', s'), etc., 
where m, m', ... ~ y , ,  s, sf,  ... = 1, 2, ..., N):  

4) We calculate the quantity 

5) The parameters of the (n + 1 ) th step are determined 
by the formulas 

e?" (k) =E, (k/2), 
N 

x A::? (k, q) c,; (k) F,.,. (ii+znq). (51) 

6)  From the ZdN values of the index v we retain the N 

values corresponding to the bands closest to the energy value 
of interest. 

4. THE TRUNCATED RENORMALIZATION GROUP 

In order to make the origin of the correction to the in- 
dex v more transparent, in this section we shall define a trun- 
cated renormalization group, postponing the construction 
of the full renormalization group to Sec. 6. As is clear from 
Sec. 3, the renormalization-group transformation leads to 
the appearance, in the Schrodinger equation of the nth step, 
of terms that are not contained in the original equation (23); 
in the framework of the truncated renormalization group 
defined here, such terms will simply be discarded. This pro- 
cedure makes it possible to obtain exact values for the in- 
dices, at least to the investigated order P2;  the point is that 
the additional terms that appear in the equations of the full 
renormalization group lead only to a renormalization of the 
transition point (Sec. 6).  Unfortunately, we see no possibil- 
ity of proving this except by constructing the full renormal- 
ization group. 

We shall formulate the algorithm of the truncated re- 
normalization group. 

1 ) In Eq. (35) we retain one band and in all the expres- 
sions omit the index s. 

2 )  At the nth step of the renormalization group, 
E ( ~ )  (k )  and A'") (k,q) have the form 

d 

(k) = 21jn)cos ki, A(") (k, q) =RCn) (q) . (52) 
, = I  

3) The Hamiltonian i? is determined by the matrix ele- 
ments ( i n ~ y , )  

2Tmm= w:'= R(7L' (q) V (q) erp  (Zniqm) , 

4) The functions Em (k )  and T,., ( k )  are obtained 
from (48) by the replacements v-m, v' - m', etc. For defi- 
niteness, from the 2d bands that arise we shall choose the 
band corresponding to the site m = 0. The function c(k)  is 
determined by the expression 

5) Having expanded the functions A'"+ " (k,q) and 
&(n + I )  ( k )  in Fourier series with respect to k, we retain in 
the former case the zeroth harmonic, and in the latter case 
the first harmonics, obtaining the parameters of the 
(n + 1)th step: 

J~("+')= Eo (k/2) cos ki dk, 
(2n) " 

(55) 
R(7't1) (q) =:R(n),(q) -&j c* (k) c (k+Znq) & 

(an) 

(the integration is over the Brillouin zone, O<k, 627~).  
We write out the first four terms of the perturbation- 

theory series for E,(k): 
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b - W O  +z 2Ji cos k,2Ij cos k j  
6ei+ej,u 

(J Eo- We, 

+ z 21, coski21j cos kj2Il cos k l  
6ei +el +el ,o 

i j l  (Eo-wei 1 (Eo-wei +ej 1 

where e,, ei + ej, ei + ej + e,Ew,, and the summation runs 
from 1 to d; the index n indicating the number of the renor- 
malization-group step will be omitted in the intermediate 
expressions. To each nonvanishing term of the sum (56) 
there corresponds a path over the sides of the d-dimensional 
cube-a path that emerges from some vertex of the cube and 
returns to this vertex at the end (but not earlier). Selecting 
the nonvanishing terms 

and eliminating Eo iteratively from the right-hand side, we 
obtain 

The sums appearing in (54) will be needed in second order: 

Substituting (58) into (54), and (54) and (57) into (55), 
and introducing the notation 

we obtain the system of renormalization-group equations in 
the form 

w:"' = R(") (q) v (q) exp (zniqm). ( 6 0 ~ )  
P e o n  

where we have introduced the notation 

5. INVESTIGATION OF THE RENORMALIZATION-GROUP 
EQUATIONS 

1. In the zeroth approximation, Eqs. (60) take the form 

(61 1 
(R'") (q) = 1 in view of the initial condition R "'(q) = 1). 
These equations can be analyzed without any assumptions 
about the properties of the potential V, except for the strong- 
hierarchy assumption (27). The rigorous meaning of the 
latter is as follows: There exists a number p( 1 (8-81, 
such that after the scale transformation 

all the quantities Zb:) are of the same order, with typical 
value W. As a result of the transformation (62) the first of 
Eqs. (61 ) takes the form 

Its solution is 

where we have introduced the notation 

Since all the Z k:) - W, we have Wi - W. The condition 

determines the transition point, and when it is fulfilled each 
term of the sequence 

is a quantity of the order ofg. Linearizing (53) about gf'"), 
(n+<)  (n )  ( n + l )  c(n)  (n) 

6gi =28-'1 Z e ,  / Z e i  Igi 6gi , 

and making the substitution Sgj") = gf(")xjn', we obtain 

Since all theg:'"' are of the same order, the rate of growth of 
x,'") coincides with the rate of growth of Sg,'"'; thus, (68) is a 
generalization of ( 17). From (68) fhe result ( 19) for the 
index v follows in an obvious way. 

In random hierarchical models the quantities W, do not 
have determinate values. Each of them has approximately 
the same distributio~ as W:), and so the localization edges 
with respect to the constants J,'" are random. In particular, 
they are different for two close energy values. Therefore, for 
a fixed realization of the potential V,,, and fixed J 1°', local- 
ized and delocalized states are intermingled in the spectrum 
of Eq. (23) in a random manner (an analogous situation 
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obtains in incommensurate systems19). This situation is un- 
stable against the switching on of an arbitrarily small pertur- 
bation of general form,4 since the latter will lead to mixing of 
localized states with delocalized states and to the destruction 
of the localization. This is connected with the trivial circum- 
stance that a perturbation of general form destroys the pos- 
tulated hierarchy. 

The mobility edges are determined by d conditions of 
the form (66). In a physical formulation of the problem the 
parameters of the model are subjected to additional condi- 
tions, ensuring the simultaneous fulfillment of the condi- 
tions (66) for all i upon variation of a certain external pa- 
rameter (such as the impurity concentration or Fermi 
level). For 0- 1 the analogs of the quantities Wi should 
have determinate values, and these additional conditions are 
ensured by the cubic symmetry: JIO' = JiO' = ... = JAO', 
and W, = W2 = ... = Wd . For f ig  1 these conditions should 
have a more complicated and artificial character. 

2. We shall calculate the correction to the zeroth-order 
value of the index Y for the Gaussian model (28). We intro- 
duce the quantity 

With the aid of (60b) and (25), for this quantity it is easy to 
obtain the recursion relation 

In view of the initial condition Do(q) = 1 it is found that the 
quantity D, (q)  is independent of q and satisfies the recur- 
sion relations 

The variances of the quantities W:' appearing in (60) are 
expressed in terms of the quantity D,: (I W2'12) 
= (2d - 1 ) (p V)2Dn [in the derivation one uses (25) 1. 

We introduce the quantity 

exp[irn(q+2"a)], 

(71) 

wherd m is an arbitrary vector. For m = 0 the quantity 
U:'(q) coincides with the potential V'"' (q)  that appears 
in the Schrodinger equation (35) of the nth step of the trun- 
cated renormalization group; the quantities U 2' (q)  with 
m # O are required in Sec. 6. The variances of U 2' (q) are 
also expressed in terms of D, : 

( I u:' (q) 1 '>= Cbn+pV)2D", q ~ Q p .  

Performing on the energy a scale transformation that 
equalizes the variances of the quatitities W:' and U:'(q) 

' with diffeient n: 
(n) ( n )  (n )  (n) 

Wm *Wm- finD,,", J ,  + I ,  i3nQ,,'b, 

we obtain (60a) in the form 

where 

Linearizing Eq. (73) about the transition point, 
gin' = g:("' + Sgjn', and making the substitution 
Sgjn' = g~'" 'x~"' ,  we obtain the following equation, which 
refines (68): 

(After the scale transformation (72), to the necessary accu- 
racy the quantities Z:' can be regarded as independent of 
g,'"'.) It is sufficient to know the sequence g,'"' in the zeroth 
approximation (67); in view of the fact that Z :" with differ- 
ent n are independent, the distribution of g;'"' is stationary. 
It is calculated from (67) using the rules of probability the- 
ory: 

From this it is easy to find the asymptotic forms (see Fig. 3) 

3. The analysis of Eq. (75) is complicated by the mutual 
dependence of the gf'"' with different n and by the diver- 
gence of the averages and ,,, (g f )2 .  We make the 
substitution xjn' = 2"~:"' and write (75) in vector form: 

where A, is a random matrix. Equations of this form are 
studied in the theory of one-dimensional localization24225; 
they are characterized by an exponential-growth.exponent 
describing the increase of y'"' for initial conditions of gen- 
eral form. This is the exponent of interest for us, since it 
characterizes the rate at which the system moves away from 
the stationary point. 

To eliminate the mutual dependence of the matricesin 
we shall integrate Eq. (77) N times ( 1 < N g  l/B 2 ,  : 

N-1 

The correlations between X ,'"' and Z g' with different n fall 
off exponentially: 
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h 

and for large N the matrices B, become independent. Intro- 
ducing the distribution function P,, bi) of the components 
of y'"' and the distribution function P, { B ~ )  of the elements 
of the matrices B, , we obtain from (75) 

In  view of the divergence of the averages Bii, in place of 
P, {BV) it is convenient to use the characteristic function 

In lowest order ing the characteristic function has the form 
(see below ) 

~ ~ { 0 ~ , ) = 1 + 2 i ~ g ~ [ -  Z 0 i i  + Y, Oij]+  o ( ~ ) ,  (80) 
i j t i  

where 

which can be rewritten in the form 

xB{O,,)=exp {iB,,B,,)f O(BZ) ,  

Substituting into (78) and (79),  we obtain 

The same result is obtained if in (75) we replace gf'"' and 
x r '  by constant values: 

Putting x,'"' = x ,An , we obtain an eigenvalue equation, 
which can be solved by Fourier transformation with respect 
to the variable i. The largest eigenvalue 

determines the desired growth exponent of Eq. (75).  The 
critical index Y is expressed in terms ofR,,, as follows: 

- 
Substituting (8  1 ), we obtain the final expression ( 2  1 ). We 
note that to refine the formula (21),  i.e., to calculate the 
term O(p 2 ) ,  the expansion (75) is no longer sufficient. 

4. It remains to obtain an expression for the characteris- 
tic function (80). By the rules of probability theory, 

N 

Expanding the exponential in a series, we obtain a sum of 

integrals, of which some converge, giving a contribution of 
order6 2,  and the others diverge logarithmically. The latter 
can be calculated with logarithmic accuracy by cutting off 
the divergences at the limit of applicability of the expansion. 
The calculations can be carried out more rigorously if we 
transform the exponential using the scheme 

and estimate the resulting integrals. As a result, we obtain 

Integrating over all the variables except Ze8,  Z,,, and Z,, + eJ,  

we obtain 

The joint distribution of Z,, , ZeJ, and Z,, + ,,, is Gaussian and 
is fully determined by the second moments: 
- - -  
ZZi = 2:. = 2: + ,  , = 2dt1v2, 

I I - - -  
Ze ,Ze j -  ZeiZe,+ej = ZejZettej = 2dV2.  

They are calculated using the definition (60c) of W c ' ,  with 
allowance for the scale transformation (72) that was per- 
formed. Hence, 

P ( z e i ,  z e j ,  z eL te>  

The choice of scale has no significance i fX is calculated with 
the aid of the same distribution. As a result, we obtain 

Calculating F, 

(we use properties of the gamma function-see Ref. 26), we 
obtain (80).  
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6. THE FULL RENORMALIZATION GROUP 

The only purpose of this section is to substantiate the 
truncated renormalization group used in Sec. 4; therefore, 
this section can be omitted without detriment to the under- 
standing of the main text. 

1. We must realize in its complete form the algorithm 
formulated in Sec. 3. To derive the renormalization-group 
equations to order p * it is sufficient to confine ourselves to 
the 2d -band approximation; therefore, in the formulas of 
Sec. 3 we set N = 2 d .  

We shall explain the scheme of manipulations with the 
band index s. At the nth step of the renormalization group 
the index s labels 2d bands; as a result of allowance for 
further Fourier components of the potential, each band is 
split into 2d subbands, labeled by the index m; the complete 
labeling is implemented by the index v = (m, s ) .  After this 
we select one of the initial bands (for definiteness, the band 
with s = O), and designate its subbands to be bands of the 
( n  + 1 )th step of the renormalization group. Thus, the in- 
dex s coincides with the index m of the preceding step, and 
for the following it is convenient to regards as a vector index. 

We shall consider an expression of the form 

and call it extremal when n = m, nonextremal when n > m, 
and superextremal when n < m. Introducing the energy scale 
W n '  - Woo'"' (0;0), we consider the quantities 

where R'"' (q)  = ( A  g ' (k ,  q)),, and the symbol (...), de- 
notes the zeroth Fourier component with respect to k. We 
shall prove the following lemma: In the Fourier series of the 
quantities (86) there are no superextremal terms. The proof 
is performed by induction on n. For n = 0, 

(0' A , ,  =6,,6.~,, e(O) (k) = x 2 1 i  cos ki, W("- V 

and the assertion is obvious. Assuming that the assertion is 
true for some n, we shall prove it for n + 1. It follows from 
the induction assumption and formulas (45), (36), and 
(47) that superextremal terms are absent in the Fourier se- 
ries of the quantities 

The series for T,,  (48), after iterative elimination of E,, 
from the right-hand side, consists of terms of the form 

R,,. (k) R,.~,~~ (k) .. . ,  
R,,(k) -p,.,. (k) ~ " " ( k )  - H v , v *  (k) 

Transforming the denominators in accordance with the 
scheme 

we find that superextremal terms are absent in T,. (k) ,  and 
hence also in FS, (k) .  Dividing (51) by R'"' (q ) ,  we find that 

h 

under the operator Q is a sum of terms of the form 

a exp [i(m,+a,) k,+i(m,+a,) k2+.  . . i i (md+  ad)1~dl, 

h 

since m', mey,. The operator Q: eliminates the odd 
mi + ai , and the scale transformation in k halves them. As a 
result A ~:+"(k,q)/R'"' (q)  consists of terms of the form 
(85) with mj in place of mi, where 

mif=(mi+ai)/2, ai=O, * I ,  mi+ai - is even . (87) 

It is obvious that Imjl < Im, I, and therefore m1<m. Taking 
into account that R'" + " (q)  -R'"' [q),  we find that there 
are no superextremal terms in A $ + " (k,q)/R'" + " (q). 

Analogously, the quantity (E ,  ( k )  - (~vv) , ) /W""  
consists of terms of the type (85) with m(n;  here all mi are 
eveninview of (31).Byvirtueof ( 5 0 ) , ~ ~ + ' ) ( k ) i s a s u r n o f  
terms of the form of (85) with mi in place of mi, where 
mi = m,/2, and a certain constant term. If m#O, then 
m l # m - 1  and the quantity ( ~ ? + " ( k )  
- ( E , ) ~ + ' ' ) / W ( ~ + ~ ) ,  where W'"+" -PWn ' ,  does not 

contain superextremal terms. The lemma is proved. 
The lemma shows that &In'(k) and A ::'(k,q) can be 

expanded in Fourier series with respect to k with coefficients 
that decrease with increase of the parameterp. For our pur- 
poses the first few terms will be sufficient: 

E:") (k) = const +E 21jn) cos ki +z 2~::) cos 21c, 

A,:"' (k, (1) =aR'" (q) 1 l +z ai cos ki + pi sin ki 

A,,'" (k, q) - p2R(") (q) , a'-sZO, ei, 

The form of the expansions (88) is a consequence of the form 
of the right-hand sides of (50) and (51) that were estab- 
lished in the proof of the lemma. From (88) there follow 
estimates for the matrix elements of H: 
WmSs (k; 0) - w,': (k; 0) - W, m+m', 

WmKs (k; 0) - W: (0; 0) -p4 W 

W: (k; 1) - { P2w, l=ei 
PLW, l=O,ei' 

I "' 1=0, ei, s'-s=ei 
w I - pSW, 1 ~ 0 ,  e,, st-s=e,, 

8: (k) -e,rO (k) - W/P, sZS', pW, m=ei 

&s"(k) -&,O (0) -p3w, 
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2. We shall need expressions for Ag) (k ,q )  and 
A i$,,,(k,q) in whicha, andp, are calculated to order -0 3, 

the quantities y, and<, are calculated to order -P4, and the 
quantities Ci and qi are calculated to order -P; the coeffi- 
cients pU , S U ,  and aU are not needed at all. These expressions 
are obtained by iterative solution of Eq. (5  1 ) 3': 

A'? ( k ,  q) =Rln) ( q )  { I  - g:"-'" [cos ki + cos ( k i + f n q i )  
i 

- Lgi(n-l) gi(n-z)2  [ C O S  ki (1-2 cos (2"-'qi) 
i 

+ 2 cos (2"-'q,) -2 c 0 s ( 3 ~ 2 " - ~ q i )  

+ cos (2"qi) ) + sin ki ( 2  sin (2"-'qi) 

- sin(2"qi) ) [cos k i  + cos (ki+2"qi) 

- 2 cos (ki+an-'q,) I 1 

I1 + - cos (2k,+2n+'qi) I}, 
8 

X {exp ( ike,)  [I - exp (2"-'iqei) ]+[I - exp (-2"-'iqei) 1)  ; 
where 

sin'= [ w:*-" +we;;."- wdi",;" - w y ;  ] 
x [ wr-') - w::;;) ] -'. 

We shall describe the procedure of the calculations. The so- 
lution of (5 l ) is sought in the form 

A::? ( k ,  ~ q )  = R.'"' ( q )  exp (2"-'iqs) [6.8,+ @ts:) (k, q )  I ,  (9  1 

where (a,,. ), = 0, a,, -p2, as,. -P, s#sl. To calculate 
a,,, in lowest order i n 0  we do not need to know the matrix 
elements Hz!"' with sfs', and for 3;" the approximation 
(53) is sufficient. Equation (5 1 ) for v = v' = 0 is brought to 
the form 

[ R("+'' 
- I ]  + B~:"'" (2k,  q )  =Qnk@l:) ( k ,  q) 

R'"' ( q )  

and is solved by the substitution 

c ~ "  ( k ,  q )  ==- x g ! n - l ' z [ c o d  r , ( i - 2  cos 2"-'q. + eos 2?,) 

-I- sin ki (2 z '  '?-'qi - sin 2"qi) I ,  

whichgivesA $) (k,q) toorderp 2; forR'"' (q)  weobtain the 
recursion relation (60b). For v = v' (5 1 ) gives 

whence follows the expression for A I:)+ (k,q). 
For the calculations of A A:' (k,q) to order f l  we need 

the following expressions for the matrix elements: 

[ WOo"k; e l )  ] (n) 

=-gY-')' [ cos ke,  ( w:"' + w::'- We:;', - w ~ I  ,,) 

- i sin ke, (W~YL- w-:),~) I ,  
(92) 

[ W i 0 ( k ;  0) ] ( " ' = g : n - " ( ~ . ' , * ~ 2 - ~ ~ " ' ) ,  

which can be obtained by substitution of the previously 
found approximation for A I,".'(k,q) into the formula 

[ w.""' ( k ;  rn) ] (")  

1 
= esp (ik',rn) A:.' (k+ku. q )  V ([I) cxp (2"iqn).  

which follows from (36) and (45) with the use of (26).  
The calculation of the terms -fl in (90) is simplified 

considerably if we note that these terms can arise only from 
the extremal terms in the right-hand side of (5 1 ). Therefore, 
in the series (48) we can omit all terms containing interband 
transitions, since here at least one of the energy differences in 
the denominators is of order W'"' /fl, implying that the cor- 
responding term is nonextremal. For the same reason, in 
(91) we can omit the nonextremal quantities a,, and, for 
Hzm' ,  confine ourselves to the approximation (53). Fur- 
thermore, in series of the type (56) we must take into ac- 
count only terms withi = j = I = m, since only they can lead 
to the appearance in the right-hand side of (5 1 ) of the terms 
cos(4k, + p) of interest to us. Therefore, for the quantities 
that we need we obtain 

2Ji cos ki 4JiZ cosZ ki 
, & l T m o 1 2 = ~ - - -  

m+o m*o ( E " - W e , ) 2  

whence 

It remains to substitute into (51) and select the appropriate 
terms. 

Substituting (90) into formula (93), we obtain the nec- 
essary matrix elements in the form 
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[WOO0 (k;  e l )  ] = cos k, [H:"' g~-"2+~i(n)g~n-1)g~n-2)2] 
n )  (n-1)Z ( n - I )  (n-Z)Z + i sin ke, [ p i '  g ,  +T,!"' gi g, ] +O ( p 4 ) ,  

[WOO0 (k;  0) 1 ( n ) = ~ : n )  + 2Fi ( .'g . , ( n - 1 ) 4  cos 2ki, 
1 

( 9 4 )  

[ Wo: ( k ;  e , )  ] ( n ) = g : n - i ) e i k e ~ [ ~ ~ i n ~ 2 - w ~ ~ '  1, 

[the others are written out in ( 9 2 )  1, where we have intro- 
duced the notation 

3. We shall write out the expression for E,(k)  to order 
p 4; for this it is necessary to take into account the processes 

FIG. 4. Processes giving a contribution to E , ( k )  to orderb (ford = 2). 
The small squares positioned at the vertices of the large squares corre- 
spond to bands of the nth step of the renormalization group and are la- 
beled by the index s; their vertices correspond to the subbands, labeled by 
the index m, arising in the nth step. Transitions (s,m) + (s1,m') of the 
following form are taken into account: a )  m' - m = e,, s' - s = 0; b) 
m' - m = 0, s' - s = e,; C) m' - m = e,, st - s = e,. In thed-dimension- 
a1 case the small and large squares are replaced by d-dimensional cubes. 

shown in Fig. 4. These are selected with the aid of the esti- 
mates ( 8 9 ) :  

I EOO (k) + W P  (k; ei) la [$ (k )  c i j  (k)]" 

i 
- Z (Wo - H7ei)'(W0 - Wej)  

i j  

8: (k) [ w ~ O  (k; 0 )  W? (k ;  ei)  + W: (k; 0 )  W?O (k; ei) + c.c.1 

(WO - Wei) (80' - 

[ e? ( k )  G j  ( k ) ]  1 +--I. 1 
+ i jpi C W O  - weJ(W0 - [ W O  - We,  W O  - Wej 

We have omitted the contributions of the diagrams b and c, 
since, in view of the relation 

I w:"' (k;  m)  1 = const ( k )  +O ( p 4 ) ,  s+s', 

which follows from ( 8 8 ) ,  they turn out to be independent of 
k.  Substituting E, ( k )  in the form ( 8 8 )  and the matrix ele- 
ments in the form ( 9 2 ) ,  ( 9 4 ) ,  we obtain the law of transfor- 
mation of the spectrum: 

I 

where we have introduced the notation 

Eliminating Jj:) from the first equation and iteratively 
transforming the fourth-order terms, we obtain the basic re- 
normalization-group equation: 
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Going over to the modulus of g,'"' and denoting it by the 
same symbol, we obtain an equation that differs from Eq. 
(60a) of the truncated renormalization group in that the 
coefficient u'"' is present. It is easy to see that 
u'"' = 1 $ O(P) ,  and the derivatives of u'"' with respect to 
g,'"' are of orderp 2; under variation with respect to gjm'the 
quantity u'"' can be regarded as constant. As a result, the 
coefficient u'"' does not appear in the linearized equations 
(75), and in the equation forg;'"' the coefficient u'"' can be 
replaced by unity. 

The complete system of renormalization-group equa- 
tions consists of Eq. (97), the evolution equation (60b) for 
R '" ' (q) ,  the definitions (60c) and (36) of W:' and 
V::'(k,q), and the expressions (90) for the quantities 
A $'(k,q). It is not difficult to verify that all the quantities 
appearing in the Schrodinger equation (35) of the nth step 
can be expressed in terms of g,'"', Wg',  and U$'(q) with 
m = 0, e l ,  + e, /2, etc. The quantities W g '  and U 2' (q )  
have Gaussian distributions; their variances, as a result of 
the scale transformation (72),  do not depend on n, and the 
pair correlation coefficients are functions only of g,'"'. Con- 
sequently, provided that the g,'"' are stationary, all the pa- 
rameters of Eq. (35) are stationary, and their deviation from 
the stationary point is determined by the deviation of g,'"' 
from gf'"'. Thus, the role of the Thouless parameter g,'"' for 
the scaling theory of localization1' is justified to order P 2 .  

The rate at which g,'"' moves away from the stationary 
point is described by the linearized equation (75), which has 
the same form in the full renormalization group as in the 
truncated renormalization group, thereby proving the ad- 
missibility of using the truncated renormalization group to 
calculate the index v. 

7. CHARACTER OF THE SCALING. THE CONDUCTIVITY 

The basic renormalization-group equation (97) has the 
form 

and differs from the equation postulated in Ref. 11 in the 
vector character of the Thouless parameter g'"' and the 
presence of the random element ( ~ ( q ) ) .  In the zeroth ap- 
proximation these differences are unimportant. In fact, gjn) 
can be written in the form (see Sec. 5 )  

gr(n' = (l!O) /BWi) znd(") , 

wheregc'"' has the stationary distribution (76). Ifg* is the 
point of the maximum ofP(g)  (see Fig. 1 ), then for the most 
probable value of g,'"' we have 

gY'=g* ( ~ i l b ~ i )  2P or gi(bLn) = (g*) '-bgi(L,) ', 

where L,  = 2" is the length scale at the nth step of the renor- 
malization group. From this, for b+ 1, we obtain the Gell- 
Mann-Low equation' ' 

(the index i can be omitted, since this equation is the same 
for all i). I t  is evident that by an analogous transformation 
we can also bring the general equation (98) to an explicitly 
one-parameter form. 

The principal result of the hypothesis of one-parameter 
scaling is the relation (4 )  between the indices s and v. The 
essentially nontrivial point is the assertion v = v' ( v  and v' 
are the correlation-length indices in the insulating and me- 
tallic phases, respectively), since the relation s = v' (d - 2 )  
has a general character (see, e.g., Ref. 10). In the theory 
described, the equality v = v' holds; consequently, the rela- 
tion ( 4 )  is also valid. Thus, our results do not contradict the 
hypothesis of one-parameter scaling. 

With regard to the relation (4 ) ,  one comment must be 
made. From the analogy with incommensurate systemsIg we 
must expect that for sufficiently smallp the conductivity in 
the metallic phase will be infinite and the index s indetermin- 
ate; a finite conductivity arises for a certainPC. If the region 
of existence of a finite conductivity and the region of one- 
parameter scaling overlap, the index v does not have a singu- 
larity at the point PC and the index s can be calculated from 
the relation ( 4 )  in the framework of the proposed expansion. 
In fact, the conductivity of a finite system depends analyti- 
cally o n p  in view of the absence of phase transitions in finite 
systems; the Gell-Mann-Low function describes the rela- 
tionship between the conductivities of two finite systems and 
so, for finite values of g, depends analytically on 8 ,  as is 
confirmed by the expression (99),  which is valid forg 5 1 for 

any f l  (we note, however, that the limit lim B G L  (g)  has a 
g- s 

singularity at the point PC ). The index v is determined by the 
behavior ofp,, (g)  at g -  1 and does not have a singularity 
at the pointPC. It also follows from the above arguments that 
in the region of one-parameter scaling on the (P,d) plane 
(see Fig. 2 )  there can be no singularities in P: All singular 
lines of the type AB and CD are simultaneously boundaries 
of one-parameter scaling. 

8. CHARACTER OF THE UNIVERSALITY 

As usual in the theory of phase transitions, the renor- 
malization group constructed makes it possible to investi- 
gate the nature of the universality of the critical behavior of 
the physical quantities. 

1. As is clear from the derivation in Sec. 5, the result 
v = 1 for P -0  has complete universality and does not de- 
pend on the statistical nature of the potential, e.g., on the 
existence or absence of variance, long-range correlations, 
etc. It is equally valid for random and determinate models. 
Such universality is similar to the universality of mean-field 
theory. 

2. The first correction to the value v = 1 depends on the 
statistical properties of the potential, although it turns out to 
be the same for large classes of analogous models. The uni- 
versality class of the Gaussian model (28),  for which the 
formula (21) was obtained, turns out to be very wide. 

Suppose, for example, that the Fourier components of 
the potential have arbitrary, independent, finite-variance 
distributions satisfying (28 ) . In view of ( 36), each Fourier 
component Vb$'(k,q) of the potential of the nth step of the 
renormalization group is a linear combination of 2nd Fourier 
components of the initial potential, with weights of order 
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unity. By virtue of the central limit theorem, the statistical 
properites of Vig' (k,q) for large n will be indistinguishable 
from those for the Gaussian model with the same values of 
the variance. Therefore, the critical behavior, determined by 
large n,  will be the same as in the Gaussian model (28). 

We can also weaken the requirement of equal variances 
for all qcR, by replacing the last condition of (28) by the 
following condition: 

where B(q)  is a non-negative 2n-periodic function. For 
fl-+ 1 such a model goes over into the Anderson model in 
which the site energies Vm are correlated: 

Defining the quantity D, (q)  not by (69) but by 

we obtain for it the same functional equation (69a), which 
must now be solved with the initial condition D,(q) = B(q) .  
Making the Fourier transformation 

we bring (69a) to the form 

Dn+, (m) =?{I,, (2m) + 2g:"" [D., (?n~+ei) -?Dm (2m) 

With the aid of the inequality 

it is not difficult to show that if ID,(m) 1 < Iml -a, then 
ID, ( m ) 1 < 2 ' d a ) n  Ilmi - 11 -" for /mi > 1. Assuming that 
the quantities D, (m) with /mi > 1 are known, we obtain for 
D, (m)  with m = 0, + e, an inhomogeneous system of dif- 
ference equations; investigating this system, we find that un- 
der the condition 

we have D, (m)  -+D,S,,, i.e., D, (q )  -+const (q ) ,  as in the 
model (28).  Thus, the model ( 100) belongs to the universal- 
ity class of the model (28),  if the correlations of the levels in 
the corresponding Anderson model (p-+ 1 ) have a power- 
law decay with an exponent a satisfying ( 103). 

3. In order to demonstrate the existence of other univer- 
sality classes, we shall consider models in which the site en- 
ergies Vm have distributions with an infinite variance. In 
view of the action of the law of large numbers, it is sufficient 
to consider the so-called stable distributions, which, like the 
normal law, preserve their form under summation of identi- 
cally distributed terms. Such distributions have a character- 
istic function of the form27 

where y is a parameter varying from 0 to 2: The normal law 
corresponds to y = 2, and the Cauchy distribution to y = 1 
(we confine ourselves to symmetric distributions). The 
quantity Vin ( 104), characterizing the width ofthe distribu- 
tion, will be called the modulus of Vm and will be denoted by 

I I  v m  11. 
We shall define the hierarchical model as follows: The 

Fourier components V, and V,. are independent for 
qf  + q', V, = V:" + iVF' ,  V-, = V:, and the quanti- 
ties V:" and Vi2' have a joint distribution with characteris- 
tic function 

For the moduli of real sums of quantities V, the following 
formula is valid: 

and is analogous to the law ofcomposition of variances in the 
Gaussian case. 

We shall note the modifications that it is necessary to 
introduce into the theory for application to the case under 
consideration. The definition (69) of the quantity D, (q )  is 
replaced by 

This quantity also turns out to be independent of q, and satis- 
fies the recursion relations 

The moduli of W g' and U 2' ( q )  can be expressed in terms 
of D" : 

11 u:' ( q )  11 = p p f n v ~ f i 1 7  I F O P ,  
ill I /  WE' li=PnVD,, (2"-1) "'. 

Performing the scale transformation 

u:' ( 4 )  +u:' (q)  P"D;", 

w:' +. ~ r ' p n ~ ; " ,  + J ( ( ~ ) ~ ~ D ~ ' ~ ,  

we arrive at Eq. (73) with p = 2d'yfi. The characteristic 
function X, {8 i i )  is calculated in the same way as in the 
Gaussian case, up to formula (84). The joint distribution 
function of Zei, Ze,, and Z,, + ,, has the form 

x exp ( - i0 ,Z.  ,-i0,ZWl -iO,Zw i+e j  ) 

Substituting into (84),  we obtain 

where I, denotes the integral 
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tidimensional generalization is the equation 

which admits separation of variables; thus, the result v = 1 is 

FIG. 5. 

As a result we arrive at the following expression for the 
index v: 

where 
m 

The dependence of d, on y is shown in Fig. 5; the existence of 
this dependence can imply a dependence on y of the upper 
and lower critical dimensionalities (see Sec. 2) .  

4. The result v = 1, obtained in the limit P-0, is exact 
for incommensurate systems whose potential is a sum of two 
periodic potentials with an irrational ratio Pincorn of per- 
iods 18-2 1 (this result was obtained for the one-dimensional 
case, but is valid for all d; see the Appendix). The results of 
this section niake it possible to understand the reason for this 
coincidence. 

In incommensurate systems the strong-hierarchy limit 
can be created by a special choice of the irrational number 
Pincorn -namely, in its expansion as a continued fraction 

all then,,  n,, ... should be large.19 Naturally, in the limit 

P=max (P,ncorn , PI,  P2, . . .) - to 
the result ( 19) holds. But the correction to it depends on the 
universality class, and therefore it is not surprising that in 
the universality class to which incommensurate systems be- 
long it is equal to zero in all orders in P. 

APPENDIX 

Comment on multidimensional incommensurate systems 

The principal results of the theory of localization in in- 
commensurate systems (in particular, v = 1 ) were obtained 
for the equation 

al+l+a~- ,+I 'cos  ( 2 ~ / ? ~ ~ ~ ~ ~  I) uI=Eal .  (109) 

which tias an Anderson transition at P. = - 2. Its natural mul- 

valid for the generalization too. 
As shown in Ref. 19, the description of incommensu- 

rate systems of general form near the localization edge re- 
duces to Eq. ( 109), if in the expansion ( 108) one can find a 
secondary sequence of sufficiently small P, (this is true for 
almost allP,,,,rn ); i.e., the Hamiltonian ( 109) with V = 2 is 
the limit ~amil tonian to which the renormalization-group 
transformation brings an arbitrary system at its critical 
point. For the same reason, the Hamiltonian ( 110) with 
V = 2 is the limit Hamiltonian for d-dimensional incom- 
mensurate systems possessing cubic symmetry. Thus, the in- 
dex value v = 1 turns out to be universal. 
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